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In the field of cable modeling, many models have been proposed to describe the mechanical behavior of simple straight strands under 
axial loading, and the predictions of these models have been compared to experimental data when available. However, the validity 
domain of these models has not been evaluated yet because the experimental results reported in the literature are very limited. This 
problem is addressed here, the results from nine linear elastic models of a 6+1 wire single layered strand (simple straight strand) 
subjected to static axial loads being compared with values from 3D finite element modeling. The analytical models are shown to give 
satisfactory estimations of the elastic stiffness constants for lay angles below 201.
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1. Introduction

Helically wound fibers or wires constitute a large class of
important engineering components [1]. There are many
kinds of such structure: one is the strand, defined as a
structure made up of layers of helical wires wound around
a central straight wire core. A wire rope is a structure made
up of layers of strands wrapped helically around a central
straight strand core. It is then possible to consider wire
rope as a basic component to form a new wire rope with
ex cross section.
nown that a major advantage of such elements
ty to support large axial loads with compara-
bending or torsion stiffness. These structures
ntial role in various civil engineering applica-
ing the prestressing of concrete, stays for
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guyed masts, bridging applications such as hangers for
suspension bridges as well as for mooring many offshore
oil platforms.
Experimental work on large diameter cables requires

specific, large and expensive testing devices. Design tools
allowing rapid estimation of the overall axial elastic stiffness
of stranded structures are, therefore, essential for designers.
As will be detailed below, several analytical models based on
different hypotheses (purely tension wires, curved beam
theory, Poisson’s ratio effects, friction effects and variations
in core radius) have been developed and presented in the
literature. However, comparisons between these models and
corresponding discussion of their validity domain is not
available in the literature. Nevertheless, it may be noted that
the authors have usually compared their models with the
experimental results reported in the earlier works. Jolicoeur
and Cardou [2] compared the results obtained by several
mathematical models available in the literature with the
experimental 1+6 cables results reported by Utting and
Jones [3,4], for six different lay angle (9.21, 111, 12.21, 12.91,
141 and 171). Since the experimental results are very limited,
obtaining a general conclusion is difficult.



Nomenclature

Rc,Rw,Rk core, wires and wires centerline radius
kr ratio of wire radius to core radius
a lay angle
P pitch length
A cross section area
I bending inertia modulus
J torsion inertia modulus
uz, yz overall axial displacement and rotation angle
uz,z, yz,z overall axial strain and twist angle per unit

length
ut,t wire axial strain
Dk0, Dt changes in curvature and twist per unit length

in the wire

Fz,Mz overall axial force and torque
fz,mz non-dimensional axial force and torque
F i

b;F
i
t;M

i
b;M

i
t shear force, traction force, bending

moment and torque in the ith wire
k��; kyy; k�y; ky� axial stiffness coefficients of traction,

torsion and couplings
k��; kyy; k�y; ky� non-dimensional axial stiffness coeffi-

cients
E, G Young’s and shear moduli
n Poisson’s ratio
zi; Zi; li;mi Knapp’s parameters [12]
Subscripts c and w refer to core and wire characteristics,

respectively

Fig. 1. Geometry of a simple straight strand or 1+6 structure.
The objective of the present study is to assess the validity
domain of several analytical models for the elastic static
axial (tension and torsion) behavior of a simple straight
metallic strand (single-layered), consisting of six helical
wires wrapped around a straight core. The influence of the
assumptions of different analytical models will be discussed
using comparisons with a complete three-dimensional (3D)
formulation: a 3D finite element (FE) modeling has been
used as a reference.

In Section 2, a description of the geometry of the
structures studied and the corresponding axial elastic
overall behavior matrix form are given. Next, the existing
mechanical models assumptions and corresponding stiff-
ness coefficient expressions are given in Section 3.

In Section 4, a 3D FE model is presented and FE results
are compared with experimental data. In order to
determine the validity domain, the stiffness matrix compo-
nents are calculated using the selected analytical models.
Then, the analytical results are compared with the FE
model results, considered as a reference.

2. Strand overall behavior

Let us consider a single 6+1 straight strand cable made
of six helical wires with a circular cross-section wrapped
around a straight core as illustrated in Fig. 1. The geometry
is characterized by the core radius Rc, the wires radius Rw,
and the lay angle a measured with respect to the cable
z-axis. The wires centerline is then a helical curve of radius
Rh:

Rh ¼ Rc þ Rw. (1)

It can be noted that the wire cross-sections, due to contact
forces with the core, are bean-shaped but can be
approximated by ellipses in the plane perpendicular to
the structure z-axis (see Fig. 1). The pitch length denoted
by P can be calculated using the following expression:

P ¼
2pRh

tan a
. (2)
2

The axial behavior of such a structure exhibits coupling
between tension and torsion due to the helical design of the
wires. Thus, the elastic overall behavior can be expressed in
the form:

F z

Mz

( )
¼

k�� k�y

ky� kyy

" #
uz;z

yz;z

( )
, (3)

where uz,z denotes the overall axial strain, yz,z the twist
angle per unit length, Fz the axial force and Mz the torque.
The four stiffness matrix components kee, kyy, kye and key
are pure tensile, torsion and coupling terms, respectively.
Moreover, the stiffness matrix should be symmetric, as can
be shown from Betti’s reciprocal theorem, cf. [5].
3. Analytical models

3.1. Overview

As previously indicated, several analytical models are
available to predict the mechanical behavior of isotropic
cables subjected to axial loads, based on knowledge of the
component material behavior and geometry of the



structure. The first approaches only incorporate effects
associated with tension, the bending and torsion stiffness of
the wires being neglected. Such analyses have been
performed by Hruska [6–8] and by Knapp [9] for a rigid
core. McConnell and Zemek [10] modified this model,
simply by considering the torsional stiffness of all the
individual wires.

More recent and complex analytical models are based on
beam theory assumptions: the wires are modeled using
Love’s curved beam equations [11]. Following this
approach, Machida and Durelli [12] have studied the
effects of the bending and torsion stiffness of individual
wires on the cable stiffness matrix. Knapp [13] studied the
effect of variations in core radius (due to the pressure from
the layers). Costello and Philips [14] presented a general
non-linear theory for a layer of helical wound wires
without core, which included the effects of radius and lay
angle variations (due to Poisson’s ratio effect). This model
was later extended by Philips and Costello [15] and
Velinsky [16] to apply to wire rope with internal wire rope
cores. Then, Costello [17] presented a linearized theory
including the effects of curvature and twist variations.
Kumar and Cochran [18] have developed a linearized form
of this theory, leading to a closed-form expression for
stiffness matrix components. Kumar and Botsis [19] have
extended this model to obtain the analytical expression for
the maximum contact stresses induced in the multilayered
strands with metallic wire core. Huang [20] studied the
contact mode conditions (radial or lateral) for 1+6 cable.
Local contact deformation is neglected whilst the Poisson’s
effect is included. It is found that radial contact seems to be
the prevailing case, even when no initial gap exists between
wires in the layers. Utting and Jones [3,4] have extended the
Costello’s analysis to include wire flattening (contact
deformation) and friction effects. The results show that
these phenomena have very little effect on estimates of the
global cable response.

Sathikh et al. [21] presented a closed form symmetric
linear elastic model for a cable with a rigid core, using
discrete thin rod theory. Labrosse [22] presented a new
analytical approach to predict the overall behavior of 1+6
cables subjected to bending, tension and torsion. In this
model, Poisson’s ratio effect is neglected while relative
motions between core and wires are considered.

Elata et al. [23] presented a new model for simulating the
mechanical behavior of a wire rope with an independent
wire rope core under axial loads. In contrast with previous
models that consider the effective response of wound
strands, this model considers the complete double-helix
configuration of individual wires within the wound strand
and directly relates the wire level stress to the overall load
applied at the rope level. Bending and torsion stiffness of
the individual wires are neglected, but the wires are
subjected to loads on their lateral surface, applied by
adjacent wires. Therefore, the accuracy of this model
increases when the number of wires in the wire rope
increases. It should be noted that its major interest is to
3

analyze the effect of a double helix configuration, which is
not the case here (in the 7 wire cable geometry). Moreover,
this model does not lead to closed-form equations, and,
therefore, will not be applied in the present paper.
Another approach for multi-layered cables consists of

modeling each layer as an equivalent orthotropic sheet.
This homogenization method was first applied to cable
modeling by Hobbs and Raoof [24], and it has been
described in detail by Raoof [25] and then extended by
Raoof and his associates over two decades [24–29]. The
same approach can also be used by replacing each layer
with a cylinder of orthotropic, transversely isotropic
material [30–34]. Such homogenization approaches can be
applied when the number of wires in the layer is large, but
this is not the case for 1+6 structures.
In addition, several models are also available for the

analysis of synthetic cables. Leech et al. [35], presented a
quasi-static analysis of fiber ropes and included it in
commercial software: Fiber Rope Modeller or FRM.
Another model was developed by Rungamornrat et al.
[36], and later extended by Beltran et al. [37] and Beltran
and Williamson [38]. These models are very similar to that
of Leech but they have concentrated on a damage model to
take into account the degradation of rope properties as a
function of loading history. These models are also
implemented in a computer program. Very recently,
Ghoreishi et al. [39,40] have developed two closed-form
analytical models, which can be used in sequence to
analyze the synthetic cables.
In this work, the case of a simple straight strand, with

linear elastic behavior, isotropic material and axial loading,
is considered.
3.2. Descriptions of the analytical models

As shown previously, there are several mathematical
models that are based on different assumptions. In this
section, nine analytical models have been selected and are
described in more detail. These models are based on
different assumptions, such as:
�
 axial stiffness of wire is only considered,

�
 bending and torsion stiffness of wire are included,

�
 Poisson’s ratio effect is considered,

�
 inter-wire contact (relative motion between core/wire) is

considered.

The equations for each model are then briefly presented
in a standardized form, using the same notations as those
of Ghoreishi et al. [41].
3.2.1. Hruska’s model

In the models based on pure tension wire, bending and
torsion stiffness of the individual wires are neglected. Using
purely geometrical relations, wire axial strain, ut,t, can be



expressed as follows:

ut;t ¼ uz;zcos
2aþ Rhyz;z sin a cos a, (4)

where uz,z and yz,z represent axial strain of cable and angle
of twist per unit length, respectively. The stiffness matrix
components are:

k�� ¼ ðAEÞc þ 6ðAEÞwcos
3a,

k�y ¼ ky� ¼ 6ðAEÞwRhcos
2a sin a,

kyy ¼ ðGJÞc þ 6ðAEÞwR2
hsin

2a cos a, ð5Þ

where (AE) and (GJ) represent axial and torsional stiffness,
respectively. The core and wires characteristics are denoted
using subscripts c and w, respectively.

This stiffness matrix has been obtained by Hruska [6–8]
and re-derived by Knapp [9] for a rigid core.

3.2.2. Model of McConnell and Zemek

McConnell and Zemek [10] modified Hruska’s model
by adding the sum of the torsion stiffness of all the
individual wires into Eq. (5). The equation of kyy then
becomes:

kyy ¼ ðGJÞc þ 6ðGJÞw þ 6ðAEÞwR2
h sin

2 a cos a. (6)

The relations for kee, key and kye in Eq. (5) remain identical.

3.2.3. Model of Machida and Durelli

Machida and Durelli [12] have studied the effects of the
bending and torsion stiffness of individual wires on the
cable stiffness matrix. They obtained the bending and
twisting moments of each individual wire, then by
projecting on the cable axis, and summing for all the
wires, one obtains:

ky� ¼ 6 ðAEÞwRh cos
2 a sin a� 2

ðEIÞw
Rh

cos2 a sin3 a
�

þ
ðGJÞw

Rh

cos2 a sin að1� 2cos2 aÞ
�
,

kyy ¼ ðGJÞc þ 6 ðAEÞwR2
h sin

2 a cos a
�

þ 2ðEIÞw

� cos3 a sin2 aþ ðGJÞcos3 að1� 2sin2 aÞ
�
, ð7Þ

where (EI) is the bending stiffness of the wire. The relations
for kee and key in Eq. (5) remain identical. Thus stiffness
matrix symmetry is lost.

3.2.4. Knapp’s model

Knapp [13] presented a new stiffness matrix for straight
cables subjected to tension and torsion. He studied the
compressibility of the central core. The equilibrium
equations first include geometric non-linearity and are
then linearized to give a linear stiffness matrix. This
approach was primarily aimed at soft core cables.
However, thanks to a general derivation, Knapp’s results
can also be applied to the more rigid core cables considered
in the present work.
4

In the present notations, stiffness matrix components
can be written as:

k�� ¼ ðAEÞc þ 6ðAEÞwcos
3az,

k�y ¼ 6ðAEÞwRh sin acos2aZ,

ky� ¼ 6 ðAEÞwRh sin az�
ðEIÞ

Rh

ðlþ 2zÞ
�

� ðsin3aþ
ðGJÞ

Rh

ð1� 2zÞ sin acos2a
�
,

kyy ¼ ðGJÞc þ 6 ðAEÞwRhZ sin a�
ðEIwÞ

Rh

�

� mþ 2Z�
2Rh

tan a

� �
sin3 aþ

ðGJwÞ

Rh

�
Rh

tan a
� 2m

� �
sin a cos2 a, ð8Þ

where zi,Zi,li and mi are parameters defined by Knapp in his
paper, related to the geometric and elastic properties of the
cables. In the present work, for steel core cable the
compressibility of the central core is negligible, zi and Zi

are very close to cos2 a and Rh sin a cos a, respectively, while
li and mi are nearly equal to zero (see Ref. [13]). If these
limiting values are substituted into Eq. (8), these reduce
exactly to Machida and Durelli’s results.

3.2.5. Costello’s model

Costello’s theory [17], based on Love’s curved beam
equations, takes into account the effects of radius and lay
angle variations, as well as wire bending and torsion
moments. The equilibrium is expressed using a set of non-
linear equations, which is also valid for large deflection. In
the case of simple straight strands, it is assumed that change
in lay angle is small. It follows that the cable axial strain uz,z

and twist yz,z, as well as changes in curvature and twist per
unit length, Dk0 and Dt, in each wire are linearized with
respect to Da. Considering the development detailed in Ref.
[17], the relationships for each wire may be written as

uz;z ¼ ut;t þ Da tan a

Rhyz;z ¼ ut;t tan a� Daþ n tan a
ðRcuz;z þ Rwut;tÞ

Rh

RwDk0 ¼ �
2 sin a cos a

Rh=Rw

Daþ n
Rcuz;z þ Rwut;t

Rh

sin2 a
Rh=Rw

RwDt ¼
1� 2cos2 a

Rh=Rw

Daþ n
Rcuz;z þ Rwut;t

Rh

sin a cos a
Rh=Rw

ð9Þ

and the local mechanical behavior of each wire is given by

Mi
t ¼ ðGJÞwDt,

Mi
b ¼ ðEIÞwDk0,

Fi
t ¼ ðEAÞwuw

t;t,

Fi
b ¼Mi

t

sin2 a
Rh

�Mi
b

sin a cos a
Rh

, ð10Þ

where F i
b, Fi

t, Mi
b and Mi

t denote shear force, traction force,
bending moment and torque in the ith wire, respectively;



moreover, Dk0 and Dt represent changes in curvature and
twist per unit length, respectively and ut,t is the axial strain in
an outer wire. Projecting on the cable axis and summing for
all the wires, one gets:

F z ¼ ðEAÞcuz;z þ 6 Fi
t cos aþ F i

b sin a
� �

Mz ¼ ðGJÞcyz;z þ 6 Mi
t cos aþMi

b sin a
�

þ RhFi
t sin aþ RhFi

b cos a
�
. ð11Þ

To obtain the stiffness matrix components, the first two
Eq. (9) allow the axial strain of the wire, ut,t and the
variation of lay angle, Da, to be expressed as a function of
global strain of the strand, uz,z and yz,z. It follows that the
changes in curvature and twist per unit length, Dk0 and Dt,
are also expressed as a function of these strains. Then, the
local mechanical behavior of each wire can be expressed as a
function of global strain of the strand, uz,z and yz,z. Finally,
by substituting Eq. (10) into Eq. (11), the global behavior of
the strand can be obtained.

It should be noted that, recently, a closed-form expres-
sion of the cable stiffness matrix coefficients, has been
given by Ghoreishi [42]. Moreover, in this model, the
stiffness matrix symmetry is lost.

3.2.6. Model of Kumar and Cochran

Kumar and Cochran [18] have linearized the equations
of Costello’s model, and arrived at a closed-form expres-
sion for the stiffness matrix. In the present notation, the
stiffness matrix components may be written as

k�� ¼ ðAEÞc þ 6ðAEÞw cos að1� ð1þ nÞpsin2aÞ,

k�y ¼ 6ðAEÞwRhp cos2 a sin a,

ky� ¼ 6 ðAEÞwRh sin a�
ðEIÞw

Rh

sin a
�

ð1� nf cos
4 a

þð1þ nÞðq� 1þ nf cos
4 aÞ
�
,

kyy ¼ ðGJÞc þ 6ðEIÞwq cos a, ð12Þ

where p and q are given by

p ¼ ð1� n1Þ 1� ð1=4Þ
Rw

Rh

� �2

ð1þ nf cos 2aÞsin2 a

" #
,

q ¼ ð1� n1Þ 4
Rh

Rw

� �2

sin2 aþ 1� sin4 a� nf cos
4 a cos 2a

" #
.

ð13Þ

In this relation n1 and nf are obtained as follows:

n1 ¼ nðRw=RhÞsin
2 a,

nf ¼ n=ð1þ nÞ. ð14Þ

The stiffness matrix symmetry is also lost.

3.2.7. Ramsey’s model

Ramsey [43,44] has proposed a mathematically rigorous
approach based on differential geometry. Constitutive
Eq. (10), in which internal moments are linearly related
to the curvature and twist variations Dk0 and Dt, are
5

replaced by

Mi
t ¼ ðGJÞwðDtþ tut;tÞ,

Mi
b ¼ ðEIÞwðDk0 þ k0ut;tÞ. ð15Þ

For axial loads, as indicated by Jolicoeur and Cardou [2],
most equations reduce to Costello’s model except for the
foregoing differences. To evaluate their influence, Eq. (15),
have been used instead of Eq. (10) in Costello’s model.
3.2.8. Sathikh’s model

Sathikh et al. [21] concentrated on the lack of symmetry
in the earlier models. They developed a symmetric linear
elastic model for simple straight strands, using Ramsey’s
theory and discrete thin rod theory. A simple straight
strand with a rigid core and having only core to wire
contact has been analyzed taking into account the wire
tension, twist and bending together, for its response due to
axisymmetric loads (traction–torsion). Following modifica-
tion to the present notation, Sathikh’s relations may be
written as

k�� ¼ ðAEÞc þ 6 ðAEÞwcos
3 aþ

�
ðGJÞwsin

2 a
�

þðEIÞwcos
2 a
	sin4 a cos a

R2
h

!

k�y ¼ ky� ¼ 6 ðAEÞwRh cos
2 a sin aþ ðGJÞwcos

2 a
��

�ðEIÞwð1þ cos2 aÞ
	sin3 a cos2 a

Rh

�
.

kyy ¼ ðGJÞc þ 6 ðAEÞwR2
hsin

2 a cos aþ ðGJÞwcos
7 a

�
þðEIÞwsin

2 a cos að1þ cos2 aÞ2
	
. ð16Þ

3.2.9. Labrosse’s model

Recently Labrosse [22] presented a new analytical
approach to predict the global response of a cable
subjected to bending, tension and torsion. In this theory
the wires are considered as curved beams as presented by
Love [11]. The integrated stresses over the cable cross
section and the inter-wire efforts have been presented as a
function of the generalized strains of the cable and
derivation of the inter-wire slippage.
For the axial loads (tension and torsion), the stiffness

matrix components become:

k�� ¼ ðAEÞc þ 6ðAEÞwcos
3 a

k�y ¼ ky� ¼ 6ðEAÞwRh sin a cos2 a

kyy ¼ ðGJÞc þ 6 ðEAÞwR2
hsin

2 a cos aþ ðGJÞwcos
5 a

�
þðEIÞwsin

2 a cos að1þ cos2 aÞ
�
. ð17Þ

The selected analytical models with their principal features
(i.e., behavior of wire, change in geometry due to Poisson’s
effect, symmetric matrix and closed form solution), are
summarized in Table 1.



Table 1

Selected analytical models with their principal features

Models Behavior of wires Poisson’s effect Symmetric matrix Closed form solution

Tension Torsion Bending

HRU X X X

MAC X X X X

McC X X X

KNA X X X X

KUM X X X X X

RAM X X X X

SAT X X X X X

COS X X X X X

LAB X X X X X

HRU: Hruska [7]; MAC: Machida and Durelli [11]; McC: McConnell and Zemek [9]; KNA: Knapp [12]; KUM: Kumar and Cochran [17]; RAM: Ramsey

[43]; SAT: Sathikh [20]; COS: Costello [16]; LAB: Labrosse [21].
4. Numerical study

Emphasis is placed on the linear elastic global behavior
of a simple isotropic straight steel strand under small
strain. To evaluate their validity domains, the matrix
stiffness coefficients obtained from the analytical models
presented in the previous section are compared with those
calculated from a complete 3D formulation: the overall
behavior of the strand has also been calculated using a 3D
FE model detailed hereafter. The results are expressed in a
general non-dimensionalized form and for strand lay angle
a varying between 2.5 and 351, which cover the usual
practical values. The investigation of local effects (i.e.,
stress distribution in the cross section, contact deforma-
tion, local plastic yielding) is not included in this paper.
4.1. FE approach

4.1.1. Background

With the development of FE methods during the last
decades, together with the development of computer
capacity, certain authors have used the FE approach to
analyze the mechanical behavior of cables. Carlson [45]
modeled the wires by bar elements as well as the
connections between the wires. Cutchins [46], used solid
elements (6 node) to model the wires, their connections
were simulated with springs. Nawrocki [47] presented a
one-dimensional curved beam element for analyzing the
simple straight strand (1+6) and later Nawrocki and
Labrosse [48] studied the relative motions between core
and the wires, using this element. They have shown that the
inter-wire pivoting and the inter-wire sliding govern the
cable global response, for axial and bending loads,
respectively. It should also be underlined that some FE
studies have focussed on local phenomena: Jiang et al.
[49,50] investigated the stress distribution within the wires,
in a simple straight strand as well as in a three-layered
straight strand, using a concise 3D FE model with
prescribed displacement field. One can mention also the
6

work of Wehking and Ziegler [51] devoted to the detailed
computation of rope stresses. In the same way, Messager
and Cartraud [52] have developed an homogenization
procedure: applying the rigorous asymptotic development
theory, a slice of a strand can be studied using a 3D FE
model free of any displacement assumption. In the present
paper, a complete 3D FE model is presented as a reference
to determine the validity domain of existing analytical
models.
4.1.2. Description of the model

The simple straight strand cable structure has been
computed using the COSMOS FE code, Version 2.0. The
geometry of the core has been obtained by a linear z-axis
extrusion. Each wire has been generated by the extrusion of
a circular surface along a helical curve corresponding to the
centroidal line of the wire. As shown in Fig. 2, each wire
section consists of 12 FEs (six 15-node and six 20-node
solid elements). It should be noted that the number of
elements along the strand z-axis varies with lay angle
because of the pitch length variations in this range of lay
angle, for example, pitch length of 769.4 and 41.9mm for
lay angle of 2.51 and 351, respectively.
The boundary conditions are defined as follows:
�
 One end-section of the cable is fully clamped.

�
 At the other end-section, the wires and the core nodes

are linked using rigid body elements connected to a
master node located at the cross-section center.

�
 On this master node, the transverse loads and bending

moments are prescribed to be zero.
The ‘‘6+1’’ cable structure considered is illustrated in
Fig. 2. It is assumed that the wires do not touch each other
(no wire/wire contact) in the undeformed state so contact is
only present radially (core/wire contact). Moreover, Huang
[20] has shown that even if the wires are in radial contact in
the undeformed state, they tend to separate while loading.



Fig. 2. Mesh examples.
In addition, in a preliminary study, the influence of
contact conditions between the wires and the core (wire/
core contact) has been examined for two limit cases: sliding
without friction and merging. These contact conditions
have been applied for nodes situated on the helical lines of
contact between core and wires. The results obtained show
that the static overall behavior is not sensitive to these
modeling hypotheses. Indeed, the relative difference
between these limit cases, for stiffness matrix components,
is less than 1.5% (for lay angle varying between 2.5 and
35). Therefore, for the results detailed thereafter in
Section 4.2, the contact nodes have been merged. However,
it should be mentioned that while the friction effect plays a
small role in global stiffness behavior of such structures,
the effect of friction on the long-term performance and
durability of a structure under cyclic loading can be
significant.

The stiffness coefficients are computed in four successive
steps corresponding to different loading conditions in
tension and torsion on the master node:

kee: an axial load Fz is applied while the rotation angle yz

is prescribed to zero.
kyy: a torque Mz is applied whereas the axial displace-
ment uz is locked.
key: axial load Fz with a free rotation angle yz.
kye: torque Mz with a free axial displacement uz.

The cable strains are calculated from the master node
axial displacement and rotation. Preliminary tests, per-
formed for models of lengths between two and 10 pitches,
have demonstrated that the overall axial response is not
influenced by end effects. The results detailed in next
paragraphs have been obtained for an FE model consisting
(for each value of the lay angle a) of only two pitch lengths.
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It should be underlined that the discrepancies observed on
the coupling terms key and kye have been found to be
negligible for all FE analyses performed, the differences
were always less than 0.4%.
It should be mentioned that, the numerical convergence

has been verified with respect to:
�
 Number of elements per pitch.

�
 Axial length of the model (number of pitch in the

model).

4.1.3. Comparisons with experiments

To demonstrate the accuracy of FEM results, the
results of the 3D FE model are compared with the
experimental data, reported by Utting and Jones [3,4].
In the experimental study material modulus deter-
mined from tests on wires and core has been measured
to be 197.9GPa, cf. [3]. In the FE model isotropic
material is considered, the Young modulus E and the
Poisson’s ratio have been set to 197.9GPa and 0.3,
respectively.
First, the stiffness matrix components are computed

using a 3D FE model for three strands, which were studied
by Utting and Jones in Refs. [3,4]. Then, numerical results
are compared with the experimental data. It should be
noted that the experimental results do not allow a
comparison of the stiffness matrix components directly,
so different parameters will be compared for different tests
as will be explained below.
Utting and Jones [4] have performed an experimental

study on simple straight steel strands with six different lay
angles (for all of them: Rc ¼ 1.97 and Rw ¼ 1.865mm).
Nominally fixed-end tests, as well as the tests with free and
partially restrained ends were carried out. The rotations



Table 2

Comparison between 3D FE model and experimental data (reported in Refs. [3,4]), for nominally fixed and completely free end conditions

Specimen Stiffness matrix components obtained by 3D FE model Mz (Nm) (fixed end) yz,z (rad/m) (free end)

kee (kN) k�W ¼ kW� (Nm) kyy (Nm2) Test FEM Test FEM

1 (a ¼ 171) 1.32e3 12.4e3 26.74 34.4 36.7 2.4929 2.50889

4 (a ¼ 12.21) 1.43e3 9.72e3 19.46 26 27.2 2.2049 2.12266

6 (a ¼ 9.21) 1.48e3 7.64e3 15.86 18.8 19.9 1.62025 1.73139

Table 3

Comparison between 3D FE model and experimental data reported in Refs. [3,4] for partially restrained ends

Specimen Stiffness matrix components obtained by 3D FE model DMz/Duz,z (10
3Nm) DMz/Dyz,z (Nm2)

kee (kN) k�W ¼ kW� (Nm) kyy (Nm2) Testa FEM Testa FEM

1 (a ¼ 171) 1.32e3 12.4e3 26.74 16.2 15.94 13.7 15.03

4 (a ¼ 12.21) 1.43e3 9.72e3 19.46 20.1 18.84 12.8 12.84

6 (a ¼ 9.21) 1.48e3 7.64e3 15.86 22.9 23.10 11.6 11.92

aThese results were given by Utting and Jones [3,4], in graphical form.
were measured during a load range of 40 kN for free end
tests. This rotation can also be calculated by the following
expression:

yz;z ¼
F z

k�y � ðk��kyy=ky�Þ
; for free end condition.

For nominally fixed-end tests, the torque generated
was recorded. Table 2 compares measured values
with FE results for nominally fixed end and free end
conditions.

It should be noted that, for nominally fixed end tests in
which the rotation, theoretically, should be zero, but
during the tests, some small rotations, yz,z, were reported
and attributed by the authors to resin deformation at the
end fittings of the cables, namely, 0.064, 0 and 0.058 rad/m
for specimen number 1, 4 and 6, respectively, see Utting
and Jones [3,4]. Thus, numerical values (in Table 2) have
been obtained by solving Eq. (3) for Mz, with the given
values of Fz and yz,z, using the stiffness matrix components
which were obtained from the 3D FE model. For the fixed
end condition, the twisting moment, Mz, can be expressed
as follows:

Mz ¼
ky�

k��
ðF z � k�yyz;zÞ þ kyyyz;z; for fixed end condition.

The intermediate case where both an axial load and
twisting moment are imposed was also considered. Axial
strain, uz,z, and twist per unit length, yz,z, of the strand are
then measured. If the axial load is fixed, say 40 kN, and the
torque is given two values M1

z and M2
z , one gets two sets of

results ðu1
z;z; y

1
z;zÞ and ðu

2
z;z; y

2
z;zÞ. Defining DMz ¼M2

z �M1
z ,

Duz;z ¼ u2
z;z � u1

z;z, Dyz;z ¼ y2z;z � y1z;z, one can calculate

slopes DMz=Duz;z and DMz=Dyz;z. These slopes can also
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be given by the following expressions:

DMz

Duz;z
¼ ky� �

k��kyy

k�y
,

DMz

Dyz;z
¼ kyy �

ky�k�y

k��
.

Table 3 presents such slopes measured by tests and
prediction by the FE model.
In general, Tables 2 and 3, indicate a good correlation

between the FE model and experiment, at least for the
range of lay angles considered here.
So, once the numerical reliability of the FE model was

checked—convergence has been reached on the cable
behavior—the modeling assumptions—elliptical shape
approximation for the wire cross-section, sticking contact
between the wires and the core—have been validated
through the comparison with experimental results. Experi-
mental results are available only for lay angle values of 9.2,
12.2 and 171, but the FE model is not restricted to those lay
angles. Due to the lack of published experimental data
(particularly for larger lay angles), hereafter the 3D FE
results will be considered as a reference solution.
4.2. Results and discussion

In order to perform general comparisons for lay angle
varying between 2.51 and 351, the stiffness matrix
component values obtained both using the analytical
formulations and the 3D FE model have been expressed
using a non-dimensional form. Considering Eq. (3), this
may be written as

f z

mz

( )
¼

k�� k�y

ky� kyy

" #
uz;z

yz;z � Rh

( )
, (18)



Fig. 4. Non dimensional torsion term, kyy, vs. lay angle a.
where the reduced loading components are defined by

f z ¼
F z

EpR2
h

,

mz ¼
Mz

EpR3
h

. ð19Þ

The non-dimensional components of the stiffness matrix
are then expressed as follows:

k�� ¼
k��

EpR2
h

,

kyy ¼
kyy

EpR4
h

,

k�y ¼
k�y

EpR3
h

,

ky� ¼
ky�

EpR3
h

. ð20Þ

As can be shown from any analytical model, the post-
processed kij axial stiffness coefficients turn out to be
dependent on only two geometrical characteristic values:
lay angle a and ratio of wire radius to core radius kr ¼ Rw/
Rc. Moreover, these dimensionless coefficients kij, are
independent of the elasticity modulus E of the constitutive
material; the only material term characterizing the iso-
tropic material behavior is the Poisson’s ratio value. For
the present numerical preliminary study, this coefficient has
been taken to be 0.3. Ghoreishi [42] performed a sensitivity
study for these geometrical characteristics (a and kr), which
demonstrates that the accuracy of the models is not
sensitive to kr for the usual practical values. Therefore,
the results obtained using the different models are
compared only for lay angle variation.

Fig. 3 details the evolutions of the non-dimensional axial
stiffness, k��, obtained by different analytical models as well
as 3D FE model, versus lay angle.

These curves show that all the analytical models studied
here produce only two distinct series of results: there is a
coincidence of the results for the models of Hruska [8],
Machida and Durelli [12], McConnell and Zemek [10],
Sathikh et al. [21] and Labrosse [22] (the differences are
Fig. 3. Axial stiffness, k��, vs. lay angle a.
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negligible and only one curve has been plotted for these 5
models), and another series of results for Kumar and
Cochran [18], Ramsey [44] and Costello [17]. It may be
noted that for the second group of models, the change of
geometry due to the Poisson’s effect is taken into account.
However, the non-dimensional axial stiffness remains a
little higher than those of FE model. In addition, for the
small lay angles (ap151), the results of all the models are
very close (within 1.7% of each other), and a good
agreement is obtained with the FE model (always less than
5% difference). The difference between these groups of
models increases slightly with increasing lay angle. More-
over, the models which take into account the change of
geometry due to the Poisson’s effect, give the results closest
to FE model values, see Figs. 3–5.
Fig. 4 shows the non-dimensional torsion term versus lay

angle. These results were obtained by selected analytical
models and the 3D FE model. As shown in Fig. 4, the
model of Hruska [8] gives results appreciably lower than
the others, because the torsional stiffness of the wires is
neglected. This effect is more important when the lay angle
is small. This can be easily explained by the fact that an
increase in lay angle also increases considerably the
torsional stiffness, while having little or no effect on the
(GJ)w or (EI)w terms. This effect is especially noticeable for
a single-layered strand because in a multi-layered strand,
the torsional stiffness of the wire is negligible when
compared to the term contributed from axial load.
All the other analytical models provide very similar results,

the difference increasing slightly with increasing lay angle. In
addition, for ap201, the agreement between the analytical
models (except Hruska’s model) and FE model are encoura-
ging. Beyond this value, a significant difference appears.
Let us note finally that the simple modification to the

model of Hruska made by McConnell and Zemek [10],
gives results which are quite comparable to those of much
more complex models, as has already been noted by
Jolicoeur and Cardou [2].
The evaluation of the non-dimensional coupling terms

k�y and ky�, versus lay angle, are illustrated in Figs. 5(a) and
(b), respectively. As underlined previously, only the models



Fig. 5. Dimensionless coupling terms vs. a, (a) k�y and (b) ky�.
of Hruska, Sathikh and Labrosse lead to symmetrical
matrix terms ðk�y ¼ ky�Þ.

For k�y, we can make the same qualitative analysis as in
the case of the axial stiffness. The results of the analytical
models are grouped in two series, whose difference
increases slightly with the lay angle. For a small angle
(ap151), the agreement with the FE model is very good.
Beyond this value, a significant difference appears (up to
45%). With regard to ky�, (see Fig. 5(b)), the differences
between the results of the analytical models are more
significant. In addition, when the lay angle increases, it
appears that the models, which take into account the
change of geometry due to the Poisson’s effect, also give
the results closest to those of the FE model.
5. Concluding remarks

The objective of this paper is to determine the validity
domain of analytical models of steel strands. The elastic
behavior of a simple 6+1 geometry having lay angles up to
351 and subjected to axial static load has been studied.
First, the equations of nine selected models have been
rewritten with the same notation, and their principal
assumptions have been briefly presented. It was shown
that the 3D FE model can be used as a reference for the
cable behavior since its results are very close to existing
experimental data.
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Then, the results of selected models are compared with
those of 3D FE model calculations, using general
dimensionless stiffness coefficients.
Considering these results, the kij values are in good

agreement, (except for the model of Hruska which clearly
underestimates the torsional stiffness), for lay angle values
below 201. The relative differences between analytical and
FEM results are then always less than 10%. Nevertheless,
the discrepancies grow rapidly and significantly, except in
the case of the axial stiffness, for a-values beyond 201.
These differences then become significant (up to 45%)
especially for the coupling terms k�y and ky�. It is possible
that in this range of lay angle curved beam theory is too
approximate for the helical wire analysis. From the point
of view of accuracy, it appears that for lay angles below
151, there is a negligible difference between analytical
models. For lay angles beyond 151, the analytical models,
which take into account the change of geometry due to the
Poisson’s effect, Kumar and Cochran [18], Ramsey [44]
and Costello [17], provide the results closest to those of 3D
FE model. However, these models present the disadvantage
of having a nonsymmetrical stiffness matrix.
In conclusion, the analytical models presented here

appear quite satisfactory for the estimation of the elastic
stiffness coefficients of 6+1 metallic strand structures with
lay angles less than 201. This is an important conclusion for
designers and has allowed the domain of validity of models
for these structures to be quantified in terms of FE results,
instead of relying on experimental data. For larger lay
angles the use of 3D FE modeling would be recommended.
References

[1] Cardou A, Jolicoeur C. Mechanical models of helical strands.

Applied Mechanics Review 1997;50(1):1 14.

[2] Jolicoeur C, Cardou A. A numerical comparison of current

mathematical models of twisted wire cables under axisymmetric

loads. Journal of Energy Resources Technology 1991;113(1):

241 9.

[3] Utting WS, Jones N. The response of wire rope strands to axial

tensile loads Part I. Experimental results and theoretical predic

tions. International Journal of Mechanical Sciences 1987;

29(9):605 19.

[4] Utting WS, Jones N. The response of wire rope strands to axial

tensile loads Part II. Comparison of experimental results and

theoretical predictions. International Journal of Mechanical Sciences

1987;29(9):621 36.

[5] Samras RK, Shop RA, Milburn DA. An analysis of coupled

extensional torsional oscillations in wire ropes. Journal of Engineer

ing for Industry 1974;74:1130 5.

[6] Hruska FH. Calculation of stresses in wire ropes. Wire and wire

products 1951;26(9):766 7.

[7] Hruska FH. Radial forces in wire ropes. Wire and wire products

1952;27(5):459 63.

[8] Hruska FH. Tangential forces in wire ropes. Wire and wire products

1953;28(5):455 60.

[9] Knapp RH. Nonlinear analysis of a helically armored cable with

nonuniform mechanical properties in tension and torsion. In:

Proceeding of IEEE/MTS conference of Engineering in the Ocean

Environment, San Diego, 1975. pp. 55 164.



[10] McConnell KG, Zemeke WP. A model to predict the coupled axial

torsion properties of ACSR electrical conductors. Journal of

Experimental Mechanics 1982;22:237 44.

[11] Love AEH. A treatise on the mathematical theory of elasticity. New

York: Dover Publications; 1944.

[12] Machida S, Durelli AJ. Response of a strand to axial and torsional

displacements. Journal of Mechanical Engineering science

1973;15:241 51.

[13] Knapp RH. Derivation of a new stiffness matrix for helically

armoured cables considering tension and torsion. International

Journal for Numerical Methods in Engineering 1979;14:515 20.

[14] Costello GA, Philips JW. Effective Modulus of twisted wire cables.

ASCE, Journal of the Engineering Mechanics Division

1976;102:171 81.

[15] Philips JW, Costello GA. Analysis of wire rope with internal wire

rope cores. ASME Journal of Applied Mechanics 1985;52:510 6.

[16] Velinsky SA. General nonlinear theory for complex wire rope.

International Journal of Mechanical Sciences 1985;27:497 507.

[17] Costello GA. Theory of wire rope. 2nd ed. New York: Springer; 1997.

[18] Kumar K, Cochran Jr JE. Closed form analysis for elastic deforma

tions of multilayered strand. ASME Journal of Applied Mechanics

1987;54:898 903.

[19] Kumar K, Botsis J. Contact stresses in multilayered strands under

tension and torsion. Journal of Applied Mechanics 2001;68:432 40.

[20] Huang NC. Finite extension of an elastic strand with a core. Journal

of Applied Mechanics 1978;45:852 8.

[21] Sathikh S, Moorthy MBK, Krishnan M. A symmetric linear elastic

model for helical wire strands under axisymmetric loads. Journal of

Strain Analysis 1996;31(5):389 99.
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