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Introduction

The problem of internal and external stability is one of the most important in the design and analysis of geosynthetic reinforced soil slopes. The internal stability includes the rupture of reinforcement and pullout failure. The external stability includes sliding, overturning, bearing capacity and overall stability. The majority of methods available in literature concerning the determination of the safety factor against failure are based on lateral earth pressure considerations [START_REF] Steward | Guidelines for use of fabrics in construction and maintenance of low-volume roads[END_REF]Broms, 1978;Collin, 1986;[START_REF] Bonaparte | Soil reinforcement design using geotextiles and geogrids. Geotextile testing and the design engineer[END_REF] or employ the approach commonly used in conventional slope stability analysis, modified to account for the inclusion of the tension in the reinforcements [START_REF] Blanchier | Etude de la stabilite´d'un talus renforce´par des nappes ge´otextiles[END_REF][START_REF] Leshchinsky | Stability of membrane reinforced slopes[END_REF][START_REF] Delmas | Le dimensionnement des ouvrages renforce´s par ge´otextiles programme CARTAGE[END_REF][START_REF] Hird | Stability charts for reinforced embankments on soft ground[END_REF][START_REF] Huisman | Design guideline for reinforced embankments on soft soil using Stabilenka reinforcing mats[END_REF][START_REF] Low | Slip circle analysis of reinforced embankments on soft ground[END_REF][START_REF] Kaniraj | Rotational stability of unreinforced and reinforced embankments on soft soils[END_REF]. The latter methods have used different assumptions concerning the magnitude and the inclination of the reinforcement tension at the failure surface. The different directions that have been assumed by some investigators are (1) horizontal [START_REF] Leshchinsky | Stability of membrane reinforced slopes[END_REF][START_REF] Delmas | Le dimensionnement des ouvrages renforce´s par ge´otextiles programme CARTAGE[END_REF][START_REF] Hird | Stability charts for reinforced embankments on soft ground[END_REF], (2) tangential to the failure surface [START_REF] Delmas | Le dimensionnement des ouvrages renforce´s par ge´otextiles programme CARTAGE[END_REF], (3) in the direction of the bisector to the horizontal and the tangential directions [START_REF] Huisman | Design guideline for reinforced embankments on soft soil using Stabilenka reinforcing mats[END_REF][START_REF] Low | Slip circle analysis of reinforced embankments on soft ground[END_REF][START_REF] Kaniraj | Rotational stability of unreinforced and reinforced embankments on soft soils[END_REF] and ( 4) orthogonal to the radius of the log-spiral slip surface [START_REF] Leshchinsky | Stability of membrane reinforced slopes[END_REF].

Furthermore, there is a number of other design methods available for geosynthetic reinforced slopes based on a displacement approach. These methods have considered a prescribed displacement at the top of the slope in order to mobilise the tensions in the reinforcements. The original method, called the 'displacement method' [START_REF] Gourc | Design of fabric retaining walls: the displacements method[END_REF], is being widely used in France and in several other countries for the design of such structures. The use of this method to estimate the failure limit state of such structures can now be considered to give satisfactory results. Geotechnical engineers have built up this reliance from several experimental investigations and theoretical validations all over the world (GourGourc et al., 1992;[START_REF] Gourc | Pull-out behaviour of reinforcements centrifuge tests and theoretical validations[END_REF][START_REF] Yoshioka | Validation of the 'Displacements Method' on an experimental reinforced wall at failure[END_REF][START_REF] Delmas | Two full size structures reinforced by geotextiles[END_REF][START_REF] Fidler | Evolution of the 'Displacement Method' applied to soil reinforced structures[END_REF]. This method is based on the principle of soil limit equilibrium, associated with the anchored membrane behaviour of the geosynthetic reinforcement. The original method ('Cartage' French software) considered a simplified mechanism for this membrane (rectilinear shape). Later on, a more rigorous mechanism (circular shape) was proposed. The advantage of this method is its ability to take into account the extensibility of the reinforcements in the design, which is a major characteristic of geosynthetics. Also, it allows one to take into account the complex soil-geotextile interaction mechanism that actually occurs, and one can check the soil-reinforcement strain compatibility.

In this paper, an extension of the 'displacement method' presented by [START_REF] Gourc | Design of fabric retaining walls: the displacements method[END_REF] is proposed. It allows the determination of the geometry of the membrane, which gives the minimum value of the tension in the reinforcement at the failure surface and simultaneously satisfies the three static equilibrium equations of this membrane using a variational approach. In the following section, the 'displacement method' given by [START_REF] Gourc | Design of fabric retaining walls: the displacements method[END_REF] is briefly reviewed, and then the present variational formulation is presented.

Determination of the tension in the reinforcement

This study takes place in the general framework of geotextile reinforced slope stability analysis. Fig. 1 shows a geosynthetic reinforced slope inclined at (with the Fig. 2. Anchored membrane concept for geotextile reinforcement [START_REF] Gourc | Design of fabric retaining walls: the displacements method[END_REF]. horizontal direction). This paper only considers the determination of tension ¹ in the reinforcement i at the intersection with the failure surface ½(X) (see Fig. 1).

As mentioned above, [START_REF] Gourc | Design of fabric retaining walls: the displacements method[END_REF] have suggested a displacement approach and have considered an anchored membrane in the neighbourhood of the failure surface (see Fig. 2). They have made assumptions concerning the magnitude and the direction of the uniform pressure distribution, p, applied to this membrane. These authors have shown that the assumed distributions lead to a membrane that has the form of a circle or a hyperbola, and to a constant tension in the membrane. In this paper, a new method for the determination of the reinforcement tensions is proposed. It is based on the following assumptions:

E The total membrane B B (see Fig. 3) is assumed to be symmetrical with respect to point A. This is in conformity with published results from model tests [START_REF] Galera | Approche the´orique du comportement du complexe sol-ge´osynthe´tique[END_REF]. Thus, tension ¹ in the geotextile sheet at point A, is determined by means of the equilibrium of a half membrane, E The location of maximum tension in the reinforcement coincides with the failure surface, E Tension ¹ is assumed to be tangential to the membrane since the reinforcement has no flexion rigidity, E The mechanical behaviour of the soil-reinforcement interface is characterised by a friction angle and an adhesion c that are assumed to be constant on both sides of the reinforcement. These parameters should be determined by soil-geosynthetic direct shear tests.

The present method includes the four following points (see Fig. 3):

1. Application of the variational calculus to the equilibrium of upstream membrane AB (upstream refers to the failure surface). It allows the determination of the extreme shape of the membrane AB that (1) minimises tension ¹ , and ( 2) satisfies simultaneously the three static equilibrium equations of the membrane. This will lead to a relationship between the tension forces at points A and B (i.e. ¹ and ¹

).

Determination of tension ¹

, using the tension-displacement relationship of the anchorage B F. This relationship allows the determination of the tensions ¹ and the relative soil-geotextile displacements u at any point of the anchorage as functions of u $ (relative displacement at point F). This calculation scheme is based on the work of [START_REF] Gourc | Design of fabric retaining walls: the displacements method[END_REF]; 3. Determination of unique solution for u $ value, and consequently for ¹ , using the displacement compatibility equation of the upstream zone. 4. Equilibrium of the downstream membrane in order to check the validity of the solution with respect to the failure by breakage or sliding of the reinforcement.

Note that points 1, 3 and 4 are new considerations, whereas point 2 is part of the existing 'displacement method'. These four points are detailed in the following sections.

Variational approach applied to the membrane

As shown in Fig. 3, a geosynthetic reinforcement is placed at a depth h below the ground surface, and subjected to a known vertical displacement y at point A. Note that, for the purpose of clarity, the representation of y in Fig. 3 is exaggerated. B , B are the unknown points of the reinforcement that separate the anchored and membrane zones. Thus, the two zones GB and B F, which behave as anchorages, remain horizontal, whereas the zone B B , which behave, as a membrane, gets an unknown shape. In the following, we are looking for the shape of this membrane that gives the minimum value of the reinforcement tension at the failure surface. The justification of such a statement is that when a state of limit equilibrium is reached, the upstream membrane AB and the neighbouring soil deform in such a manner to attain the least lateral pressure as possible by developing the active zone, that is to mobilise the minimum value of ¹ . Thus, the problem is to assess the unknown tension force ¹ (magnitude and direction: ¹ , ( ). As shown in Fig. 4, upstream membrane AB is described by an unknown function y(x) in the (A, x, y) coordinate system. It is subjected to tension ¹ at point A, to tension ¹ at point B and finally to normal and tangential stress distributions and (resp. and ) on the upper (resp. lower) face of the membrane. The equilibrium equations are given as follows:

E Horizontal equilibrium:

¹ cos "¹ # l ( cos ! sin ) ds# l ( cos # sin ) ds (1.1)
E Vertical equilibrium:

¹ sin " l ( sin ! cos ) ds# l ( sin # cos ) ds (1.2) E Moment equilibrium around point A: ¹ y " l [(( ! ) sin !( ! ) cos ) y #(( # ) sin #( ! ) cos )x] ds, (1.3) 
where " (s) represents the inclination of the membrane at point M to the horizontal direction, (x , y ) are the coordinates of point B in the local (A, x, y) reference system, s is the curvilinear coordinate of point M, and l is the length of the membrane (i.e. AB

).

Note that tension ¹ , which appears in these equations, is determined through the equilibrium of the upstream anchored zone B F (see Fig. 3) as will be shown later. Furthermore, one assumes that a state of limit equilibrium is reached for the soil-membrane interface and that the Mohr-Coulomb criteria are satisfied on both sides of the membrane.

" tg #c ( " tg )#c (2) 
The quantity ¹ required to bring the soil-membrane interface to a state of limit equilibrium depends on the choice of the three functions y(x), (x) and (x). Note that the friction on this membrane is mostly mobilised on the concave face (i.e. on the lower face of this membrane). Therefore, the authors think that it would be dangerous to make any assumptions concerning the normal stress distribution on this face [i.e.

(x)]. However, the normal stress distribution on the upper face of the membrane is essentially due to the soil weight above this membrane. Hence, ¹ necessarily depends on depth h (see Fig. 3). Now, this term does not appear in the equilibrium equations (Eqs. (1.1,1.2,1.3,2), (1.2,1.3,2), (1.3,2) and ( 2)). Thus, in order to relate ¹ to h , four different assumptions (namely models 1-4) concerning the distribution are made. They are defined as follows:

1. Model 1: One assumes that , the resultant of the elementary stresses and tg equals soil weight above the membrane (see Fig. 5):

Q " h#q
where represents the effective unit weight of the soil, h the height of soil above point M, and q the uniformly distributed normal surcharge at the top of the reinforced slope. Thus, stress can be written as follows: "( h#q).cos

(3) 2. Model 2: The magnitude of the normal stress is expressed as follows:

"( h#q) cos (4)
This expression of is sometimes called the 'Fellenius stress' in the slope stability analysis. Indeed, it refers to the equilibrium of a vertical slice of soil whose base is inclined at to the horizontal direction, assuming that interslice forces are parallel to the base of each slice. Fig. 6 shows the normal stress and the resultant stress as defined in model 1.

Model 3:

This model is the one proposed by [START_REF] Faure | Analyse des contraintes dans un talus par la me´thode des perturbations[END_REF] in his slope stability analysis method. The principal directions are assumed to be the horizontal and vertical ones. The principal stresses are thus expressed as follows:

" h#q on a horizontal facet unknown on a vertical facet Then, the normal stress that acts on a facet inclined with an angle to the horizontal direction, can be assessed by a simple construction of the Mohr's circle. It can be written as follows:

"

h#q 2 (1#cos 2 )# 1!cos 2 tg 4 # 2 # c (cos 2 !1) tg 4 # 2 (5) 
4. Model 4: This model is based on the assumption of Bishop concerning inter-slice forces in his slope stability analysis method. The normal stress , which acts on a base of a slice inclined with an angle to the horizontal direction, corresponds to the equilibrium of a vertical slice of soil whose inter-slice shear forces are neglected. Thus, the following expression is obtained:

" h!c tg #q 1#tg tg (6) 
In the following, the variational calculus is applied to the equilibrium of the upstream membrane AB considering model 1, then the obtained results will be extended to the three other models. 

Variational approach-Model 1

The normal stress distribution is given by Eq. ( 3). The depth h of soil above M can be expressed in the local (A, x, y) coordinate system (see Figs. 3 and4) as follows:

h"h #y !y (7.1)
Furthermore, one can write y"tg (7.2) and ds" dx cos .

(7.3) Substituting Eqs. ( 2) and ( 3) into Eqs. (1.1,1.2,1.3), (1.2,1.3) and (1.3), taking into account Eqs. (7. 1,7.2,7.3), (7.2,7.3) and (7.3), three limit equilibrium equations of the upstream membrane can be expressed as follows:

¹ cos "¹ # V 2c # (tg !y)#k [ (h #y !y)#q] ; sin ( # E ) cos dx (8.1) ¹ sin " V 2c y# (tg .y#1)!k[ (h #y !y)#q] ; cos ( # ) cos dx (8.2) !¹ y " V k.[ .(h #y !y)#q] sin ( # ) cos y# cos ( # ) cos x #[2c # .(tg !y)] y![2c y#r.(tg !y#1)] x dx. (8.3)
Note that ¹ appears in the two equilibrium Equations (8.1) and Eq. (8.2). This tension may be expressed from one of these equations, in terms of the two functions y (x) and (x). The quantity ¹ , for which the membrane attains a state of limit equilibrium, depends in general on the kinematical and the statical functions y(x) and (x), respectively. Therefore, ¹ is a functional of two functions. This functional is termed the tension functional, and the critical tension ¹ is the minimum value of ¹ :

¹ "min WN ¹ +y(x); (x),"¹ [y C (x), ( C (x)],
where y C (x) [resp. C (x)] defines the critical shape of the membrane (resp. the critical normal stress distribution). The problem of the equilibrium of the membrane can now be stated as follows: find a pair of functions y C (x) and C (x) that realises the minimum value ¹ (critical tension) of the tension functional ¹ , such that the three limit equilibrium equations (Eqs. (8.1,8.2,8.3),(8.2,8.3) and (8.3)) are satisfied. This problem is solved using variational calculus as proposed by [START_REF] Baker | Variational approach to slope stability[END_REF] in the case of unreinforced slope stability analysis. The calculus is briefly presented here. The reader can find more details elsewhere [START_REF] Lemonnier | Application de la me´thode variationnelle au proble`me de la stabilite´des talus renforce´s par des nappes ge´osynthe´tiques[END_REF].

The terms cos and sin that appear, respectively, in Eq. (8.1) and (8.2), give the tension functional a particular property: its dependence on y , which represents the slope of the membrane at point A. Indeed, if we choose Eq. (8.2) to define the functional, the problem can be expressed as follows:

min ¹ " V 1#y y 2c y# (tg y#1)![ (h #y !y)#q] ; cos ( # ) cos dx (9.1)
subject to the two following constraints:

x 2c # C (tg !y C )#[ (h #y !y C )#q] sin ( # ) cos dx "¹ cos K !¹ B (9.2) x [ (h #y !y C )#q] sin ( # ) cos y C # cos ( # ) cos x # [2c # C (tg !y C )] y C ![2c y C # C (tg E !y C #1)] x dx "!¹ B y , (9.3)
where the angle K corresponds to the inclination of ¹ , that is to the critical position. Eqs. (9.2) and Eq. ( 9.3), which are the integral constraints, are derived from Eqs. (8.1) and (8.3), respectively. The tension functional can be reduced to the following form:

J" x ¹ (x, y, y , y, ) dx
Note that one endpoint of the functional is null, and the other (i.e. x ) is variable. Furthermore, the two integral constraints are of the following type:

x k G (x, y, y, y , )" G ∀i 3 +1, 2, 3,,
where k G and G are obtained by identification. Thus, this problem is a standard isoperimetric one with a variable endpoint. The solution to this problem can be obtained using the method of Lagrange's undetermined multipliers. Following the same procedure as in [START_REF] Baker | Variational approach to slope stability[END_REF], an auxiliary function R may be introduced as follows: R"F#( K # K , where F, K , K are intermediate functions.

Therefore, the functions y C (x) and C (x) that constitute the solution to the problem have to satisfy the following conditions: 

Eq. ( 11) represents the equation of log-spirals of angle , with pole at (x A , y A ) (see Fig. 7).

As shown in Fig. 7, r decreases when angle increases, for O0. In case of "0, r remains constant when varies; thus, one obtains, in this case, a circle whose radius is r

. At point B , the tangent to the membrane remains in the horizontal direction. This condition implies that angle is constant and equals ( /2! ). Consequently, the family of possible critical shapes of the membrane is the one of log-spirals, which are defined by only one parameter, i.e. angle . Furthermore, note that the log-spiral has a particular geometrical property, that the resultant of the elementary forces ( ds) and (tg ds) passes through the pole C of the spiral. Hence, the moment equation about the pole is independent of the stress distribution (x) and may be used for the determination of the critical tension ¹ . The two remaining equilibrium equations may be satisfied by every (x) distribution that has two degrees of freedom. Thus, one may find the critical value that simultaneously satisfies the moment equation (Eq. (12.1)) and gives the minimum value of ¹ (Eq. (12.2)). This is done by a one-dimensional minimisation procedure of ¹ with respect to .

m A ( )"0P¹ "¹ ( , ¹ ) (12.1) ¹ "min (¹ ).
(12.2)

Second Euler and transversality equations.

Since the aim of this study is the determination of the critical tension and its inclination, the results obtained so far are sufficient to solve the problem. Indeed, it has been shown by [START_REF] Baker | Variational approach to slope stability[END_REF], in the case of unreinforced slope stability analysis, that the second Euler and the transversality equations give the normal stress distribution (x). In the present analysis, it is also the case, but since the (x) distribution is not necessary to assess ¹ and K , we will not express these equations.

Variational approach-Other models

Let us note G the distribution corresponding to model i (i"1, 2, 3 or 4), then Eqs. ( 3)-( 6) may be expressed as follows:

G "s G ( h#q) cos E , where s "1 s " cos cos s " 1 2 cos 1#cos 2 # 1!cos 2 tg 4 # 2 # c (cos 2 !1) tg 4 # 2 ( h#q) s " ( h#q)!c tg cos ( h#q) (1#tg tg ) .
Thus, by multiplying corresponding to model 1, by a coefficient s G defined above, one obtains G corresponding to model i. However, these coefficients depend on y(x) and y(x) (through h and , respectively), but are independent of the (x) distribution. Consequently, since the first Euler equation concerns the partial derivative of the functional with respect to (x), one can easily show that the variational calculus applied to the three other models gives the same conclusions obtained for model 1. Nevertheless, the critical tension is not the same for each model.

Equilibrium of the downstream membrane

As mentioned above, membrane AB is assumed to be symmetrical to AB with respect to point A. Thus, membrane AB is subjected to (see Fig. 8): critical tension ¹ ; tension ¹ , which remains horizontal; normal and tangential stress distributions and (resp. and ) on the lower (resp. upper) face of the reinforcement. Furthermore, the following assumptions for zone AB will be adopted here:

1. A state of limiting equilibrium is assumed to occur on both faces of downstream membrane AB , that is: 2. The interface friction is mostly mobilised on the concave face of the membrane, that is on its upper face. Thus, no assumption will be made for the distribution.

" tg #c " tg #c (13) 

Concerning

distribution, an assumption is presently made in order to simplify the resolution: it is assumed to be null, that is the membrane decollates at its lower face.

Note that the two first points are the same as for zone AB , whereas point 3 is different.

Thus, writing the only moment equilibrium equation about the pole of the known log-spiral defining AB zone, one obtains ¹ without any assumptions concerning normal stress distribution (x). For the same reason as for the upstream membrane, the two other force equilibrium equations are implicitly satisfied.

Tension-displacement relationship of the anchorage

To determine the tensions in the anchorage, one considers the model of the soil-geotextile interaction proposed by [START_REF] Gourc | Design of fabric retaining walls: the displacements method[END_REF]. It is based on the following two relationships (see Fig. 9):

1. A linear elastic tension-strain relationship for the geotextile:

¹"J , ( 14 
)
where ¹ is the tension force, J the tensile stiffness and the strain in the geotextile; 2. An elasto-plastic relationship for the friction behaviour of the soil-geotextile interface:

" where is the mobilised shear stress at any point M of the interface, u the relative soil-reinforcement displacement at this point, the slope of the straight line that characterises the elastic behaviour of the interface, the ultimate shear stress and u the minimum value of u that mobilises (see Fig. 9(b)). The relative displacement u should be determined by a laboratory friction test.

u if u(u if u*u (15)
Thus, considering that a state of limiting equilibrium is reached on both soil-geotextile interfaces, the Mohr-Coulomb criterion has to be satisfied:

" tg #c (16) 
Combining Eq. ( 14) with Eqs. ( 15) and ( 16) for each anchorage zone, one obtains two relationships giving the displacement u and the tension ¹ at any point of the anchorage for a prescribed boundary condition at point G (see Fig. 3). This boundary condition may be either: (1) free anchorage where ¹ % "0 and u % O0, or (2) fixed anchorage where ¹ % O0 and u % "0. Let us consider the free anchorage; then these relationships may be reduced as

¹ "f (u $ ), ¹ "f (u % ) (17.1) (17.2)
Note that zones GB and B F (see Fig. 3) are characterised by the rates of linear behaviour of these zones (called ta % and ta $ , respectively). These rates are defined as the ratio of the length of the portion that behaves linearly (called x % and x $ , respectively) over the total length of the anchorage for each zone (B F and GB , respectively):

ta $ " xpF B F ta % "
x N% GB These computed rates (ta % and ta $ ) have to be larger than a minimum value ta prescribed by the designer:

ta $ 'ta ta % 'ta
These conditions assure the non-failure of the geotextile reinforcement by lack of adherence (sliding of the sheet).

Displacement compatibility

The analysis done so far leads to a problem with one degree of freedom. That is, the critical tension and its inclination depend on the relative displacement u $ (cf. Eqs. (12.1,7.1) and (17.1)). The missing equation is the one that allows the satisfaction of the displacement compatibility for the zone AF of the geotextile. Indeed, one must verify that the original length of the geotextile reinforcement in the resistant zone plus the corresponding change in length due to the extension must equal the total length after deformation. This condition allows the determination of a unique u $ value and thus (¹, u) distributions along the reinforcement.

Since the displacement of point A of the reinforcement is led by the global failure surface of the slope, the displacement compatibility condition depends on the location of this surface. To express this condition, it has been assumed that the global slip line is a log-spiral characterised by two angular parameters and , as shown in the companion paper. Let us note l and l the respective changes in length of zones A B and B F . Thus, the displacement compatibility equation may be written as follows:

A B #B F "A F # l # l . ( 18 
)
Length B F may also be expressed as follows:

B F "B F !u $ "A F !A B !u $ . ( 19 
)
Substituting Eq. ( 19) into Eq. ( 18), one obtains the displacement compatibility condition:

u $ #A B !A B # l # l "0 (20) 
It has been shown [START_REF] Lemonnier | Application de la me´thode variationnelle au proble`me de la stabilite´des talus renforce´s par des nappes ge´osynthe´tiques[END_REF] that l may be expressed as a non-linear function in terms of u $ . Therefore, the unique theoretical u $ value, satisfying the compatibility condition, is reached by means of incremental calculation until Eq. ( 20) is satisfied. Thus, for any u $ value, one has to determine four terms: A B , A B , l and l

. These terms may be expressed with respect to (1) the angular parameters of both the global and the local log-spirals; ( 2) the polar co-ordinates of point A (i.e. G , r G , see Fig. 10); ( 3) the length of the upstream anchorage zone l "B F ; ( 4) the mechanical parameters of the soil-geotextile interface and of the inclusion: , J, ; ( 5) the relative soil-geotextile displacement u $ [START_REF] Lemonnier | Application de la me´thode variationnelle au proble`me de la stabilite´des talus renforce´s par des nappes ge´osynthe´tiques[END_REF]. In the following, for the purpose of clarity, Eq. ( 20) is reduced to v(u $ )"0.

Computational procedure

Fig. 11 represents the flow chart giving the computational procedure to obtain the critical tension ¹ and its inclination K . The design data are the soil-geotextile friction angle and adhesion ( , c ), the soil unit weight , the depth of soil over the reinforcement h , the vertical local displacement y , the tensile stiffness J of the geotextile, the initial length of the reinforcement in the upstream zone ¸, the minimal value of the rate of linear behaviour of the anchorage ta and finally the parameters defining a particular failure surface.

Note that each u $ value corresponds, if it exists, to ¹ and K values. Tension ¹ has to satisfy the two following conditions (see step 5, Fig. 11):

E It should not exceed the allowable tensile force to avoid failure of the reinforcement; E It should not exceed the available adhesive and frictional forces along the reinforcement length A F to avoid sliding of the reinforcement. Now, a unique u $ value satisfies the displacement compatibility condition (see step 6, Fig. 11): v(u $ )"0. Thus, steps 2-6 have to be executed for different u $ values until this condition is satisfied. 

Numerical results

The present theoretical analysis is now completely defined. In this section, one firstly presents a parametric study concerning a unique geotextile sheet reinforcing a vertical wall (see Fig. 12). The influence of u $ , ¸S and y on the determination of the reinforcement tension ¹ , in case of model 4 of the stress distribution, is presented and discussed. Then, the influence of the different assumptions (i.e. models 1-4) concerning the stress distribution on the determination of the reinforcement tension, is presented. Secondly, a comparative case study, with results obtained from other current design methods and with some data measured in situ, is presented and discussed. the variational calculus to the upstream membrane. This minimum is the critical tension ¹ relative to this u $ value, and is reached at an angle u $ , which gives the optimal inclination EK of ¹ as follows:

K " EK # E ! 2 .
This minimum value ¹ increases, and decreases when u $ increases. That means that a greater u $ value corresponds to a lesser K value, that is the membrane tends to become flatter. increase significantly with u $ and ( 4) tension ¹ is always greater than tension ¹ . Note that point ( 4) concurs with the assumption concerning the location of maximum tension in the reinforcement (cf. Section 2).

Influence of the anchorage length in the upstream zone

Fig. 15 shows the variation of the critical position of the upstream membrane for a fixed u $ value (5 mm), the total anchorage length in the upstream zone ¸ varying from 2 to 3.5 m. It shows that when ¸ increases, the membrane tends to become flatter and tensions ¹ and ¹ increase significantly.

Influence of the vertical displacement of point A

In this section, the length ¸"2.5 m is considered. Fig. 16 shows the variation of the critical position of the upstream membrane for a fixed u $ value (5 mm), the vertical displacement y of point A, varying from 1 to 4 cm. It shows that when y increases, ( 1) the critical tension ¹ increases slightly;

(2) tension ¹ decreases slightly; (3) K increases; and (4) the length of the membrane increases.

Influence of the model of the

stress distribution Fig. 17 represents the variation of ¹ and K versus u $ for the four proposed models of the stress distribution. It shows that these distributions have a negligible effect on the determination of ¹ for all u $ values considered. Concerning K , there is a significant effect for small u $ values. From a particular u $ value (approximately 7 mm), the four models give quite the same results. The influence on the moment of tension ¹ about the pole of the given global log-spiral has also been considered. The results, which are not presented in this paper, are very similar to these ones. 

Comparative case study

In this section, the results obtained from the present model are compared with those obtained from some of the most current design methods available for geosynthetically reinforced slope stability analysis in the case of a large-scale model geogrid reinforced wall [presented in a paper by [START_REF] Bathurst | Laboratory study of Geogrid Reinforced Walls[END_REF]]. Fig. 18 shows the geometry of this wall, which is referred to as the RMC model wall (Royal Military College of Canada). The surcharge of 50 kN/m, acting on top of the wall, was the one corresponding to failure. The above-mentioned current design methods were already applied to this model wall by [START_REF] Claybourn | A comparison of design methods for geosynthetic-reinforced earth walls[END_REF]. These methods are: These methods may be classified into two main groups:

1. The first one includes methods ( 1)-( 4) (referred to as the tied-back wedge methods), which are based on lateral earth pressure considerations. That is the reinforcement tensions, which are assumed to act in the horizontal direction, balance the horizontal forces due to lateral earth pressures tending to cause instability. In these methods, a planar failure surface through the reinforced mass described by a Rankine active failure condition is typically presumed. 2. The second one includes methods ( 5) and ( 6), which are based on the approach commonly used in conventional slope stability analysis (i.e. analysis of stresses on a failure surface) modified to take into account the effect of the reinforcement tensions. Method ( 5) is based on a variational approach applied on limiting equilibrium analyses. Method ( 6) is based on limiting equilibrium analysis using wedge failure models.

Because of the significant variations among the methods, [START_REF] Claybourn | A comparison of design methods for geosynthetic-reinforced earth walls[END_REF] has chosen to consider the ultimate wide width reinforcement tensile strengths and set all safety factors to 1.0. This author has then presented the results, in terms of reinforcement tensions, obtained from the different methods along with the measured reinforcement stress reported by [START_REF] Bathurst | Laboratory study of Geogrid Reinforced Walls[END_REF]. These results, together with those obtained from the present model, are presented in Fig. 19. The latter results correspond to a particular value of the vertical displacement on top (y "19.7 mm) for which the minimum factor of safety F equals 1, considering a log-spiral as failure surface (see companion paper). Furthermore, the limit soil/geotextile displacement u (cf. Fig. 9) that is required for the present model is not available in the RMC wall report. Nevertheless, the influence of this parameter on the determination of the reinforcement tension is not significant (cf. [START_REF] Ratel | Mode´lisation d'un sol reinforce´par ge´osynthe´tique: application de la 'me´thode en de´placements[END_REF]. For the present case, the value of 2.5 cm for u has been selected, which is a realistic value according to several experimental studies on the determination of this parameter considering granular material reinforced with geogrids [START_REF] Ratel | Mode´lisation d'un sol reinforce´par ge´osynthe´tique: application de la 'me´thode en de´placements[END_REF][START_REF] Gotteland | Reinforcement des sols par ge´osynthe´tiques; dimensionnement et validation[END_REF].

The results presented in Fig. 19 show that the present model gives similar results to those using Schmertmann et al.'s method in terms of the magnitude of the reinforcement tension distribution along the failure surface. It should be noted that, among these six methods, Schmertmann et al.'s method is (1) the only one that is specific to geogrid-reinforced soil slopes and ( 2) except for the lowest sheet, the one that gives the best prediction of the actual behaviour of the structure. However, the RMC Model Wall report indicated that the low bottom layer stress was probably influenced by the model set-up [START_REF] Claybourn | A comparison of design methods for geosynthetic-reinforced earth walls[END_REF]. Therefore, the comparison with the experimental data, for the fourth layer, is meaningless.

In terms of acting direction of the critical tensions, methods ( 1)-( 6) consider it as horizontal. Furthermore, method ( 5) considers also the reinforcement tensions acting in the direction of the failure plane (for the Rankine active failure plane, the inclination equals 71.5°with respect to the horizontal direction). The values of these inclinations, obtained from the present model, are given in Table 1, in which the maximum inclination values correspond to the direction of the failure plane. Since the inclination of the membrane at the failure surface was not measured in this project, no comparison can be made with measured data. Nevertheless, the results from the present model show that the inclination tends to increase with the depth, and that the values are clearly smaller than the maximum one.

The obtained critical failure surface (log-spiral), shown in Fig. 18, is close to the plane described by a Rankine active failure condition, and describes a bigger sliding mass.

Finally, in the RMC wall report, an effective reinforcement length is given (¸+1.189 m). This is the length beyond which the performance of the wall is presumed (by the current design methods) to be unaffected by further lengthening of the reinforcement for the loading condition at failure. The effective reinforcement length obtained from the present model is slightly smaller ¸+1.07 m (a difference of 11.6%).

Consequently, this result and the one concerning the inclination of the critical tensions show that, for this particular case, our model seems to be less conservative than the current design methods.

Conclusions

All methods currently used for the design of geosynthetic reinforced slopes are based on assumptions regarding the determination of reinforcement tension. The present model is a more rational one since it allows the determination of these tensions with a reduced number of assumptions. This reduction has been made possible by the use of a variational approach together with the concept of the anchored membrane [START_REF] Gourc | Design of fabric retaining walls: the displacements method[END_REF]. Thus, the variational calculus has been applied to the equilibrium of the upstream membrane for a given stress distribution on its upper face (model 1). The following results have been obtained: E the shape of the upstream membrane that realises the minimum value of ¹ , is a log-spiral of angle with only one variable angular parameter ; E the critical tension ¹ and its inclination K are independent of the normal stress distribution (x) along the lower face of the upstream membrane y(x); E the only moment equilibrium equation about the pole of the log-spiral is sufficient to assess the tension ¹ and its inclination associated with this slip line. The two remaining force equilibrium equations are implicitly satisfied, because every function of the normal stress distribution (x) that has at least two degrees of freedom is a solution to the problem; E ¹ is obtained by an unidimensional minimisation procedure with respect to .

Three other stress distributions have been proposed. It has been shown that (1) the above results are also valid for these three models, and (2) a numerical study has shown that these four models give quite the same results for the critical tension ¹ and its inclination . Furthermore, the influence of the anchorage length and the vertical local displacement of the membrane on the critical position of the membrane have been shown. Finally, a comparative case study, with results obtained from other current design methods and with some data measured in situ, has shown that, in that particular case, our model gives (1) a satisfactory prediction of the behaviour of the reinforced structure in terms of magnitude of the reinforcement tensions, and (2) seems to be less conservative than the current design methods.

Fig. 1 .

 1 Fig. 1. Geotextile reinforced slope stability analysis.
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 9 Fig. 9. Tensile and friction behaviour of the inclusion.
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  Fig. 10 shows such a line in a wall reinforced by a geotextile sheet. The reinforcement is represented before (dashed line) and after (bold-faced) deformation of soil. The upstream zone of the reinforcement includes two different parts: E Curvilinear zone A B corresponding to the deformed membrane. Before deformation, this zone was rectilinear and of length A B ; Rectilinear zone B F corresponding to the deformed anchorage. Before deformation, this zone was of length B F .
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 11 Fig. 11. Flow chart showing the calculation scheme of tension ¹ .
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 1 Parametric study 4.1.1. Influence of relative soil-geotextile displacement u $ Fig. 13 shows the variation of ¹ versus for several u $ values. It appears that for each u $ value, there is one value that realises an absolute minimum for function ¹. These numerical results confirm the theoretical ones concerning the application of
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 12 Fig. 12. Case study.

  Fig. 14 shows the influence of u $ on the location of the critical position of the upstream membrane. It clearly shows that (1) the membrane tends to become flatter as the u $ value increases; (2) ¹ variation is similar to that of ¹ ; (3) these tensions
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 14 Fig. 14. Critical positions of the membrane for u $ "1-5 mm (Model 4).
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 15 Fig. 15. Critical positions of the membrane for ¸"2 to 3.5 m (model 4).
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 16 Fig. 16. Critical positions of the membrane for y "1-4 cm (model 4).
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 17 Fig. 17. Influence of the stress distribution on ¹ and as given by the present four models.
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 18 Fig. 18. RMC model wall configuration [after Claybourn (1990)], and failure surfaces considered in the design methods.

Fig. 19 .

 19 Fig. 19. Reinforced tension calculated for RMC wall configuration.

  1. Two Euler differential equations for the function R, namely: . For this type of end-point, a variational boundary condition, known as the transversality condition, is to be satisfied.

	First equation:			
	R NC	! dx d	R	C	"0	(10.1)
	Second equation:			
	R WC	! dx d Ry C "0	(10.2)
	2. Two integral constraints (Eqs. (9.2,9.3) and (9.3)).
	3. Two boundary conditions for each end-point:
	2.1.1.1. First Euler equation.
	R is independent of Y C the first Euler equation (Eq. (10.1)) is a first-order differential equation in y (cf. Eqs. (9.1,9.2,9.3), (9.2,9.3) and (9.3)), and dependent on C only. C Solving this equation in terms of polar co-ordinates (r , ), one obtains
	r "r		.e F \F E( .

E fixed end-point A: x"0 and y"0. E variable end-point B :

x"x

Table 1

 1 Inclinations of the reinforcement tensions as given by the present model

	Layer number	1	2	3	4
	(deg)	48.71	50.47	51.69	52.52
	max (deg)	72.31	70.14	68.04	66.09