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ABSTRACT In this study, we aim to investigate a unified modeling method for the monotonic
and cyclic behaviors of sand and clay. A simple double-yield-surface model, with plastic hardening
modulus and dilatancy relation being dependent on density state unlike in existing approaches,
is developed by considering the location of the critical state line. The model is used to simulate
the drained and undrained tests of various sands and clays under monotonic and cyclic loadings.
Prediction results are compared with experimental results, which show that the proposed approach
is capable of modeling the monotonic and cyclic behaviors of sand and clay.
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I. INTRODUCTION

Elastoplastic models based on the critical state concept proposed by Roscoe et al.[1] have been 
developed in the past decades to simulate the behavior of soil. Several sand models[2–4] have been built 
using the state parameter proposed by Been and Jefferies[5]. And several clay models[6, 7] and some 
viscoplastic models[8–14] also have been developed based on the original Cam-Clay model proposed 
by Schofield and Wroth[15] and the modified Cam-Clay model proposed by Roscoe and Burland[16]. 
These models can successfully capture some important features of sand or clay, but can not capture
the behavior of sand and clay in an unified manner.

Given that sand and clay follow critical state theory, several unified models for the monotonic

behavior of sand and clay have been developed, such as the clay and sand model (CASM)[17], the
MIT-S1 model[18], and the transformed stress tensor (TS)-based model[19]. The CASM and MIT-S1 
models used a special shape of the yield surface with the critical state stress ratio being larger than
the stress ratio for the peak deviatoric stress. Thus, the critical deviatoric stress is smaller than the
peak deviatoric stress. For normally isotropically consolidated clay, these two models can depict the
strain-softening response by simulating the undrained triaxial test in compression[17, 20]. Yu et al.[21] 

extended the CASM to a bounding surface version to describe the cyclic behavior of sand and clay.
However, the limitation of the model has not been overcome because the same yield surface is used.
The TS-based model uses different critical state lines for sand and clay to avoid this limitation. This
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model has successfully predicted monotonic tests under special stress paths, but can not capture the
cyclic tests.

In this study, we propose a unified modeling method that overcomes the aforementioned limitation
and can be used to describe the monotonic and cyclic behaviors of sand and clay. Unlike existing models,
the proposed model assumes that the properties of soil are dependent on the density states of sand and
clay, and uses two yield surfaces to describe shear sliding and normal compression components, thus
it provides an unified modeling method for sand and clay. We have incorporated a formulation similar
to that used in kinematic hardening rules (i.e. Masing’s rule) or the bounding surface concept, which
can analyze the reverse shear loading condition, to develop a general model applicable to various stress
paths, including cyclic loading.

In this study, a simple double-yield-surface model is developed by considering the density state and
the location of the critical state line. First, the model is validated by simulating tests under monotonic
loading. Then, the model is evaluated by comparing the predicted results with the experimental results
under the cyclic loading.

II. PROPOSED MODEL FOR SAND AND CLAY
Based on elasto-plastic theory, the total strain rate is additively composed of the elastic and plastic

strain rates: ε̇ij = ε̇eij + ε̇pij , where ε̇ij denotes the total strain rate tensor, and superscripts e and p
stand for the elastic and plastic components, respectively.

In the proposed model, the location of the critical state line and the state variable of density ec/e
(ec is the void ratio of the critical state) were utilized. A different dilatancy relation was proposed for
sand and clay within the same critical state framework.

2.1. Density State

One of the important elements that should be considered in soil modeling is the critical state concept.
At the critical state, claymaterial retains a constant volumewhile it is subjected to continuous distortion.
The void ratio corresponding to this state is ec. The critical void ratio ec is a function of the mean
stress p′. The relationship between them has been expressed, with the critical state line in the e-log p′

plane explicitly located by three parameters, as follows:

ec = ecr0 − λ ln

(

p′

pcr0

)

(1)

or

ec = ecr0 − λ

(

p′

pat

)ξ

(2)

where ecr0 and pcr0 determine the reference critical state in the e-log p′ plane, and λ determines the slope
of the critical state line. Alternatively, a reference value of ecr0, with two constants λ and ξ based on the
assembly of critical state points, is used to determine the critical state line. For convenience, the value
of pcr0 is assumed to equal to the reference pressure pref for the reference void ratio (see Fig.4(a)). Then,
the critical state line can be defined by two parameters, ecr0 and λ, when using Eq.(1). Alternatively,
a nonlinear function, i.e., Eq.(2), is used for sand based on the assembly of critical state points. Using
the critical state concept, the density state of soil is defined as ratio ec/e, where e is the void ratio of soil.

2.2. Elastic Behavior

The elastic behavior of sand and clay is assumed to be isotropic, which is similar to the sand model,
as follows:

ε̇eij =
1 + υ

E
σ̇′

ij −
υ

E
σ̇′

kkδij (3)

where υ andE are Poisson’s ratio andYoung’smodulus, respectively; σ′

ij is the effective stress tensor; and
δij is Kronecker’s delta. E can also be replaced by elastic bulk modulus K, as follows: E = 3K (1− 2υ).
The elastic bulk modulus is defined as follows:

K = K0

(

p′

pat

)n

(4)
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where K0 and n are the soil constants, p′ = (σ′

1 + σ′

2 + σ′

3)/3 = σ′

ii/3 is the mean effective stress, and
pat is the atmospheric pressure used as the reference pressure (pat = 101.325 kPa). For sand, the value
of n is approximately 0.5 to 0.6. For clay, K0 can be estimated from the slope of swelling line κ and
initial void ratio e0, as follows: K0 = pat (1 + e0)/κ, with n = 1.

Elastic shear stiffness G is related to elastic bulk modulus K through Poisson’s ratio υ:

G =
3 (1− 2υ)

2 (1 + υ)
K (5)

2.3. Plastic Behavior

The proposed approach uses two yield surfaces for the shear sliding and normal compression compo-
nents (see Fig.1). Thus, the frameworkof the proposed approach is similar to that of the double-hardening
or double-yield-surface models[22,23]. However, the density state and the location of the critical state
line are used in the constitutive equations for clay.

Fig. 1. Principle of the simple density state model for sand and clay.

Based on conventional elasto-plastic theory, the plastic strain can be obtained by using the equation:
ε̇pij = Λ · ∂g/∂σ′

ij , where Λ is the plastic multiplier that depends on the stress rate and the plastic
hardening law, and g is the plastic potential.

2.3.1. Shear sliding criterion

As observed from many sand models[2,3,22,24], the shape of the yield surface for the shear component
is linear in the p′-q plot. In this approach, we adopt the shear criterion of sand for clay can be written
as follows:

fS =

√

3

2
rijrij −H (6)

where rij = sij/p
′, sij = σ′

ij − p′δij with δij denoting the Kronecker delta, and H is the hardening
parameter defined by a hyperbolic function in the H-εpd plane, which is given as follows:

H = Mp
GpKεpd

Mpp′ +GpKεpd
(7)

where Gp is used to control the initial slope of the hyperbolic curve η-εpd (η = q/p′, with q representing

the deviatoric stress, and η =
√

3rijrij/2 in the general stress space). Equations (6) and (7) guarantee
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that the current stress ratio is equivalent to the peak critical state value Mp, which is associated with
the peak strength of the materials during plastic shear straining (e.g., in the case of triaxial shearing).
Thus, a nonlinear shear stress–strain relationship can be reproduced.

According to Biarez and Hicher[25], the maximum frictional angle φp (associated with Mp by the
expressionMp = 6 sinφp/(3− sinφp)), the intrinsic friction angle φµ (associated with the critical state
value by the expression M = 6 sinφµ/(3− sinφµ)), and the density state of soil (ec/e) satisfy the
following equation:

e tanφp = ec tanφµ = Constant (8)

Equation (8) can be adopted to describe the shear behavior of sand and clay, which indicates that
the maximum frictional angle φp is smaller than φµ in a loose structure. By contrast, a dense structure
provides a high degree of interlocking. Thus, the maximum frictional angle φp is greater than φµ. When
loading stress reaches the maximum frictional angle φp, the dense structure dilates and the degree
of interlocking decreases. Consequently, the maximum frictional angle is reduced, which results in a
strain-softening phenomenon. Notably, Eq.(8) has been successfully applied in micromechanics-based
models[26–37]. Mp can be obtained using Eq.(8). We interpolated M within the range from Mc (for
compression) to Me (for extension in the general stress space by means of the lode angle θ[38], which
is expressed as follows:

M = Mc

[

2c4

1 + c4 + (1− c4) sin(3θ)

]1/4

(9)

where c = Me/Mc, −π/6 ≤ θ = sin−1
[

−3
√
3J3/

(

2J
3/2
2

)]

/3 ≤ π/6. J2 and J3 are the second and

third invariants of a deviator stress tensor, which are given as J2 = sijsij/2 and J3 = sijsjkski/3,
respectively. In this study, we assume that the frictional angles for compression and extension are the
same, i.e., c = (3− sinφµ)/(3 + sinφµ).

Gp is assumed to be a function of the relative density Dr of sand and the overconsolidation ratio
OCR of clay as follows:

Gp =

{

Gp0 exp (h1Dr) −Sand

Gp0OCRh1 −Clay
(10)

where Gp0, h1, and h2 are the soil constants; Dr = (emin − e)/(emin− emax), with e as the current void
ratio, emin as the minimum void ratio, and emax as the maximum void ratio of sand; OCR = pc d/pc,
with pc d being the size of the surface that passes through the current stress state and pc being the size
of the yield surface that corresponds to the current stress state. The yield surface for clay is presented
in a later section.

We propose a dilatancy equation using the density state to consider dilation or contraction during
shear sliding. The dilatancy equation for sand and clay is given as follows:

dεpv
dεpd

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Da (Mpt − η) exp

[

h2

(

e

ec
− 1

)]

−Sand

Da |M − η|
( η

M

)Db
(

e

ec
− 1

)

−Clay
(11)

where Da and Db are the soil constants, and Mpt is the slope of the phase transformation line for sand,
which can be derived from frictional angle φµ by using the equation: e tanφpt = ec tanφµ.

The proposed equation allows more flexibility to model different types of clay behavior. Constants
Da and Db control the magnitude and evolution of dilatancy, respectively. The term (ec/e− 1) is used
to regulate dilation or contraction for the normally or slightly consolidated state (e > ec) contraction
and the heavily overconsolidated state (e < ec) dilation. When stress state reaches the critical state
line, void ratio e is equal to critical void ratio ec, which induces Mpt = η. With η reaching critical
state M , zero dilation or contraction holds. Thus, the equation guarantees that stresses and void ratios
simultaneously reach the critical state line in the p′-q-e plane.

2.3.2. Normal compression criterion

A second yield surface is added to describe the compression behavior of clay. The second yield
function is assumed as follows:

fN = p′2 +
3

2

sijsij
R2

− p2c (12)
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where constantR controls the shape of the yield surface and pc is the hardening parameter that controls
the size of the yield surface. The yield surface expands with the plastic volumetric strain. The hardening
rule of the modified Cam-Clay model is adopted, i.e.,

dpc = pc
1 + e0
λ− κ

dεpv (13)

Given that initial elastic modulus K0 is used as input, κ is obtained using the equation: κ =
pat (1 + e0)/K0. The associated flow rule is adopted for normal compression.

Parameter Rcan be derived as follows:
For the 1D strain case:

dεd
dεv

=
2

3
(14)

Assuming that elastic strains are smaller than plastic strains, Eq.(14) can be approximated using
the following equation:

dεpd
dεpv

=
2

3
(15)

Combining Eq.(15)with the flow rule derived fromEq.(12) (i.e., dεpd = Λ · ∂fN/∂q, dεpv = Λ·∂fN/∂p),
we can express the consolidation R for the 1D case as follows:

R =

√

3

2
ηK0 (16)

where ηK0 = 3M/(6−M) for normally consolidated clay by adopting Jacky’s formula.

2.4. Stress Reversal Technique

The direction of shear sliding is reversed upon shear reversal. We denote the stress state at the
moment of shear reversal as the residual stress, which significantly influences subsequent shear behavior.
Consequently, the hardening rule and the dilation can be derived using the following equations:

H = M∗

p

GpKεp∗d
M∗

pp
′ +GpKεp∗d

(17)

dεpv
dεpd

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Da

(

M∗

pt − η∗
)

exp

[

h2

(

e

ec
− 1

)]

−Sand

Da |M∗ − η∗|
(

η∗

M∗

)Db
(

e

ec
− 1

)

−Clay

(18)

Note that these two equations have the same form as the previous equations. The only difference
is the superscript (*) marked on the plastic shear strain εp∗d , the mobilized stress ratio η∗, the critical
state stress ratio M∗, the peak stress ratio M∗

p , and the phase transformation stress ratio M∗

pt, which
are defined in the following equations to show the effect of the reverse state (see Fig.2):

εp∗d =

√

2

3

(

epij − epRij

)(

epij − epRij

)

(19)

η∗ = ηR − η (20)

M∗ = ηR −M, M∗

p = ηR −Mp, M∗

pt = ηR −Mpt (21)

where eij = εij − εvδij/3, ηR is the mobilized stress ratio at the moment of stress reversal, and epRij is
the plastic deviatoric strain tensor at the moment of stress reversal. ηR and η are positive when the
stresses applied to the sample are in a compression state and negative when the stresses applied to the
sample are in an extension state (in Fig.2(b), η represents distance). The value of M is positive when
the applied incremental stresses are in a compression state, and vice versa.

Equation (18) indicates that the dilation amount is different upon shear reversal. This concept is
similar to that proposed by Balendran and Nemat-Nasser[39] and Wan and Guo[40]. Equation (17)
indicates that the same form of hardening rule can be used for loading and unloading conditions, but
may require some scaling processes on the values ofMp. This concept is similar to that used in Masing’s
rule and in bounding surface plasticity[41].
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Fig. 2. Principle of stress reversal in loading and unloading.

2.5. Model Parameters

Based on all the aforementioned constitutive equations, the proposed model involves 13 parameters,
which can be divided into 4 groups for the sand, and 11 parameters with 1 additional group for the clay,
as listed in Table 1. Given that the physical interpretation of all parameters is clear, as presented in
the previous sections, model parameters can be easily determined. An example is given in the following
section.

Table 1. Index properties of clay samples and locations of critical state for undrained test

Group Parameter D
efinition Nevada Toyoura Kaolin Kaolin Black LCT Clay

sand sand clay1 clay2 clay mixture

K0 Bulk modulus 20000 20000 6080 9200 3000 19250 6170

n
Nonlinear

0.6 0.5 – – – – –
Elasticity elastic constant

υ Poisson’s ratio 0.2 0.2 0.2 0.2 0.2 0.2 0.2
e0 Initial void ratio – – 2.05 2.17 1.34 0.52 1.07

Critical

Slope of the

state

Mc critical state line 1.3 1.27 0.9 0.89 0.83 1.2 0.75
in compression

Reference critical
ecr0 void ratio for 0.79 0.934 2.21 2.04 1.33 0.587 0.975

compression
Reference critical state

pcr0/ξ stress/nonlinear 0.7 0.7 10 100 100 10 100
constant for sand

Slope of the critical
λ state line in the 0.015 0.019 0.26 0.18 0.244 0.066 0.173

e-log p′ plane

Plastic

Gp0
Initial slope of

15 2 2.3 0.35 10 1.3 0.5

hardening

the curve η-ε
p
d

emin
Minimum void

0.5 0.60 – – – – –
ratio for sand

emax
Maximum void

0.9 0.98 – – – – –
ratio for sand

h1
Plastic hardening

1 3 0.5 4 0.5 0.5 1
parameter

Dilatancy

Constant to control
Da the magnitude 5 1 10 30 40 7 1.7

of dilatancy
Constant to control

Db the evolution of – – 0.5 0.5 2 0.3 0.1
dilatancy for clay

h2
Dilatancy parameter

13 3 – – – – –
for sand

Initial size of
Compression pc0 yield surface – – 50 100 165 75 100

for clay

Remark: Kaolin clay1 (Wroth and Loudon, 1967); kaolin clay2 (Al-Tabbaa, 1987).

III. EXPERIMENTAL VERIFICATION
Experimental verification is presented in this section, with reference to drained and undrained tests

on the sand and clay under monotonic and cyclic loadings. The test results for Nevada and Toyoura sand
were compared with the simulation results to validate the proposed method for the sand. In parallel,
the test results for kaolin clay, black clay, Lower Cromer Till (LCT), and clay mixture were compared
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Fig. 3. The calibration of model parameters.

with the simulation results to validate the proposed model for the clay.

3.1. Calibration of Model Parameters

Two undrained compression tests with different OCRs and an isotropic consolidation test are required
to calibrate model parameters. The tests on clay mixture conducted by Li and Meissner[42] were selected
as an example for the calibration procedure, as shown in Fig.3. The details of the test and the clay
used will be presented later in this section. Figure 3(a) is plotted using the experimental data provided
by Li and Meissner[42]. Parameters e0, ecr0 c, pc0, ρ, κ, and λ (see Table 1) can be obtained from the
isotropic consolidation curve (see Fig.3(a)). The slope of critical state line M was measured from the
undrained triaxial test (see Fig.3(c)). Other parameters can be obtained by the curve fitting (as shown
in Figs.3(a) to (c)), as follows:

(1) Shear hardening parameterGp0 was determined from the q-ε1 curve of the undrained compression
test at the small strain level by the curve fitting, as shown in Fig.3(b).

(2) Dilation constants Da and Db were determined from the undrained compression test by the
curve fitting (see Fig.3(c), which is similar to that for sand). Notably, the undrained stress path varies
with different values of Da and Db, which implies that the proposed dilatancy flow rule can describe
different shapes of the yield surface.

(3) Plastic hardening parameter h1 was determined from the slope of the q-ε1 curve of the undrained
test, with OCR = 4 (Fig.4(a)).

(4) The initial value of the size of yield surface pc0 (see Eq.(12)) was determined based on stress
history.

The determined values of the model parameters were used to simulate undrained triaxial tests with
different OCRs. As shown in Fig.4, good agreement was achieved between the model predictions and
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Fig. 4. Comparison between the experimental and numerical results for undrained triaxial compression tests on claymixture
with OCR from 1 to 4.

the experimental results. Therefore, the model determination procedure was validated. The simulation
results for the undrained tests on the same clay under cyclic loading will be presented later.

For sand, K0 and n can be determined through the isotropic compression test or the odometer
test. Alternatively, K0 and n can be calibrated from the initial slope of the q-ε1 curve under different
confining stress levels. Other parameters can be determined in the same manner as that for clay. All
determined parameters for sand and clay are summarized in Table 1.

3.2. Monotonic Modeling for Sand

3.2.1. Nevada sand

Laboratory tests conducted on Nevada sand[43] were used to validate the model. Nevada sand
(D50 = 0.15 mm) has a maximum dry density of 17.33 kN/m3 (emin = 0.5), a minimum dry density of
3.87 kN/m3 (emax = 0.9), and a specific gravity of 2.67. Monotonic triaxial tests with different densities
and confining pressures under drained and undrained loading conditions are available. Drained tests
were conducted under constant confining pressures. The tests were mainly performed on samples with
relative densities (Dr) of 40% and 60% under confining pressures of 40, 80, and 160 kPa. The void ratios
that correspond to Dr = 40% and 60% are 0.74 and 0.66, respectively.

The critical state line was measured from the critical states in the e-log p′ plane (Fig.5(a)). Other
parametersweremeasured and determined from the drained tests based on the aforementionedprocedure
and summarized in Table 1. Notably, dilatancy constantDa was determined from the e-ε1 curve instead
of from the undrained stress path.

Figure 6 shows the stress–strain and volumetric responses of drained compression tests for Nevada
sand with Dr = 40% (Figs.6(a) and (b)) and 60% (Figs.6(c) and (d)). Good agreement with the
experimental results is achieved at both densities and for different confining pressures. The simulation
and experimental results show that dense sand has a stiffer hardening response, higher peak value, and
larger dilation compared with loose sand. Dense sands also exhibit a more pronounced softening that
follows the peak deviatoric stress.

The same values of the model parameters were used to simulate an undrained compression test
conducted on samples of the same Nevada sand with a void ratio of 0.66. The model predictions and
the conventional undrained compression test results are shown in Fig.7. In general, the test results and
model simulation results are in good agreement.

3.2.2. Toyoura sand

Toyoura sand is uniform fine quartzitic sand that consists of sub-rounded to sub-angular particles,
which is the standard cohesionless soil[44–47]. Toyoura sand has amaximumvoid ratio of 0.977, aminimum
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Fig. 5. Critical state line for (a) Nevada sand, (b) Toyoura sand, and (c) compression and critical state line for LCT.

void ratio of 0.597, and a specific gravity of 2.65. Verdugo and Ishihara[44] conducted a complete set of
monotonic drained and undrained triaxial tests on isotropically consolidated samples of Toyoura sand
with a mean diameter D50 = 0.17 mm and a uniformity coefficient Cu = 1.7. These tests have been
conducted under an extensive range of void ratios and confining pressures: (1) drained triaxial tests
with void ratios ranging from 0.810 to 0.996 under constant lateral stress of 100 kPa and 500 kPa,
and (2) undrained triaxial tests with void ratios ranging from 0.735 to 0.907 under different confining
pressures from 0.1 MPa to 3 MPa.

The critical state line was measured from the critical states in the e-log p′ plane (Fig.5(b)). Other
parameters were measured and determined from the undrained tests based on the aforementioned
procedure and summarized in Table 1.

Figure 8 shows the comparison between experimental data and the simulation results of isotropically
consolidated samples under undrained triaxial compression. Figure 9 shows the comparison between
the data and the simulation results of isotropically consolidated samples of the same Toyoura sand
under the drained triaxial compression. The tests cover an extensive range of confining pressures and
void ratios, where very loose, loose, and medium sand are considered. The comparison between the test
results and model predictions shows good agreement.

3.3. Monotonic Modeling for Clay

3.3.1. Pure clay

Undrained triaxial tests on saturated kaolin conducted byWroth and Loudon[48] and drained triaxial
tests on black clay conducted by Biarez and Hicher[25] were used to evaluate model applicability in the
pure clay. The selected tests were performed on kaolin specimens with isotropic consolidation under
different OCRs from 1 to 6.5 for undrained tests and from 1 to 8 for drained tests. Model parameters
were determined from undrained tests for kaolin clay and from drained tests for black clay. The values
are summarized in Table 1.

Figure 10 shows the comparison between the measured and predicted results for undrained tests. It
can be seen from Fig.10 that the predicted undrained stress paths can describe the behavior of clay and
the proposed model provides excellent predictions for tests on all lightly and heavily overconsolidated
samples. In addition, Fig.11(d) shows the predicted undrained paths, including the consolidation stages,
in the e-log p′ plane for samples with variousOCRs, which is a typical undrained path for clay, as observed
in the experiments. The simulated undrained paths are derived using the constitutive equations.
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Fig. 6. Comparison between the experimental and numerical results for p′-constant drained triaxial compression tests of
Nevada sand.

Figure 11 shows the comparison between the measured and predicted results for drained tests. The
model describes the general drained behavior of clay, but provides poor predictions on all lightly and
heavily overconsolidated samples. In addition, Fig.11(c) shows the predicted and experimental drained
paths, including the consolidation stages, in the e-log p′ plane for samples with various OCRs. The
simulated drained paths are derived using the constitutive equations.

3.3.2. LCT

Undrained triaxial tests in compression and extension with different OCRs on anisotropically con-
solidated samples of LCT were conducted by Gens[49]. LCT, which is classified as a low plasticity silty
clay, has a liquid limit wL = 25% and a plasticity index Ip = 13%. The tests on LCT were all conducted
on specimens consolidated from a slurry with an initial water content w = 31%. Model parameters were
determined from the undrained tests with an isotropic consolidation test (Fig.5(c)) and summarized in
Table 1.

Simulations were also conducted to evaluate the performance of the model in predicting the com-
pression and extension tests on anisotropically consolidated samples (Fig.12). First, the samples were
anisotropically consolidated under K0 = 0.5 up to σ′

a = 350 kPa. Then, the samples were unloaded
along a different stress path with four different OCRs (OCR = 1, 2, 4, 7) before undrained shearing was
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Fig. 7. Comparison between the experimental and numerical results for undrained triaxial compression tests of Nevada
sand.

performed in compression and extension. Figure 12 gives the comparison between the experimental data
and themodel predictions, which indicates good agreement in themajor features of the undrained behav-
ior of anisotropic samples. However, the predicted shear strengths of the compression tests (OCR = 4,
7) are lower than those from the experimental results (see Fig.12(b)).

Figure 13 shows the comparison between the experimental data and the model predictions for
drained anisotropic specimens with different OCRs. Similar to the undrained tests, the samples were
first anisotropically consolidated with K0 = 0.5, and then unloaded to different values of OCR (1, 1.5,
2, 4, and 7) through a different stress path. Subsequently, the axial load of the samples increased until
the vertical strain reached 15%. The trends of shear strength and volume change of the samples with
different OCR values were also reproduced by the proposed model using the same set of parameters
for undrained tests.
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Fig. 8. Comparison between the experimental and numerical results for undrained triaxial compression tests of Toyoura
sand.
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Fig. 9. Comparison between the experimental and numerical results for drained triaxial compression tests of Toyoura sand.

3.4. Cyclic Modeling for Sand

3.4.1. Nevada sand

Cyclic triaxial tests were conducted under undrained loading conditionswith different initial confining
pressures and densities for the VELACS project[43]. The simulations were conducted using the values
of model parameters determined from monotonic tests. In these two undrained cyclic loading cases,
the changes in the magnitudes of deviatoric stress are similar, i.e., approximately 30 kPa. As expected,
the sample with 40% relative density reached liquefaction in a fewer number of cycles than the sample
with 60% relative density for the experimental and simulation results (Fig.14). The proposed model
detected the dependence of liquefaction potential on the relative density of sand.

3.4.2. Toyoura sand

Uchida and Stedman[50] conducted cyclic triaxial undrained loading tests to investigate the undrained
cyclic behavior of Toyoura sand. In each test, a certain magnitude of cyclic axial strain was applied in
each cycle until liquefaction was achieved. The test and prediction results for two samples with 30% and
50% relative densities under initial confining pressures of 400 kPa and 200 kPa subjected to 1% axial
strain difference are shown in Figs.15(a) and (b), respectively. The model parameters were calibrated
from monotonic tests for the predictions of cyclic tests. In general, the model describes the trend as
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Fig. 10. Comparison between the experimental and numerical results for undrained triaxial tests of pure kaolin clay with
OCR from 1 to 6.5.

measured by the test. The fact that looser Toyoura sand under higher confining pressure has a greater
liquefaction potential was determined by the model.

Pradhan[51] conducted drained triaxial test under cyclic loading. However, the Toyoura sand used
by Pradhan[51] came from a batch different from that used by Verdugo and Ishihara[44]. Thus, the index
properties were slightly different. The same values of parameters determined from the tests of Verdugo
and Ishihara[44] were used to simulate the drained cyclic test, except Mc = 1.44 from the drained test.
Despite the difference in the evolution of void ratio between experiments and simulations (Fig.16(c)),
which may be attributed to the slight difference in properties among sand from different batches, the
proposed model provides a similar trend for the drained cyclic behavior of sand.

3.5. Cyclic Modeling for Clay

3.5.1. Pure clay

Drained triaxial test on speswhite kaolin under cyclic loading conditions was conducted by Al-
Tabbaa[52]. Soil was isotropically consolidated to p′0 = 300 kPa, and then loaded cyclically between a
stress ratio of 0 and 0.34 at a constant cell pressure. Stress ratio q/p′ was plotted against deviatoric
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Fig. 11. Comparison between the experimental and numerical results for drained triaxial compression tests of pure black
clay with OCR from 1 to 8.

(εd) and volumetric (εv) strains. Using the elastic and critical state parameters proposed by Stallebrass
and Taylor[53] and other parameters determined from the cyclic test, we can conduct a simulation of
the drained cyclic test. Figure 17 shows that the same trends of shear and volumetric strains as those
from the experimental results were obtained by the proposed model.

3.5.2. Clay mixture

Undrained tests under monotonic and cyclic loadings were conducted by Li and Meissner[42]. Com-
mercially available clay used for landfill lining, ground engineering, and hydraulic structures was adopted
in the investigation. The clay mixture has a liquid limit wL = 70%, a plasticity index Ip = 45%, and
a specific gravity of 2.63. The main minerals are kaolinite (60%), illite (5%), and quartz (35%). The
samples were consolidated from slurry, which lasted for at least 2 months. The initial void ratio e0 of
the samples varied from 1.0 to 1.15. Conventional triaxial tests were conducted on soil samples that
were isotropically reconsolidated with OCR = 1.0, 1.6, and 4.0 for monotonic loading and OCR = 1.0
and 5.1 for cyclic loading. Cyclic loading programs that involved one-way and two-way cyclic tests were
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Fig. 12. Comparison between the experimental and numerical results for undrained triaxial compression and extension
tests of anisotropically consolidated LCT samples with OCR from 1 to 7.

conducted until steady state or failure was achieved. All cyclic tests were stress controlled using the
sinusoidal waveform and a wave frequency of 0.1 Hz. The cyclic stress ratio, which was defined as the
ratio of the applied cyclic shear stress to the monotonic shearing strength in compression, ranged from
0.50 to 0.80.

The parameters determined frommonotonic tests were used to simulate undrained cyclic tests. Given
that the initial slopes of the q-εd curve for monotonic, one-way, and two-way cyclic tests are different
from one another, different values ofGp0 were selected for each case (Gp0 = 3 for one-way test,Gp0 = 70
for two-way test with OCR = 1, and Gp0 = 10 for two-way test with OCR = 5.1), as conducted by
Li and Meissner[42] and Yu et al.[21]. The simulation results for the one-way and two-way cyclic tests
are shown in Fig.18 and compared with the experimental results shown in Fig.19. In these figures, the
excess pore pressure (△u) and deviatoric stress (εd = εq) are plotted against the number of cycles and
deviatoric strain (q) for samples with OCR = 1 and 5.1, respectively. In general, the proposed model
predicts satisfactorily the undrained behavior of clay subjected to one-way and two-way cyclic loading
conditions.

IV. CONCLUSION
In this study, we propose a simple and unified modeling method for the monotonic and cyclic

behaviors of sand and clay. The proposed model follows the framework of critical state theory and
utilizes a Coulomb-type yield surface for shear sliding and another cap-type yield surface for normal
compression. The density state is incorporated into the proposed model, which can explicitly consider
the locations of the critical state. Plastic hardening modulus and dilatancy relation are dependent on
density state, which is different from existing approaches. The shear reversal technique is used to ensure
that the model is applicable to various stress paths, including cyclic loading.

The model is used to simulate drained and undrained triaxial tests conducted on various sand and
clay types under monotonic and cyclic loading conditions. The prediction results are compared with the
experimental results. All simulation results show that the proposed approach is capable of describing
the monotonic and cyclic behaviors of sand and clay.
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