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Use of spherical indentation data changes to materials characterization

based on a new multiple cyclic loading protocol

Jean-Marc Collin a,∗, Gérard Mauvoisin a, Philippe Pilvin b, Rochdi El Abdi a

a LA.R.M.A.U.R., FRE CNRS 2717, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes Cedex, France 
b L.G.2M., Université de Bretagne-Sud, Rue de Saint-Maudé, BP 92116, 56321 Lorient Cedex, France

An interpretation of spherical indentation experiments and the determination of hardening law parameters is the challenge in this paper. A

new protocol based on multiple cyclic loading allowed models describing the indentation data changes to be determined from a numerical study.

Inversion of these models, determined for two constitutive equations with isotropic hardening, combined with a sensitivity study enabled the study

of the uniqueness of the solution. It is shown that although the new protocol is not necessary to determine the two Hollomon equation parameters,

it is necessary to determine accurate values of the three Ludwig equation parameters.

From an experimental study, it was shown that methods based on a “reverse” analysis can be used in order to have an evaluation of the 
mechanical properties in a first-order approximation.
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1. Introduction

An instrumented indentation test consists in measuring,

simultaneously, the indentation load P and the indentation depth

h during the penetration of an indenter into a sample. This

test can be used in order to determine some parameters of the

work-hardening behavior law of the tested sample. The more

commonly used is the Hollomon isotropic work-hardening law

defined by the following equation:

σ = σ1−n
y Enεn (1)

This relationship gives, in the case of a monotonic solicitation

in the elasto-plastic regime, the material flow stress. E, σy, n

and ε, are, respectively the Young modulus, the yield stress, the

work-hardening exponent and the strain.

The first identified parameter, from an indentation test,

is the reduced Young modulus E* defined by E∗
=

[(1 − ν2
i )/Ei + (1 − ν2

s )/Es]
−1

, where ν is the Poisson ratio, s

stands for “sample,” whereas i stands for “indenter”. The deter-

mination of E* is based on the Hertz elastic contacts theory [1].
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Sneddon [2] proposed a general solution to the problem of an

elastic sample indented by any shape of indenter. In the case of

spherical indentation, the contact stiffness is defined as follows:

S =
dF

dh
= 2E∗a (2)

where a is the contact radius. When the elastic regime is over, Eq.

(2) can still be applied at the beginning of the unloading [3–5].

Following this, Doerner and Nix [6], Loubet et al. [7] and Oliver

and Pharr [8] proposed to deduce E* from an indentation test

using relationship (2). These methods can be distinguished from

one another by the way the contact radius is evaluated. Lastly,

Hay and Wolff [9] proposed a correction for the application of

the Hertz theory by introducing a factor in order to take into

account the radial displacements of material under the indenter.

Concerning the non-elastic behavior, many methods have

been proposed to deduce the mechanical parameters, usually

deduced from a tensile test, from an indentation test. These meth-

ods can be distinguished from one another by the indenter they

use (Vickers, sharp, spherical, etc.) and the data they use. More-

over, two kinds of methods can be used to extract mechanical

properties from the indentation test. The first is based on the

inversion of models established from a numerical study and is

called a “reverse” analysis. The second is based on an “inverse”
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analysis. The greater part of established methods are based on

a “reverse” analysis, however, Nakamura et al. [10] proposed

the determination of the properties of graded materials by using

an “inverse” analysis protocol in spherical indentation. We can

also quote Bolzon et al. [11] who applied “inverse” analysis to

conical indentation. Most of the “reverse” analysis methods are

based on the modelling of the representative strain introduced

by Tabor [12]. Dao et al. [13] proposed to extract the Eq. (1)

parameters from a unique sharp indentation. They also showed

that the determined parameters are very sensitive to small vari-

ations in the indentation data. This work has been followed by

Chollacoop et al. [14] who applied the previous method with two

sharp indenters with different apex angles. Then, they showed

an improvement in the determination of the material properties

with two indenters. Moreover, the use of two sharp indenters

significantly decreased the sensitivity of the predicted parame-

ters to the perturbations in the indentation data. Bucaille et al.

[15] also proposed using different sharp indenters in order to

solve the problem.

The uniqueness of the solution has been fully studied by

Cheng and Cheng [16], who demonstrated that in the case of

sharp indentation, several sets of Eq. (1) parameters can lead to

the same P(h) curve. However, they demonstrated that this prob-

lem does not occur in spherical indentation. Indeed, the method

of Dao et al. [13] has been extended to the spherical indentation

by Cao and Lu [17] and led to a unique determination of the

Eq. (1) parameters. We can also quote Beghini et al. [18] who

determined Eq. (1) parameters from the inversion of a P(h) curve

model in spherical indentation.

This paper deals with a study of the uniqueness of the solution

in the case of spherical indentation. Moreover, we propose an

experimental method based on a “reverse” analysis to evaluate

the parameters of two constitutive equations by using a unique

indenter and a new multiple cyclic loading protocol.

2. Data deduced from an indentation test

Depending on the kind of loading, different data can be

deduced from an indentation test (see Fig. 1, the curves of

which are deduced from numerical results). If the test consists

of a unique loading, the P(h) curve and the total energy Wt(h)

changes can be deduced. If the test consists of a loading and

an unloading cycle, in addition to P(h) and Wt(h), both the

elastic We(hmax) and plastic Wp(hmax) energies at the end of

the loading can be deduced. Moreover, we can deduce the con-

tact stiffness S(hmax) (defined in Eq. (2)) at the maximal load.

Finally, if the test consists of n loading, unloading and reloading

cycles, in addition to the previous data we can deduce n points

of We(h(max)i), Wp(h(max)i) and S(h(max)i) changes. Moreover,

from the energies, we can deduce the energy ratio changes as

Wp/Wt(h(max)i), We/Wt(h(max)i) and We/Wp (h(max)i).

Among the three energies, only two are independent. Indeed,

they are linked by

Wp = Wt − We (3)

Fig. 1. Different kinds of loading cycles lead to different indentation data.

Moreover, only one energy ratio is sufficient in order to

deduce the two others. Indeed, they are linked by

Wp

Wt
= 1 −

We

Wt
=

(

1 +
We

Wp

)

−1

(4)

This is the reason why, for the three energies, we propose to

study both the elastic and total energies. Moreover, although the

Wp/Wt ratio is linked to the two studied energies, we propose to

study it in order to limit the errors of modelling. Concerning the

contact stiffness S, because it is obtained by derivating the P(h)

curve, it is very sensitive to oscillations of the P(h) curve. For

this reason this data is not studied in the following numerical

study. Thus, this study concerns the P(h), We, Wt and Wp/Wt

changes during a spherical indentation test which are deduced

from 10 loading, unloading and reloading cycles.

3. Numerical study

3.1. Presentation

A numerical study was conducted in axi-symetric mode with

the finite element (FE) code Cast3M. Fig. 2 shows the FE model

where the axi-symetric boundary conditions are imposed on the

axi-symetric axis.

The sample is modelled by a bulk divided into several areas.

In the contact area, the mesh is made of 8-node elements (named

QUA8 in the FE code) with quadratic interpolation. In this area,

the size of the elements is less than 4 �m in order to obtain P(h)

curves with the lowest oscillations. The rest of the sample is
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Fig. 2. The FE mesh.

modelled by two areas composed of 4-node elements (named

QUA4 in the FE code) with linear interpolation. In the first area,

the size of elements is multiplied by 4 and by 80 in the second.

Areas with 8-node elements or 4-node elements are separated

with transition areas composed of 3-node elements (named TRI3

in the FE code) with linear interpolation.

Concerning the indenter, it is modelled by a quarter of a

sphere divided into two areas. In the contact area, as for the

sample, the mesh is made of 8-node elements with quadratic

interpolation. The rest of the indenter is modelled by an area

composed of 3-node elements with linear interpolation.

Because the contact is made between the superior line of the

sample and the inferior line of the indenter, the middle nodes of

the QUA8 elements are free. In order to solve this problem, two

new lines have been created. They are composed of segment ele-

ments with linear interpolation. For n QUA8 elements, we have

2n − 1 nodes in these new lines. Although the friction influence

is not negligible, the contact is made without friction between

the two new lines in order to focus the study to the plasticity

phenomenon.

The sample is described by elasto-plastic behavior with

isotropic work hardening. Two constitutive equations have been

studied, the Hollomon one (Eq. (1)), and the Ludwig one (Eq.

(5)):

σ = σy + Kεm (5)

where K and m describe the work-hardening behavior. It is

important to note that Eq. (1) depends on the total strain whereas

Eq. (5) depends on the plastic strain only. In this study, the

sample’s Young modulus is Es = 210 GPa and the Poisson ratio

νs = 0.3 (which corresponds to that of steel).

The indenter is described by an elastic behavior with

Ei = 600 GPa and νi = 0.3 (which corresponds to a tungsten car-

bide). The indenter radius is fixed to R = 0.5 mm.

In order to follow indentation data changes, 10 loading,

unloading and reloading cycles with a maximal load equal to

Pmax = 200 N have been programmed. All the nodes of the supe-

rior line of the indenter have the same displacement and the

load is applied on the first left node of this line. The indenter

Fig. 3. Typical data deduced from the numerical simulations.
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Fig. 4. Quantification of the sensitivity.

moves down into the sample with the bottom of the sample fixed.

Figs. 1 and 3 present the typical P(h) curve obtained from the

numerical study from which the loading P(h) curve, We, Wt and

Wp/Wt changes are deduced.

3.2. Sensitivity study

The aim of this paragraph is to study the influence of a varia-

tion of each behavior law parameter to the indentation data. We

can write the sample’s behavior law as a function f (Eq. (6)) of

nxi behavior law parameters and the strain ε:

σ = f (x1, . . . , xi, . . . , xn, ε) (6)

Thus, indentation data D can be written as a function g (Eq.

(7)) of the nxi behavior law parameters and the indentation depth

h:

D = g(x1, . . . , xi, . . . , xn, h) (7)

If we apply a variation to one parameter xi which becomes x′

i,

the indentation data becomes D′ and can be written as follows:

D′
= g(x1, . . . , xi, . . . , xn, h) (8)

We propose to quantify the sensitivity of indentation data D

to the parameter xi (noted S(D/xi)) with the following function:

S(D/xi) =

∫ hf

h0
(D′(h) − D(h)) dh

∫ hf

h0
(D(h) − D(h0)) dh

(9)

where h0 and hf are presented in Fig. 4. Function (9)

has been chosen in order to have an average sensitivity

Fig. 5. Symmetry between +5% and −5% on the sensitivity.

which takes into account the initial value of the indentation

data.

In the present work, we have studied the sensitivity of the

indentation data to Eq. (5) parameters, i.e. the yield stress σy

and the two work-hardening parameters K and m. However,

in order to make a graphic representation of the sensitivity

changes possible, we distinguish the sample behavior into a

yield stress part and a work-hardening part, we then use Eq.

(1) notations. Thus, work hardening is represented by the coef-

ficient n of the Eq. (1). In other words, the evolution of the

sensitivity of indentation data to σy, K or m will be presented

as a surface which depends on the yield stress and the work

hardening quantified by n. Twelve sets of parameters have been

chosen in order to study the evolution of the sensitivity from a

low to a high yield stress (σy = 150 MPa to σy = 1000 MPa) and

from a low to high work hardening (quantified by n = 0.02 to

n = 0.4).

For each set of parameters, we have determined σy, K and m

which minimize the difference between Eqs. (5) and (1) in order

to have the same flow stress curve. For example, a Hollomon

sample with σy = 150 MPa and n = 0.02 corresponds to a Ludwig

sample with σy = 150 MPa, K = 24.53 MPa and m = 0.203. The

indentation behavior of these 12 samples has been simulated,

and the data deduced from these simulations are considered as

the initial ones (D in Eq. (7)).

In order to verify the symmetry of the sensitivity, a variation

of +5% and −5% has been applied on σy, K and m for each

sample (which leads to 72 simulations). We deduced from these

simulations the D′ data (in Eq. (8)) for a variation +5% and

Fig. 6. Determination of the functions which describe the indentation data changes.
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Fig. 7. Comparison between numerical curves and prediction of the models.

−5% of the Eq. (5) parameters. We can observe in Fig. 5 that

the sensitivity is symmetric data. Thus, we will consider the

sensitivity as the average of the absolute values of the sensitivity

to +5% and −5%.

The results of the sensitivity study are presented in Fig. A1

(Appendix A). This is composed of four lines representing the

sensitivity of the four indentation data We, Wt, Wp/Wt and P(h),

respectively. The three columns present the sensitivity to the

three parameters σy, K and m. For example the first graph in

the left top corner shows the sensitivity of the We changes to the

yield stress in function of the yield stress and the work hardening

(quantified by n). In the following presentation, we discuss the

global trend of the sensitivity changes to the yield stress and to

the work-hardening parameters.

Concerning the evolution of the sensitivity to the yield stress

(first column), We, Wt and P(h) present the same trend. More-

over, the sensitivities of Wt and P(h) are quite similar. It can be

explained by the relationship (10) between Wt and P(h):

Wt =

∫ hf

h0

P(h)dh (10)

The most important result of the study of the sensitivity to

the yield stress is that it increases when the work hardening

decreases. We can observe that the work hardening (quantified

by n) has a more important influence than the yield stress on the

sensitivity changes except for Wp/Wt.

Concerning the evolution of the sensitivity to the work-

hardening coefficients (second and third columns), we can

Fig. 8. Several sets of Eq. (5) can lead to the same curve.
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Fig. 9. Our indenter and its profile.

observe that the sensitivity to K and m have the same trend.

However, the sensitivity to m is higher than the sensitivity to K.

The most important result of the study of the sensitivity to the

work-hardening coefficients is that no indentation data is sen-

sitive to the work hardening when this work hardening is very

low.

We can conclude that the sensitivity can be divided into sen-

sitivity to the yield stress and sensitivity to the work hardening.

The maximum value of the sensitivity to the yield stress is com-

pensated by the minimum value of the sensitivity to the work

hardening. Moreover, from this study, We seems to be the most

sensitive data.

3.3. Determination of models for the four studied

indentation data

The area of the materials studied in the previous paragraph

has been extended by considering the large domain of σy/Es, in

order to cover a large area of metallic materials. The yield stress

varies between 150 and 3000 MPa (150, 450, 720, 1000, 1400,

2200 and 3000 MPa) and the work-hardening exponent of the

Eq. (1) varies between 0.02 and 0.4 (0.02, 0.08, 0.15, 0.22, 0.28,

0.34 and 0.4). The determination of models is then based on

49 materials which have been simulated in order to determine

We, Wt, P(h) and Wp/Wt changes The parameters of Eq. (5)

corresponding to these 49 materials have been determined (as

in the previous paragraph) in order to determine models which

depend on the parameters of both Eqs. (1) and (5).

Moreover, in order to make the application of the models to

different samples and indenters Young modulus and different

indenter radii possible, all the data are determined as functions

of σy/E*, n and h/R for Eq. (1) and σy/E*, K/E*, m and h/R

for Eq. (5). In order to have dimensionless data, We and Wt are

divided by E*R3 and P(h) is divided by E*R2.

Fig. 6 shows that the evolution of −ln(We/E*R3, Wt/E*R3

and P(h)/E*R2) versus (−ln(h/R)) is well described by an affine

function, as for −ln(Wp/Wt) versus (−ln(h/R)) which is well

described by an exponential function. We can also write that

Fig. 10. Comparison between experimental and numerical curves for a C22 steel.
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Table 1

Results of the experimental characterization for Eq. (1)

Sample Exact solution Minimization on We Minimization on Wt Minimization on Wp/Wt Minimization on P(h)

σy (MPa) n σy (MPa) n σy (MPa) n σy (MPa) n σy (MPa) n

C22 219 0.16 182 0.21 181 0.16 210 0.21 174 0.19

C100 177 0.24 217 0.25 163 0.22 290 0.25 139 0.27

We/E*R3, Wt/E*R3 and P(h)/E*R2 are well described by func-

tion j (11) and Wp/Wt by function k (12):

j =

(

h

R

)A

exp(−B) (11)

k = exp

(

−A

(

h

R

)

−B
)

(12)

where A and B are quantities depending on σy/E* and n in the

case of Eq. (1) and on σy/E*, K/E* and m in the case of Eq. (5).

From the numerical study, a data base of 49 materials leads to

49 We, Wt, P(h) and Wp/Wt curves and then to 49 couples (A,B)

for each indentation data.

Concerning Hollomon’s constitutive Eq. (1), it is possible to

represent the evolution of A and B with surfaces which are pre-

sented in Fig. B1 (Appendix B). In this figure, functions A and

B (z axis) are determined with the software Table Curve 3D.

They depend on σy/E* (x axis) and n (y axis). The proposed

functions are the ones which give the best correlation coeffi-

cient. The coefficients which come in these functions are given

in Tables B1 and B2.

Concerning Ludwig’s constitutive equation, it is impossible

to represent a surface of the evolution of A and B in function of

σy/E*, K/E* and m. These functions have been determined by

a minimization with several polynomial functions. If we note

x1 = σy/E*, x2 = K/E* and x3 = m, the best found functions are as

follows:

A = a +

3
∑

i=1

(aixi + bix
2
i ) + c1x1x2 + c2x2x3 + c3(x1x2)2

+ c4(x2x3)2 (13)

B =

(

A +

3
∑

i=1

(dix
3
i ) + d4x1x3 + d5x1x2x3

)−1

(14)

The coefficients which come in these functions are given in

Tables B3 and B4.

In order to study the accuracy of each model, the comparison

has been made between the numerical curves and the prediction

of the model for each indentation data (see Fig. 7 for an example).

Concerning the models which depend on Eq. (1) parameters, the

average accuracy is 2.5%, 1.0%, 1.6% and 1.5%, respectively

for We, Wt, Wp/Wt and P(h). For Eq. (5), the average accuracy

becomes, respectively 3.7%, 2.6%, 1.1% and 3.4%.

3.4. Study of the uniqueness of the solution

The study of the uniqueness of the solution is based on the

minimization between the numerical curves and the proposed

models for each indentation data and for the two studied consti-

tutive equations. If we note σnum as a point of a numerical curve,

σmod as a point of the curve obtained from a model and N as the

number of points, the minimization is commonly made on the

following function:
∑

N

(σmod − σnum)2 (15)

Although function (15) gives good results on Wp/Wt, it gives

very inaccurate results on We, Wt and P(h). Indeed, function (15)

does not give the same weight to every point of the curve. Then,

we suggest minimizing with the following formula:

∑

N

(

σmod − σnum

σnum

)2

(16)

Concerning Hollomon’s constitutive equation, formula (16)

has been used to inverse the functions (11) and (12) for each

indentation data. The results of these inversions, given in

Table C1 (Appendix C), show that there is a uniqueness of the

solution for each indentation data. We can observe that the lower

the work hardening (n = 0.02 and 0.08), the lower the precision

on the work-hardening exponent n. It can be easily explained

with the results of the sensitivity study. Indeed, it has been shown

that if the work hardening is low, the sensitivity of the four inden-

tation data to the work hardening is close to 0. If we observe the

results of the inversion without considering the lowest values of

work-hardening exponent, the average error obtained, respec-

tively on σy and n is 3.9% and 4.3% with We, 2.9% and 3.4%

with Wt, 5.0% and 3.8% with Wp/Wt and 5.8% and 6.5% with

P(h). Although the sensitivity study has shown that the most

Table 2

Results of the experimental characterization for Eq. (5)

Sample Exact solution Results of minimization

σy (MPa) K (MPa) m σy (MPa) K (MPa) m

C22 219 506 0.3175 243 361 0.3214

C100 177 901 0.3789 165 776 0.3618
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sensitive data is We, it can be observed that the data which gives

the best results is Wt. Indeed, this data is less sensitive than We,

but the model of Wt is the most accurate. Moreover, it has been

shown that the sensitivity of Wt and P(h) are quite similar. How-

ever, the results of the inversion of Wt model are more accurate

(accuracy multiplied by two) than the P(h) ones. Indeed, the

model of Wt is more accurate than the P(h) one. It is then shown

that both the accuracy of model and the sensitivity explain the

accuracy of the inversion.

The energy Wt could be calculated by function (10). It would

be then not be necessary to program several loading, unloading

and reloading cycles in order to determine the Wt changes. One

single loading is sufficient to calculate the Wt changes and then

to deduce σy and n from inversion. However, the cyclic loading

protocol proposed in this paper is very important in the case of

Eq. (5).

Indeed, the minimization between models determined for Eq.

(5) and numerical curves for each data does not lead to a unique

set of σy, K and m. Fig. 8 and Table C2 illustrate this fact. Several

sets of Eq. (5) parameters lead to the same curve. This shows

that one unique indentation data is not sufficient to determine

the three parameters of Eq. (5). It is then necessary to minimize

(with function (16)) on several indentation data simultaneously.

If we consider the four studied data, only two are independent,

indeed Wt and P(h) are linked with function (10) and We, Wt

and Wp/Wt are linked by Eqs. (3) and (4). Although the min-

imization of both Wt and We leads to a unique set of Eq. (5)

parameters, for some cases, the results are not very accurate. As

an example, for an exact solution σy = 2200 MPa, K = 6173 MPa

and m = 0.46, the minimization with We and Wt simultaneously

leads to the solution σy = 2668 MPa, K = 4241 MPa and m = 0.44

and the minimization with We, Wt and Wp/Wt simultaneously

leads to the solution σy = 2340 MPa, K = 6343 MPa and m = 0.47.

This is the reason why we suggest minimizing, simultaneously,

on three indentation data. The model of Wp/Wt is more accurate

than the P(h) one and this is the reason why the results presented

in Table C3 (middle columns) concern the minimization on We,

Wt and Wp/Wt simultaneously. It is then shown that the use of

three indentation data leads to a unique set of accurate Eq. (5)

parameters. However, on the one hand, it can be observed that

the lower the work hardening, the lower the accuracy of K. On

the other hand very good accuracy is obtained on coefficient

m even if the work hardening is low. This can be explained by

the form of Eq. (5). In this function, the yield stress σy and the

work hardening (noted σwh) are separated. This can be written

as

σwh = Kεm (17)

If an error e occurs on the work-hardening evaluation, the

new work-hardening function becomes

σ′

wh = (1 + e)Kεm
= K′εm′

(18)

Function (18) has to be solved for every ε, and the only one

solution is K′ = (1 + e)K and m′ = m. In other words, if an error

occurs on the work-hardening evaluation, this error will have an

effect exclusively on K and not on m. Then, if we calculate the

average error without considering the lowest work hardening

values, we obtain 8.2%, 6.5% and 2.1%, respectively for σy, K

and m.

One can suggest that only the last points of the curves can

lead to a unique set of Eq. (5) parameters. This suggestion is

true. However, this leads to very inaccurate values of Eq. (5)

parameters (see Table C3, last columns).

As a conclusion, although the new cyclic loading protocol is

not necessary to determine Eq. (1) parameters, it is necessary to

deduce the We and Wp/Wt changes and then to deduce accurate

values of Eq. (5) parameters.

4. Experimental study

4.1. Presentation

Two steels were selected (a C100 and a C22) because of

their microstructure which leads to good homogeneity. For these

samples, a tensile test led to the flow stress–strain curve which

was fitted by both Eqs. (1) and (5).

We developed an experimental bench which allows the mea-

surement of the P(h) curve with very good reproducibility. The

two important parts of this bench are the indenter and the way

the displacement is measured.

Concerning the choice of the indenter, the most common

spherical indenters are composed of a sphere which is crimped

into the body of the indenter. However, the way the sphere is

crimped can induce non-negligible deformations between the

body of the indenter and the sphere. This is the reason why

we chose to use a monobloc indenter. In this indenter, both the

body and the spherical part are machined in the same Tung-

sten carbide piece. However, despite a spherical part being

asked for, it was impossible to obtain a perfectly spherical

indenter. Fig. 9 shows an image of the indenter realised by

electronic scanning microscope from which the true profile

of the indenter was measured. It was then shown that there

are non-negligible differences between the true profile and a

spherical one. However, this indenter can be considered as an

axi-symetric one. In order to compare numerical and experimen-

tal curves, the true profile of the indenter was introduced into

the FE code as a set of coordinates defining the surface of the

indenter.

The displacement was measured by using a capacitive sen-

sor which is fixed near the indenter with an intermediate

piece.

Thus our experimental bench allowed us to measure the

displacement of the indenter in the sample. However, the

needed displacement is the sample surface which is found

under the indenter. A previous study [19] proposed a new

method to deduce the wanted load–depth curve from the mea-

sured one with knowledge of the elastic properties of both

the indenter and the sample. This method was based on

the determination of the contact radius changes between the

indenter and the sample and a modelling of indenter deforma-

tions during an indentation test. The contact radius changes

were deduced from several loading, unloading and reloading

cycles which lead to the determination of the contact stiff-
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ness S(h) changes. Moreover, due to the non-spherical indenter,

we proposed an equivalent radius function which depends

on the contact radius. The new cyclic loading protocol was

then necessary to calculate the equivalent radius changes of

our indenter and then to deduce the real sample load–depth

curve.

4.2. Differences between experimental and numerical

curves

In our previous work [19], it is has been shown that experi-

mental and numerical loading curves are quite similar. However,

we observed non-negligible differences between experimental

and numerical unloading curves. At the end of the unloading,

the experimental displacement decreased more quickly than the

numerical one. Moreover, the reloading cycles sometimes led to

the appearance of hysteresis on the P(h) curve. This phenomenon

has been observed and studied by several authors. According to

Huber and Tsakmakis [20] the hysteresis is the consequence of a

kinematic hardening behavior of the tested material. Moreover,

they showed that, in the case of pure kinematic behavior, or both

isotropic and kinematic behavior, the displacement decreases

more quickly than in the case of pure isotropic behavior during

the unloading cycle.

Fig. 10 presents the comparison between the studied data

deduced from both the experimental and the predicted numerical

curve for C22 steel. It is shown that experimental P(h) and Wt

changes are well predicted by numerical simulations. However,

we can observe large differences between experimental We and

Wp/Wt changes and the predicted ones.

4.3. Experimental characterization of two steels

Although the differences between experimental and pre-

dicted We and Wp/Wt changes are non-negligible, we applied

function (16) between experiments and models developed for

Eq. (1) for each indentation data. The results are presented in

Table 1. They confirm that the data which give the most accu-

rate results is the Wt changes (average accuracy 13% on σy

and 4% on n). The inversion of the P(h) curve gives less accu-

rate results than Wt, which can be explained by the accuracy

of the corresponding model. Concerning the indentation data

which are affected by the unloading, the accuracy of results

obtained from the inversion of We is near to that obtained for

P(h) inversion. This can be explained by the high sensitivity of

We which compensates the differences between experimental

and numerical unloading. Lastly, Wp/Wt gives the least accurate

results.

Concerning the determination of the parameters of Eq. (5),

the minimization with We, Wt and Wp/Wt simultaneously or

We, Wt and P(h) simultaneously gives very inaccurate results.

However, the minimization on Wt changes leads to a unique

set of parameters. Although it has been shown in the numerical

study that there is no uniqueness if the minimization is made

on only one indentation data, we observed uniqueness in this

experimental study. This can be explained by the use of a non-

spherical indenter with an equivalent radius function. Thus, an

indentation test with this kind of indenter can be assimilated

to several indentations with different indenter radii. The results

of inversion of Wt changes for Eq. (5) are given in Table 2.

The average accuracy is 9% on σy, 21% on K and 3% on

m.

As a conclusion, although some differences occurred between

experimental and numerical results, the inversion of models

proposed in the numerical study led to an evaluation of the

parameters which are in Eqs. (1) and (5). These results also

showed that methods based on a “reverse” analysis are limited

in accuracy, the more the number of mechanical parameters

the less the accuracy of the characterization. This kind of

method can be used in order to have an evaluation of the

mechanical behavior in a first-order approximation. However,

in order to have a more accurate characterization, it will be

necessary to use other kinds of methods such as the “inverse”

analysis.

5. Conclusion

A new kind of indentation protocol is proposed in this paper. It

is composed of several loading, unloading and reloading cycles

which allow the determination of the indentation data changes.

In this study, four indentation data are studied: the elastic and

total energies We and Wt, the plastic to total energy ratio Wp/Wt

and the loading P(h) curve. From a numerical study, models

describing these data changes have been determined for two con-

stitutive equations with isotropic hardening. These models have

allowed us to study the uniqueness of the solution for the two

studied constitutive equations. For the first equation with two

plasticity parameters, only one indentation data is sufficient to

determine the mechanical properties with good accuracy. More-

over, from the numerical results, the best data is the total energy

Wt which can be deduced without cyclic loading. However, for

the second constitutive equation with three plasticity parameters,

it has been shown that several loading, unloading and reloading

cycles are necessary to determine accurate values of the mechan-

ical parameters. The numerical study has also shown that both

the sensitivity and the accuracy of models explain the accuracy

of the results.

In a previous paper, we have shown that the proposed cyclic

loading protocol is necessary to deduce the real load–depth

curve from the measured one. It is then shown that some dif-

ferences occur between experimental and numerical unloading

curves. These differences justify the low accuracy obtained by

inversion of data which depends on the unloading. However,

inversion of the total energy which is not sensitive to these prob-

lems leads to an evaluation of the parameters of the two studied

constitutive equations. In this case, the uniqueness with the sec-

ond constitutive equation can be explained by the use of an

indenter which can be assimilated to several indenters with dif-

ferent radii which are calculated using the new cyclic loading

protocol.

It has thus been shown in this paper that in order to evaluate

more than two mechanical parameters, it is necessary to increase

the experimental data field either by using several indentation

data changes or several indenter radii.

9



Lastly, this paper shows that methods based on a “reverse”

analysis lead to a more or less accurate determination of the

mechanical properties. They can, however, give an evaluation of

the material’s behavior in a first-order approximation and then

can be used in order to have a comparison between several mate-

rials. The study of other kinds of methods like “inverse” analysis

is one of our perspectives in order to increase the accuracy of

the characterization.
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Appendix A. Sensitivity study

Fig. A1.

Fig. A1. Sensitivity changes for each studied indentation data.
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Appendix B. Determination of the models

Fig. B1.

Fig. B1. Functions A and B which come in Eqs. (11) and (12).
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Tables B1–B4.

Table B1

Coefficients which come in function A for Eqs. (11) and (12)

Data a b c d e f g h i j

We 1.2337 368.7702 −16397.8780 44854.0970 5.7106 −2.6740 150.2944 −70.235686 2.4492 −2.0914

Wt 1.9315 526.6240 −45734.4050 1096080.2000 5.1262 0.7832 212.8758 −19375.6920 468759.1300 2.1066

Wp/Wt −0.0075 8.2528 40.1633 −9737.7621 0.0533 −0.0566 26.1103 −2.0304 0.0756 0.8071

P(h) 0.8946 227.6553 −10699.6670 3.6171 0.0717 1.3472 143.5716 −6922.8572 −26221.0330 2.5028

Table B2

Coefficients which come in function B for Eqs. (11) and (12)

Data a b c d e f g h i j k

We 12.8151 367.3677 844.7441 −0.7832 −27.8083 −4794.3394 −27014.0050 −1.8007 9.0035 −253.6345 −578.8095

Wt 5.7879 405.2397 392.1503 −0.6645 −11.3579 −4573.9157 −14009.3360 −1.8652 2.2474 −215.9234 −192.3363

Wp/Wt 0.6262 −23.8830 −41.0306 0.4967 −0.4412 2001.3517 2631.3604 0.5303 −0.0343 187.6590 137.6183

P(h) 5.3303 309.8288 22.8952 −0.7235 −12.9210 −4693.6406 −7502.3214 −1.9085 6.2890 −303.3440 18.4632

Table B3

Coefficients of function f1 (Eq. (13))

Data a a1 a2 a3 b1 b2 b3 c1 c2 c3 c4

We 0.4799 9.5799 −2.5683 5.8946 −2.8629 1.0695 −6.1122 −6.9739 9.5389 0.9933 −0.0315

Wt 1.5875 6.5688 −1.2094 2.7659 −3.3348 −2.6223 −2.9957 −7.8405 5.1887 0.9918 −1.2836

Wp/Wt 0.0042 8.5243 4.2597 −0.0769 −256.8118 −8.2117 0.1465 −71.0339 −4.6614 0.9360 35.7140

P(h) 0.5729 6.7193 −1.3417 2.8247 −3.3598 −2.5429 −3.0331 −7.9480 5.2952 0.9915 −1.2600

Table B4

Coefficients of function f2 (Eq. (14))

Data a a1 a2 a3 b1 b2 b3 c1 c2 c3 c4 d1 d2 d3 d4 d5

We −0.0592 29.4613 18.7065 1.4148 185.1068 8.0161 −4.5846 −621.6012 −33.8156 68.1669 −275843 14.2524 28.0201 5.0787 −53.8962 1563.7558

Wt −0.1473 62.0351 34.2116 3.2741 219.9531 24.2602 −10.5230 −473.9512 −63.7603 68.4722 −13.9860 16.2688 40.0677 11.8180 −89.7697 1641.1261

Wp/Wt 0.4784 67.6387 10.8059 6.2035 188.2657 −7.8024 −3.2472 −517.1911 −27.8351 68.4045 −25.3187 15.4058 32.9577 4.5077 −321.2930 1619.2977

P(h) 0.4072 56.1993 113.1517 7.5934 117.8745 808.9538−31.7259 −78.3279 −303.3418 68.5109 211.3025 13.7692 132.8986 44.6494 45.6690 1828.5915

Appendix C. Study of the uniqueness of the solution

Tables C1–C3

Table C1

Results of inversion of models for each indentation data

Exact solution Minimization on We Minimization en Wt Minimization on Wp/Wt Minimization on P(h)

σy (MPa) n σy (MPa) n σy (MPa) n σy (MPa) n σy (MPa) n

150 0.02 144 0.02 153 0.01 204 0.03 230 0.00

150 0.08 137 0.10 124 0.11 148 0.11 161 0.10

150 0.15 172 0.13 150 0.14 148 0.16 165 0.13

150 0.22 159 0.21 150 0.22 134 0.23 132 0.22

150 0.28 147 0.28 154 0.28 131 0.29 131 0.28

150 0.34 136 0.34 157 0.34 136 0.34 139 0.34

150 0.4 117 0.41 149 0.4 127 0.41 147 0.4

450 0.02 453 0.00 487 0.00 433 0.00 446 0.00

450 0.08 471 0.07 461 0.08 394 0.10 411 0.09

450 0.15 451 0.15 450 0.15 393 0.17 392 0.18

450 0.22 459 0.23 455 0.22 410 0.24 404 0.24

.
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Table C1 (Continued).

Exact solution Minimization on We Minimization en Wt Minimization on Wp/Wt Minimization on P(h)

σy (MPa) n σy (MPa) n σy (MPa) n σy (MPa) n σy (MPa) n

450 0.28 455 0.28 456 0.28 439 0.29 427 0.29

450 0.34 455 0.34 446 0.34 458 0.34 449 0.35

450 0.4 454 0.40 408 0.41 439 0.4 451 0.40

720 0.02 673 0.04 728 0.02 561 0.08 596 0.08

720 0.08 688 0.10 707 0.09 615 0.12 639 0.11

720 0.15 693 0.17 707 0.16 661 0.17 667 0.17

720 0.22 712 0.23 714 0.23 722 0.22 708 0.23

720 0.28 720 0.28 721 0.28 745 0.28 724 0.28

720 0.34 734 0.34 713 0.34 759 0.33 755 0.33

720 0.4 738 0.40 648 0.41 736 0.4 755 0.39

1000 0.02 947 0.04 994 0.02 877 0.06 932 0.04

1000 0.08 935 0.10 978 0.09 916 0.11 952 0.10

1000 0.15 957 0.17 978 0.16 1004 0.16 1020 0.15

1000 0.22 985 0.22 996 0.22 1063 0.21 1056 0.20

1000 0.28 1000 0.28 1017 0.27 1050 0.28 1074 0.26

1000 0.34 1023 0.33 1023 0.33 1047 0.34 1079 0.33

1000 0.4 1034 0.39 956 0.40 1007 0.40 1057 0.39

1400 0.02 1410 0.02 1387 0.02 1370 0.03 1395 0.02

1400 0.08 1386 0.08 1367 0.09 1437 0.08 1462 0.07

1400 0.15 1400 0.15 1382 0.15 1492 0.14 1519 0.12

1400 0.22 1416 0.21 1419 0.21 1487 0.21 1534 0.19

1400 0.28 1425 0.27 1454 0.27 1451 0.28 1505 0.26

1400 0.34 1442 0.33 1474 0.33 1427 0.34 1494 0.32

1400 0.4 1450 0.39 1432 0.40 1382 0.40 1440 0.39

2200 0.02 2350 0.00 2076 0.05 2279 0.02 2205 0.02

2200 0.08 2254 0.07 2092 0.10 2269 0.08 2240 0.07

2200 0.15 2192 0.15 2133 0.16 2246 0.14 2232 0.14

2200 0.22 2155 0.23 2206 0.22 2190 0.22 2155 0.23

2200 0.28 2132 0.29 2295 0.26 2136 0.28 2086 0.30

2200 0.34 2101 0.36 2375 0.31 2095 0.34 1999 0.37

2200 0.4 2050 0.43 2448 0.36 2059 0.40 1806 0.45

3000 0.02 2940 0.04 2891 0.06 2953 0.03 2851 0.05

3000 0.08 2836 0.11 3018 0.08 2950 0.09 3093 0.06

3000 0.15 2786 0.19 2938 0.17 2932 0.16 2844 0.18

3000 0.22 2775 0.25 3012 0.22 2891 0.23 2904 0.24

3000 0.28 3016 0.27 2994 0.28 2882 0.29 2978 0.2S

3000 0.34 2927 0.34 2990 0.33 2813 0.35 2972 0.33

3000 0.4 2809 0.44 2695 0.45 3214 0.45 2954 0.41

Table C2

Several sets of parameters can lead to the same curve

Exact solution Minimization on We Minimization on Wt Minimization on Wp/Wt Minimization on P(h)

1 2 1 2 1 2 1 2

σy (MPa) 450 1253 1426 1180 1058 920 1398 900 200

K (MPa) 2159 391 0 0 356 998 0 0 3864

m 0.39 0.36 0.36 0.35 0.36 0.39 0.41 0.34 0.49
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Table C3

Results of the minimization with We, Wt and Wp/Wt for Eq. (5)

Exact solution Minimization on data changes Minimization on the last points

σy (MPa) K (MPa) m σy (MPa) K (MPa) m σy (MPa) K (MPa) m

150 25 0.2031 156 14 0.2064 3 368 0.3381

150 123 0.2336 143 143 0.2455 61 458 0.3331

150 307 0.2728 148 289 0.2652 77 593 0.3359

150 609 0.3158 171 553 0.3048 155 621 0.3169

150 1,020 0.3554 184 935 0.3431 190 814 0.3257

150 1,653 0.3973 182 1,551 0.3886 80 1993 0.4241

150 2,628 0.4410 139 2,566 0.4390 135 2560 0.4383

450 63 0.2487 445 75 0.2522 453 32 0.2481

450 304 0.2772 359 393 0.2658 485 144 0.2588

450 720 0.3132 393 724 0.3005 526 214 0.2574

450 1,355 0.3520 444 1,187 0.3354 563 360 0.2661

450 2,159 0.3873 505 1,727 0.3662 540 1294 0.3382

450 3,317 0.4244 552 2,680 0.4063 645 1293 0.3324

450 4,990 0.4628 414 4,828 0.4579 534 4076 0.4409

720 93 0.2737 646 195 0.2753 673 100 0.2680

720 444 0.3011 647 447 0.2905 702 235 0.2760

720 1,031 0.3353 622 1,086 0.3257 741 430 0.2873

720 1,897 0.3719 687 1,862 0.3665 791 807 0.3105

720 2,961 0.4051 770 2,834 0.4066 785 2440 0.3903

720 4,451 0.4397 713 4,545 0.4465 730 4362 0.4424

720 6,549 0.4755 778 5,529 0.4608 739 4503 0.4521

1000 123 0.2936 802 481 0.2999 858 264 0.2886

1000 577 0.3200 818 1,093 0.3352 884 533 0.3036

1000 1,322 0.3529 887 1,497 0.3519 903 1214 0.3379

1000 2,394 0.3878 1084 1,910 0.3744 868 3534 0.4262

1000 3,685 0.4193 1150 3,617 0.4283 843 4863 0.4500

1000 5,459 0.4520 1039 5,655 0.4612 879 5872 0.4601

1000 7,910 0.4858 1013 7,235 0.4808 887 6882 0.4638

1400 162 0.3164 1404 304 0.3309 1092 1056 0.3413

1400 753 0.3416 1381 973 0.3523 1100 1858 0.3712

1400 1,699 0.3728 1422 1,760 0.3770 1114 3146 0.4100

1400 3,030 0.4059 1488 2,938 0.4089 1062 5299 0.4548

1400 4,600 0.4356 1572 4,416 0.4422 1001 7167 0.4755

1400 6,716 0.4663 1674 6,535 0.4796 931 8960 0.4843

1400 9,587 0.4979 1449 9,598 0.4990 3415 174 0.4010

2200 233 0.3510 2405 214 0.3689 1488 3502 0.4173

2200 1,069 0.3744 2271 1,084 0.3790 2791 0 0.3823

2200 2,368 0.4030 2184 2,404 0.4010 2911 363 0.3885

2200 4,141 0.4335 2210 4,210 0.4343 2896 1185 0.3962

2200 6,173 0.4605 2340 6,344 0.4717 2865 2258 0.4084

2200 8,847 0.4883 2391 9,481 0.5114 2823 4443 0.4399

2200 12,386 0.5168 2185 12,313 0.5134 3026 4718 0.4372

3000 298 0.3775 2985 572 0.3833 2329 3226 0.4156

3000 1,353 0.3997 2868 1,463 0.3914 2419 3918 0.4270

3000 2,962 0.4270 2764 3,046 0.4123 2615 4366 0.4334

3000 5,111 0.4549 2788 5,446 0.4485 2791 4643 0.4345

3000 7,326 0.4720 2950 8,176 0.4870 2971 4900 0.4328

3000 10,674 0.5146 2832 11,619 0.5121 3111 5173 0.4322

3000 14,074 0.5039 2810 15,005 0.5084 3359 5787 0.4307
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