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Transient analysis including the low- and the medium-frequency
ranges of engineering structures

Mathilde Chevreuil *, Pierre Ladevèze, Philippe Rouch

LMT Cachan (ENS Cachan, CNRS, Paris 6 University), 61 avenue du Pre´sident Wilson, 94235 Cachan Cedex, France

Abstract

This paper deals with a computational method for transient dynamic analysis which enables one to cover both the low- and medium-
frequency ranges. This is a frequency approach in which the low-frequency part is obtained through a classical technique while the med-
ium-frequency part is handled through the Variational Theory of Complex Rays (VTCR) initially introduced for vibrations. The aim of
this paper is to show the capabilities of the method for transient analyses of complex engineering structures submitted to impact loadings.
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1. Introduction

The design of industrial structures requires engineers to
know their dynamic behavior. The response, especially dur-
ing the transient stage, cannot be completely described
using current tools based on finite element techniques
and explicit numerical schemes; indeed, the medium-fre-
quency range is often ignored unless the calculation is car-
ried out with a very refined spatial mesh and, consequently,
a refined time discretization [1,2]. This would mean a pro-
hibitive computation time. But taking the medium-fre-
quency content into account can prove necessary since,
although the displacements are small over this frequency
range, the velocity and therefore the kinetic energy can
be significant. Transient dynamic analysis in this frequency
range for complex engineering structures presents an
important challenge. An answer is given by the new com-
putational strategy introduced in [3] and developed here.
The problem being solved in the frequency domain, one
needs to solve a forced vibration problem over a frequency
range which includes the low- and medium-frequency

ranges. The low-frequency range is solved as usual while
the medium-frequency range is handled using the Varia-
tional Theory of Complex Rays (VTCR). The final solution
in the space–time domain is given using the inverse Fourier
transform.

The main problem resides in the resolution of the forced
vibration problem over a wide-frequency range. The low-
frequency range no longer poses any major difficulties, at
least regarding modeling and calculation, even for complex
structures. As for high frequencies, computational tools
quite different from those used for low frequencies are
available, in particular the SEA method in which the spa-
tial aspects disappear almost entirely [4].

By contrast, the modeling and calculation of medium-
frequency vibrations, on which this paper focuses, continue
to raise some problems. The difficulty lies in the fact that
the wavelength of the phenomenon being studied is very
small compared to the characteristic dimension of the
structure. Consequently, if one were to extend the low-fre-
quency methods disregarding the serious numerical difficul-
ties which would occur, the corresponding finite element
calculation would still require an unreasonable number of
degrees of freedom. This situation would be made even
worse by the pollution error due to the extended range of
calculated frequencies which would affect the accuracy of
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the finite element solution [5,6]. Different remedies for that
problem have been tried, such as enhanced finite elements
[7–9], specific reduced bases [10–12] or a combination of
a wave-based method with a Trefftz approach [13], but
most of these techniques require very fine meshes. Difficul-
ties are also experienced when one attempts, as in [14–17],
to extend the SEA method (which is appropriate for high
frequencies) because most of these methods require addi-
tional information (e.g. coupling loss factors) and specific
geometries.

The alternative approach we use here, called the ‘‘Vari-
ational Theory of Complex Rays’’, was introduced in [18]
for the calculation of medium-frequency vibrations. This
approach, whose main limitation is that the structure must
lend itself to partitioning into homogeneous substructures,
is defined as follows.

The first characteristic of this approach is the use of a
new variational formulation of the problem being consid-
ered (i.e. forced vibrations at a given frequency) which
enables one to use a priori independent approximations
within each substructure. In other words, the transmission
conditions on the displacements as well as the stresses at
the interfaces between substructures do not need to be ver-
ified a priori, but are built in the variational formulation.

The second characteristic of the VTCR is the introduc-
tion within each substructure of two-scale approximations
with a strong mechanical meaning: the solution is assumed
to be well-described as the superposition of an infinite
number of local vibration modes. These basic modes
(which can be interior modes, boundary modes or corner
modes) verify the law of dynamics. All wave directions
are taken into account and the unknowns are discretized
amplitudes with relatively large wavelengths.

Thus, the proposed approach to the calculation of the
transient dynamic response consists in dividing the fre-
quency range being studied into two parts: the low-fre-
quency range, over which the frequency response
function is obtained with a standard finite element tech-
nique, and the medium-frequency range, in which the suit-
able method to calculate the frequency response function is
the VTCR [18]. This paper recalls only the basic aspects of
the Variational Theory of Complex Rays.

The proposed approach, which is an extension of the
VTCR (initially introduced for medium-frequency forced
vibration problems) to transient dynamics, has been applied
on beams in [3,19] and shows the importance of the medium
frequencies. The aim of this paper is to develop this method
to complex engineering structures as assemblies of plates,
shells and beams submitted to an impact. To study such
structures, a first difficulty is to be able to compute at low
cost with the VTCR over a rather large frequency range;
what has been proposed in [20] is applied here. Another
important point concerns the calculation of the time
response through the inverse Fourier transformwhich could
be quite costly with the usual direct technique. Here, we pro-
pose an enhanced technique where the time response is
described as the superposition of two components that stem

respectively from the low- and the mid-frequency contribu-
tions. Each component is determined separately. The time
response related to the low-frequency part does not involve
any difficulty; it is done using the classical technique. For the
time response of the medium-frequency part, we have devel-
oped a technique taking advantage of the quick fading-out
of medium-frequency vibrations in scattering media. That
reduces strongly the computational cost.

The main part of the paper deals with an application of
the method to a rather complex structure and then to show
the capability of the method to carry out computations on
complex engineering structures (assemblies of plates, shells
and beams, etc.) submitted to impact loads.It also displays
the importance of the medium-frequency part transient
analyses.

2. The dynamic reference problem

Let us consider, under the assumptions of small pertur-
bations, the dynamic equilibrium of a structure defined in
the space domain X, and let oX be the boundary of X.
At each time t of the interval [0,T] being studied, this struc-
ture is subjected to the following actions:

• a displacement field Ud on a portion o1X of boundary
oX,

• a force density Fd on the portion o2X of oX which is the
complementary part of o1X,

• a force density fd on the whole domain X.

For every M belonging to X, the displacements are sub-
jected to initial conditions at t = 0:

U jt¼0 ¼ U 0 ð1Þ
dU

dt jt¼0
¼ _U 0 ð2Þ

where U0 and _U 0 are given.
Let us also define for the structure X the constitutive

relation:

r ¼ KeðUÞ þ gK_eðUÞ

where K is the Hooke’s operator. In the present work,
damping is introduced classically in terms of the frequency
with g > 0. More complex constitutive relations could also
be taken into account.

The reference frame is assumed to be Galilean. The ref-
erence problem of the evolution of the structure during
[0,T] can be formulated as follows: Find UðM ; tÞ 2 U

½0;T �

and rðM ; tÞ 2 S
½0;T �, with M 2 X and t 2 [0,T], which

verify:

• the compatibility equations and the initial conditions:

U o1X ¼ U d

U jt¼0 ¼ U 0;
dU

dt jt¼0
¼ _U 0

ð3Þ
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• the dynamic equilibrium equation:

8t 2�0;T ½; 8 _U � 2U0;

Z

X

q
d2
U

dt2
� _U �dX

¼ �
Z

X

Tr½reð _U �Þ�dXþ
Z

X

f d � _U �dXþ
Z

o2X

F d � _U �dS

ð4Þ
• the constitutive relation:

r ¼ KeðUÞ þ gK_eðUÞ ð5Þ
U0 is the subspace of U

½0;T � associated with a zero value
of Ud on boundary o1X.

3. Frequency analysis of the reference problem

3.1. Frequency formulation of the problem

Let us rewrite the transient dynamic problem as a global
variational problem over the frequency-space domain.
Thus, the Fourier transform is applied to all time-depen-
dent quantities, yielding frequency-dependent functions:

f̂ ðxÞ ¼
Z þ1

�1
f ðtÞe�ixt dt ð6Þ

Thus, the reference problem can be reformulated as fol-
lows: Find ðÛðM ;xÞ; r̂ðM ;xÞÞ, with M 2 X and x 2 R,
which verify:

• the compatibility equations:

Û
o1X

¼ Û d

_̂U ¼ ixÛ
ð7Þ

• the dynamic equilibrium equation:

8x 2 R; 8Û � 2 U0;

Z

X

�qx2Û � Û � dX

¼ �
Z

X

Tr½r̂eðÛ �Þ�dXþ
Z

X

f̂ d � Û � dX

þ
Z

o2X

F̂ d � Û � dS ð8Þ

• the constitutive relation:

r̂ ¼ ð1þ igÞKeðÛÞ ð9Þ

Putting the accent on the displacement, the reference
problem can be rewritten as: Find ÛðM ;xÞ, with M 2 X

and x 2 R, such that:

Û
o1X

¼ Û d

8x 2 R; 8Û � 2 U0
Z

X

f�qx2Û � Û � þ ð1þ igÞTr½KeðÛÞeðÛ �Þ�gdX

¼
Z

X

f̂ d � Û � dXþ
Z

o2X

F̂ d � Û � dS

ð10Þ

For a given x, the previous problem is a forced vibration
problem whose solution can easily be shown to be unique.
Using the frequency approach, one needs to solve the
forced vibration problem over a wide-frequency range
½0;x0

c� which contains the low- and medium-frequency
ranges; finally, one must calculate the frequency response
function ĥðxÞ of the system for x 2 ½0;x0

c�.

3.2. Principle of the new computational approach

The present approach considers a partition of the fre-
quency range ½0;x0

c� being studied into two parts:

• a low-frequency part [0,xc],
• a medium-frequency part ½xc;x

0
c�.

Outside of this frequency range, the kinetic and strain
energies in the structure are assumed to be negligible as it
will be shown in Section 5.3.2.

For the low-frequency range [0,xc], the frequency
response function is obtained using a finite element tech-
nique: it is advantageous to use a reduced basis constructed
from the first vibration modes and completed with the sta-
tic modes. With this very standard approach (see e.g.
[1,21]), the displacement can be written as

ÛðM ;xÞ ¼
X

n

i¼1

aiðxÞuiðMÞ þ
X

m

j¼1

bjðxÞu0
jðMÞ ð11Þ

where ui(M) are the eigenmodes of the structure and u0
jðMÞ

are the static modes. The basis contains at least all the
eigenvectors ui(M) such that xi 6 2:xc. The ui(M), i 2
{1,2, . . . ,n} and u0

jðMÞ; j 2 f1; 2; . . . ;mg are constructed
in such a way that they are orthogonal with respect to
the kinetic energy.

The Variational Theory of Complex Rays (VTCR),
which will be presented in Section 4, is a suitable computa-
tional method for the medium-frequency range ½xc;x

0
c�.

For x�
6 0, the frequency response is the conjugate of

the response with respect to the excitation’s frequency
x+ = �x�.

3.3. Back to the time response

After the frequency response functions of the points of
interest in the structure have been calculated over ½0;x0

c�,
the time response is restored using the inverse Fourier
transform:

f ðtÞtP0 ¼
1

2p

Z þ1

�1
f̂ ðxÞeixt dx ð12Þ

4. Outline of the VTCR for the resolution of the forced

vibration problem for the medium-frequency part

Only the basic aspects are given here. More details can
be found in [22–24].
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4.1. The reference problem

In order to simplify the presentation, we present the
problem for an assembly of two substructures, but this for-
mulation can be easily generalized to an assembly of n sub-
structures. Given two substructures S and S 0, let oS and
oS 0 be the boundaries of S and S 0 respectively. We are
studying the harmonic vibration of these two structures
at a fixed frequency x. All quantities can be defined in
the complex domain: an amplitude Q(M) is associated with
Q(M)eixt.

The excitations applied to S and shown in Fig. 1 are

• a displacement field Ud on a portion oUS of the bound-
ary oS,

• a force density Fd on a portion oFS of oS,
• a force density fd on the whole domain S,

where Ud, Fd, fd are the amplitudes of the quantities defined
in the complex domain.

Similar quantities are defined for S 0.
Let us define for structure S the displacement–stress

pair s = (U,r) and the corresponding space Sad such
that:

U 2U ðfinite-energy displacement set ½H 1ðSÞ�3Þ

r2S ðfinite-energy stress set ½L2ðSÞ�3Þ
c¼ divrþ f d on S

r¼ ð1þ igÞKeðUÞ on S

c¼�x2qU on S

ð13Þ

where K is the Hooke’s operator, q the mass density, g the
damping coefficient (which can depend on the frequency)
and c is the acceleration. The subspace of Sad associated
with a zero value of fd is denoted Sad;0. Similarly, we intro-
duce spaces S0

ad and S
0
ad;0.

The reference problem can be formulated as follows:
Find (U(M),r(M),M 2 S) and (U 0(M),r 0(M),M 2 S 0) such
that

s ¼ ðU ;rÞ 2 Sad ; s0 ¼ ðU 0
; r

0Þ 2 S
0
ad

U ¼ U d on oUS; U 0 ¼ U 0
d on oUS

0

rn ¼ F d on oF S; r
0n0 ¼ F 0

d on oF S
0

U ¼ U 0 on C

rnþ r
0n0 ¼ 0 on C

ð14Þ

4.2. The variational formulation associated with the VTCR

The VTCR is a global formulation of the boundary con-
ditions (14) in terms of both displacements and forces. All
boundary conditions on the edges of the substructures can
be taken into account thanks to the following variational
formulation. It is based on a priori independent approxi-
mations within the substructures: Find s ¼ ðU ;rÞ 2 Sad

and s0 ¼ ðU 0; r0Þ 2 S
0
ad such that

Re �ix

Z

oU S

drnðU ��U �
dÞdlþ

Z

oF S

ðrn�F dÞdU �dl

��

þ
Z

oU S
0
dr

0n0ðU 0��U 0�
d Þdlþ

Z

oF S
0
ðr0n0�F 0

dÞdU 0�dl

þ1

2

Z

C

ðdrn�dr
0n0ÞðU ��U 0�Þþðrn�r

0n0ÞðdU ��dU 0�Þdl
��

¼ 0 8ðdU ;drÞ 2Sad;0 8ðdU 0
;dr

0Þ 2S
0
ad;0 ð15Þ

where Re[A] designates the real part of a quantity A and A*

the conjugate of A. It is easy to prove that the variational
form is equivalent to the reference problem, provided that:

• the reference problem has a solution,
• the Hooke’s operator K is positive definite,
• the damping coefficients are such that g, g 0 > 0.

4.3. Approximate formulations

4.3.1. Principle

All that is needed in order to derive an approximate for-
mulation from the VTCR is the definition of subspaces Sh

ad

and S
h
ad;0 (resp. S0h

ad and S
0h
ad;0) from Sad and Sad;0 (resp.

S
0
ad andS

0
ad;0) for each substructure. The approximate for-

mulation can be expressed as: Find sh ¼ ðU h; rhÞ 2 S
h
ad and

s0h ¼ ðU 0h; r0hÞ 2 S
0h
ad such that

dðEDðU hÞ þ E0
DðU 0hÞÞ þ sh

s0h

� �

; d
sh

s0h

� �� �

¼ LD; d
sh

s0h

� �� 	

8dsh 2 S
h
ad;0 8ds0h 2 S

0h
ad;0

ð16Þ
where ED is the dissipated power, LD a linear form and h.,.i
a bilinear form, defined on the boundary between the sub-
structures, such that hu,vi = �hv,ui*.

The VTCR uses two scales of approximation (Uh,rh),
each with a strong mechanical meaning, defined by identi-
fying three zones: the interior zone, the edge zone and the
corner zone. For example, in the neighborhood of a point
X of the interior zone, the solution is assumed to be prop-

S S'

S

S'

S'

S

Fd F'd

fd

f'd

F

F

U

U

∂

∂

∂

∂

Γ

Fig. 1. The reference problem.
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erly described locally as the superposition of an infinite
number of local vibration modes which can be written in
the following manner:

U hðX ; Y ; P Þ ¼ W hðX ; P ÞeixP �Y

r
hðX ; Y ; P Þ ¼ ChðX ; P ÞeixP �Y

ð17Þ

where both X and Y represent the position vector, X being
associated with slow variations and Y with rapid varia-
tions. More precisely, the terms related to the position vec-
tor X vary slowly when X moves along the structure,
whereas the terms related to the position vector Y vary rap-
idly when Y moves along the structure. P is a vector char-
acterizing the local vibration mode. In order for these local
modes (Uh,rh) to be admissible, they must be in S

h
ad and

verify (13). Thus, we get some properties of P. These modes
verify the interior equations only, without taking the
boundary conditions on the edges into account. The cases
of ponctual or surface forces are treated in [22].

For instance, let us consider the out-of-plane bending
motions of thin, flat, homogeneous and isotropic plates.
According to Kirchhoff’s thin plate theory, the steady-state
displacement u of the plate’s mid-surface in the direction
perpendicular to the plate is governed by the dynamic
equation:

Eh3

12ð1� m2Þ ð1þ igÞDDu ¼ qhx2u on S ð18Þ

where D is the Laplacian operator, E the Young’s modulus,
h the plate’s thickness, m the Poisson’s ratio, q the mass
density, x the frequency, and g the damping factor. A com-
plex ray for the interior modes is

uhi ðX ; Y ; PÞ ¼ wh
i ðX ; PÞe

g
4

ffiffiffi

x
p

P �Xð Þei
ffiffiffi

x
p

P �Y ð19Þ

This complex ray corresponds to a plane bending wave
which propagates through the plate in the P direction. This
ray is admissible only if

Eh3

12ð1� m2Þ ð1þ igÞDXDXw
h
i ¼ qhx2wh

i on S ð20Þ

Therefore, the properties of P are

ðP � P Þ2 ¼ r4 with r4 ¼ 12qð1� m2Þ
Eh2

ð21Þ

Eq. (21) shows that P lies on a circle C defined by the mate-
rial properties (see Fig. 2). All directions of the plate can be
taken into account by following this circular path. A simi-
lar approach can be used for the edge and corner zones.
Examples of such modes are shown in Fig. 3.

4.3.2. The discretized problem

The displacement of any point of the substructure is
generated by a basis of admissible complex rays. The
unknown is the generalized amplitude wh(X,P) of the basis
(an nth-order polynomial in X and a large-wavelength
quantity). This polynomial plays the same role as p-version
of the finite element methods and will thereafter be chosen
zeroth order [24]. Accounting for all the directions u in C

leads to an integral over C. For the interior rays, this inte-
gral takes the form

uhðX ; Y Þ ¼
Z

u2½0;2p�
whðX ; P ðuÞÞe

g
4

ffiffiffi

x
p

PðuÞ�Xð Þei
ffiffiffi

x
p

P ðuÞ�Y dC

ð22Þ
In order to obtain a finite-dimension problem, this integral
(22) can be discretized and one can consider the amplitude
wh(X,P(u)) to be constant in each angular sector:
wh(X,P(EP)) (Fig. 4). The angular distributions of the
plane waves for all points in the substructure are assumed
to be well-described by this discontinuous angular
distribution.

Once the discretization has been chosen for each plate,
the VTCR leads to a system of linear equations in the com-
plex domain:

KhU ¼ F h ð23Þ
where Kh ¼ Kh

s þ Zh and F h ¼ Lh
D. K

h
s is the symmetric, po-

sitive definite damping matrix associated with ED; Z
h is the

matrix associated with the bilinear form h.,.i defined such
that Zh;T � ¼ �Zh; Lh

D is the vector associated with the linear
form LD; U is the vector corresponding to the unknown

P

ϕ
x

y

O

Cinterior modes

Fig. 2. Admissible P for interior modes of an isotropic plate.

P

Fig. 3. Interior, edge and corner modes for a homogeneous plate.
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amplitudes associated with the complex polynomial
wh(X,EP). As a consequence of the above properties, Eq.
(23) has a unique solution. However, although the invert-
ibility of matrix K (and, therefore, the uniqueness of the
solution) has been proven, care is needed in its numerical
calculation because this theory could lead to a poorly con-
ditioned matrix K as in all Trefftz methods. In the VTCR, a
dedicated numerical scheme, in which the fast variation
terms are treated analytically [24,25], is used to ensure suf-
ficient accuracy.

4.4. Effective quantities

The spatial distribution of classical quantities such as
the velocity q(X) is meaningless from a mechanical point
of view in the medium-frequency range because the
response at a discrete location and at a discrete frequency
is extremely sensitive to slight variations of input data.
Thus, we retain only the effective quantities, which are spa-
tially average quantities, defined on a domain greater than
one wavelength. In the vicinity of a test point X0, the asso-
ciated effective quantities, which can represent the elastic
energy, the kinetic energy or the dissipation work, are
defined on a domain SX 0

by

qeffðX 0Þ ¼
1

SX 0

Z

SX0

qðX ÞdS ð24Þ

These effective quantities are large-wavelength quantities
and are much less sensitive.

4.5. Effectiveness of the VTCR

The capabilities of the method have been demonstrated
on complex assemblies of plates [22–24]. Comparisons with
industrial finite element codes showed that the VTCR is
capable of predicting the effective quantities at a very low
cost. The method was also extended to shells in [25] and
heterogeneities were included in [26].

4.6. The wide-frequency range analysis

In our proposed approach to the transient dynamic
response analysis, the Frequency Response Function
(FRF) over a very wide-frequency range needs to be calcu-

lated. Therefore, the ability to use the VTCR over a rela-
tively wide-frequency range could be advantageous [20].

4.6.1. Calculation of the VTCR in a frequency range

Thus, the objective is to be able to calculate the solution
in a frequency range B with central frequency xn and band-
width xo: Find U which verifies:

KhðxÞUðxÞ ¼ F hðxÞ 8x 2 B ¼ xn �
xo

2
;xn þ

xo

2

h i

ð25Þ
The idea is to introduce a two-scale approximation in terms
of x. Any quantity a, including the operator Kh(x) and the
load Fh(x), can be written over x 2 B as

aðxÞ ¼
X

l

r¼1

QrðxÞArðxnÞ ð26Þ

where Ar is assumed to be constant over B. l is the angular
sector and plays the same role as h-version of the finite ele-
ment methods [24]. If necessary, one could build a better
approximation for function Ar, e.g. a linear approximation.
Qr is a rapidly varying function of x equal to:

QrðxÞ ¼ e2pixqr

where qr is one of the discrete values: {rnjr = �N, �N +
1, . . . , 0,1,2, . . . ,N}.

In practice, 2xcNn is equal to the maximum number of
space waves per substructure. n or N is a parameter which
characterizes the quality of the two-scale approximation
(26) (N � 100–1000). Several techniques have been devel-
oped for determining an approximation of U in the form
of (26) [27]. Here, we will introduce a new and quite effi-
cient version [20].

Let us study the behavior of the exponential argument.
This quantity can be expanded into a Taylor series up to
order �k. The matrix Kh and load vector Fh can then be
approximated as

KhðxÞ ¼
X

�k

k¼0

KkðxnÞðx� xnÞk

F hðxÞ ¼
X

�k

k¼0

F kðxnÞðx� xnÞk
ð27Þ

Let us also define the mean value over the frequency range
B:

h�i ¼ 1

xo

Z

B

�dx

The matrix Kh and load vector Fh can be expressed as

KhðxÞ ¼ hKhi þ DKðxÞ
F hðxÞ ¼ hF hi þ DF ðxÞ

ð28Þ

According to the Taylor expansion (27), one has

DKhðxÞ ¼
X

�k

k¼0

DKkðxnÞðx� xnÞk

DF hðxÞ ¼
X

�k

k¼0

DF kðxnÞðx� xnÞk
ð29Þ

x

y

O x

y

O

ϕ

Fig. 4. The discretized amplitudes.
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U can also be defined using the same approach:

U hðxÞ ¼ hU hi þ DUðxÞ ð30Þ
Over the frequency range B, Eqs. (25), (28) and (30) can be
rewritten as

½hKhi þ DK�½hUi þ DU � ¼ hF hi þ DF ð31Þ
Eq. (31) involves terms of very different magnitudes: some
are large while others are small. Using the techniques of
perturbation methods, different order terms can be identi-
fied and Eq. (31) can be rewritten for order 0 and order 1:

hKhihUi ¼ hF hi order 0

hKhiDU ¼ �DKhUi þ DF order 1
ð32Þ

with DU equal to:

DU ¼
X

�k

k¼0

DU kðxnÞðx� xnÞk ð33Þ

Finally, the displacement retained over the frequency range
B is

U ¼ khUi þ lDU ð34Þ
where k and l minimize the error defined through the
approximations in (32):

E2 ¼ 1

xo

Z

B

½F h � KhU �T½Kh
s �
�1
D ½F h � KhU �dx ð35Þ

½Kh
s �D is the diagonal of the symmetric part of Kh, which is a

slowly varying function.

Remarks

• �k corresponds to the degree of the Taylor expansion and
is the only parameter that must be chosen to ensure
good accuracy.

• The mean dissipated energy is

e ¼ k2

2
hUiTKh

s hUi þ l2

2xo

Z

B

DUTKh
sDU dx ð36Þ

• k, l can be x-functions.

This method over a frequency range was tested on
beams and on assemblies of plates in [20]. For xo

xn
� 20%,

�k ¼ 5 seems to yield a very good approximation.

5. Application on a complex structure

5.1. Reference problem

The method is applied on an assembly of plates, the
geometry of which is described in Fig. 5. This example cor-
responds to a typical stringer as can be found in a car chas-
sis. The displacements of the structure are blocked on the
right end and the structure is subjected to an impact load
on one edge of the other end. The structure is damped with
damping factor g = 0.02.

The loading which characterizes the impact and its spec-
trum obtained through the Fourier transform are described
in Fig. 6.

The first purpose of this example of a complex structure
is to show the importance of the medium frequencies
which, although the displacements are small, can play a sig-
nificant role in the kinetic energy. It also aims at pointing
out the efficiency of the approach.

5.2. The method in the discrete frequency domain

Let To be the observation time also named extended per-
iod. It must be chosen large enough so that the response
f(t) fades out by the end of To in order to avoid the over-
lapping in the time domain due to the use of the discrete
Fourier transform and thus to obey causality. In practice
To is selected such that at the end of this period, the tran-
sient response is 1

100
of the maximum value at the beginning.

The input data as the loading are extended with zeros and
the original problem defined on [0,T] is now defined on
[0,To]. Here the use of artificial damping in order to reduce
To is avoided because of the numerical oscillations that
then appear in the response [28].

X

Y

Z

X

Y

Z

p1  = 0. 0. 0.28

p2  = 0.3246 0.   0.28

p3  = 0.3246 0.05 0.28

p4  = 0.  0.05 0.28

p5  = 0.  0. 0.18

p6  = 0.2754 0.  0.18

p7  = 0.2754 0.05 0.18

p8  = 0.  0.05 0.18

p9  = 0.5246 0.  0.08

p10 = 0.5246 0.05 0.08

p11 = 0.4754 0.  0.

p12 = 0.4754 0.05 0.

p13 = 1.  0. 0.08

p14 = 1. 0.05 0.08

p15 = 1.  0.  0.

p16 = 1.  0.05 0.

p1

p2

p4

p6

p8

p5
p3

p7

Mechanical properties: Points location (dimensions in meters):

E = 2.1e11 Pa 

 = 0.3

 = 2%

e = 0.8e-3 m 

p9

p10

p11
p12

p13
p14

p15
p16

Patch 1 

Patch 2

ν

ρ = 7800 kg/m3

η

Fig. 5. Assembly of 12 plates subjected to an impact loading.
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N is the number of sampling points of the discrete Fou-
rier transforms. N must be a power of 2 in order to use the
efficient fast Fourier transform (FFT) [29] and is chosen in
respect with the law of at least seven time intervals T e ¼ T o

N

to well describe the sine form of the impact load. xn = nxo

are the discrete frequencies where xo ¼ 2p
T o
.

Let H(xn) be the sampled frequency response function
(FRF) over ½0;x0

c� which is extended with zeros until the
Nyquist frequency xNyquist ¼ N

2
xo. Having calculated

H(xn), we built the discrete Fourier transform ĥðxnÞ of
the unit response function h(t) at the discrete frequency
xn as in Eq. (37):

ĥðxnÞ ¼
HðxnÞ for n 6 N

2

H �ðxN�nÞ for n > N
2

(

ð37Þ

The spectrum f̂ ðxnÞ of the response f(t) is determined by
Eq. (38)

f̂ ðxnÞ ¼ ĥðxnÞp̂ðxnÞ ð38Þ

where p̂ðxnÞ is the discrete Fourier transform of the impact
load p(t). Finally, we performed an inverse Fast Fourier
Transform (iFFT) on f̂ ðxnÞ in order to restore the time-
dependent response f(t).

Before, carrying out the iFFT, f̂ ðxnÞ was multiplied by a
Hanning window in the frequency domain to avoid the
Gibbs phenomenon once in the time domain.

5.3. The frequency problem

The frequency range ½0;x0
c� being studied was divided

into two parts: the low frequencies [0,xc] and the medium
frequencies ½xc;x

0
c�.

5.3.1. Choice of xc

As suggested in Section 3.2, a standard finite element
technique was used to obtain the frequency response func-
tions over the low-frequency range. xc was chosen such
that the modes for this frequency and the higher frequen-

cies become local modes, here xc = 450 Hz and the corre-
sponding solution of the forced vibration problem is
shown in Fig. 7. This is also the frequency from which
the modes are dense: in Fig. 8, the FRF of the effective
speed over both patches of interest, of larger dimensions
than the wavelengths of the medium frequencies, are plot-
ted. It is therefore the frequency from which the accuracy
of the computed FRF is highly mesh-dependent. In prac-
tice, xc is chosen by comparing the wavelength of the oscil-
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Fig. 6. The loading and its spectrum.

Fig. 7. Solution of the forced vibration problem at frequency 450 Hz.
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lations at this frequency with the dimensions of the
structure.

5.3.2. Choice of x0
c

The frequency content of the response affects the veloc-
ity and, therefore, the kinetic energy to a great extent.
Looking at Fig. 9 which shows the maximum of the kinetic
energy in the two patches during the observation time as a
function of the frequency range taken into account in the
response, i.e. as a function of x0

c, the frequency range nec-
essary to derive the correct response was evaluated x0

c ¼ 2
T
,

where T is the characteristic time of the impact load. In our
case x0

c ¼ 2000 Hz. Looking at the spectrum of the impact
load in Fig. 6, this criterion x0

c ¼ 2
T
enables one to embrace

most of the frequency content of the input signal.
In order to countenance this result, the velocities of two

points, located on patch 1 and on patch 2, are plotted in
Fig. 10. In these figures, the responses obtained with three
different values of x0

c are compared.
As one can see, these graphics meet the results previ-

ously mentioned. Indeed the responses obtained with
x0

c ¼ 2000 Hz and x0
c ¼ 3000 Hz are similar whereas the

response with x0
c ¼ 1500 Hz varies from the other ones.

x0
c ¼ 2000 Hz is actually a sufficient value of the upper

bound of the medium-frequency (MF) range to derive the
correct response.

The error done on the kinetic energy in the patches is
less than 2% when taking into account the frequency range
[0–2000 Hz] in the transient response as can be seen in
Fig. 11.

5.3.3. The discrete frequency problem

The problem to be solved was a discrete frequency prob-
lem since we used the iFFT. The frequency interval xo of
the sampling was chosen such that xo ¼ 2p

T o
where To is

the time by the end of which the waves fade out.
In order to reduce the number of frequency samples for

the calculation of the frequency response function over the
medium-frequency range, we took advantage of the fact
that the studied structure is a damped scattering medium.
Indeed the time taken by the waves to become negligible
is much shorter for the medium frequencies than for the
low frequencies because of the important dispersion of
the medium-frequency bending modes.

Thus, in Eq. (39), the time response can be viewed as
the superposition of two components, flow(t) and fmid(t),
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corresponding to the low-frequency contribution f̂ lowðxÞ
and the medium-frequency contribution f̂midðxÞ respec-
tively

f ðtÞtP0 ¼
1

2p

Z þ1

�1
f̂ lowðxÞeixt dxþ 1

2p

Z þ1

�1
f̂midðxÞeixt dx

¼ flowðtÞ þ fmidðtÞ ð39Þ

These two components were calculated separately with the
frequency-domain approach presented in this paper and
were added afterwards. Calculating the two components
separately is convenient because in the calculation of fmid(t)
the low frequencies are put aside and the medium frequen-
cies alone are taken into account. Thus, one can take
advantage of the rapid fading-out of these medium fre-
quencies in the time response to shorten the observation
time To for the discrete Fourier transform to a considerable
extent, which reduces the frequency sampling of the FRF
f̂mid over the medium-frequency range.

Since an inverse fast Fourier transform was performed,
we used Hanning windows for both ranges to avoid the
Gibbs phenomenon that would have occurred with a rect-
angle window. In order not to loose the amplitude of the

FRF around xc, the two Hanning windows of the low
and the medium-frequency ranges overlapped the common
frequency range [400–450 Hz] as illustrated in Fig. 12.

The times needed for the waves to fade out in the studied
structure were evaluated: To = 1 s for the low frequencies
and To = 0.1 s for the medium frequencies. In order to ver-
ify that the time window To = 0.1 s is large enough to per-
form the iFFT on the medium-frequency contribution, two
different time windows for these medium frequencies were
used for comparison. On the one hand we took
To = 0.1 s that enables one to take advantage of the rapid
fading-out of the medium-frequency waves and thus to
reduce the number of calculations, and on the other hand
we took To = 1 s which is the time taken by the low-fre-
quency waves to become negligible and consequently the
default observation time chosen in our example when not
taking advantage of the rapid fading-out of the medium
frequencies. The choice of these two different time windows
lead to the frequency samplings summarized in Table 1 and
the corresponding responses are plotted in Fig. 13.

The responses are the same, we can therefore compute
the two components separately and reduce the computa-
tional cost of the medium-frequency component. Finally,
we retained for the two frequency ranges the frequency
samplings proposed in Table 2.

Reducing the observation time, and thus the number of
calculations, over the MF range is necessary especially if
one were to extend the frequency-domain approach to non-
linear systems because studying such systems leads to the
performance of many iFFT.

In the frequency-domain analysis procedure, the use of
the discrete Fourier transform requires the FRF to be cal-
culated for discrete frequencies fn ¼ nfo ¼ n xo

2p
. But the

solution at a discrete frequency being extremely sensitive
to perturbations in the medium-frequency range, the
frequency sampling can happen to be too coarse to well
represent the peaks of the FRF.

In the aforementioned comparison, two different time
windows, and consequently two different frequency sam-
plings over the medium-frequency range were compared.
In our example, the two different frequency discretizations

1

0

400 450 2000 Hz

Fig. 12. Hanning windows of the two frequency ranges.

Table 1

Two frequency samplings for the MF range [400–2000 Hz]

Discretization

1 2

Observation time To 1 s 0.1 s

fo ¼ xo

2p 1 Hz 10 Hz

Number of calculations 1601 161
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lead to very similar results. Indeed, looking at the FRFs of
the patches of interest of the studied structure, the mini-
mum distance between two peaks is around 40 Hz in the
medium-frequency range. Therefore, the coarser frequency
sampling with fo = 10 Hz appears to be sufficient to take
the variations of the FRFs into account.

Anyway, to ensure that the variations of the FRF due to
the high density of modes in the medium-frequency domain
are taken into account, we can use the wide-frequency
range analysis proposed in Section 4.6. This extent of the
VTCR can be performed to enrich the frequency discretiza-
tion with a low computational cost either by increasing the
frequency sampling or by retaining, for each discrete fre-
quency xn of the default frequency sampling, averaged
quantities on a frequency range centered on xn.

In the vicinity of a discrete frequency xn, the associated
averaged quantities are defined on a frequency range
B ¼ xn � xo

2
;xn þ xo

2

� �

by

qeffðxnÞ ¼
1

xo

Z

B

qðxÞdx ð40Þ

q(x) over the frequency range B is calculated thanks to the
large frequency range analysis of the VTCR and enables to
account for the content and the variations of the FRF.

In the present example, all the results were obtained
without using this large frequency range analysis of the
VTCR since it is not yet implemented in the dedicated soft-
ware CORAY MF.

5.4. The spatial discretized problem of the frequency-domain

approach

5.4.1. Space discretization of the low-frequency problem

A standard finite element technique, performed with
MSC.Nastran, was used to obtain the frequency response
functions over the low-frequency range. xc was chosen
xc = 450 Hz. In order to derive a proper FRF, the mesh
was constructed with seven linear elements per wavelength
of the upper bound of the low-frequency range. The
reduced basis was constructed from the first 50 modes to
arrive at a highest eigenfrequency x50 = 2xc, and was com-
pleted with the static bending mode.

If one were to calculate the FRF over ½0;x0
c�, it would

have required 336,000 degrees of freedom (DOFs) in
respect with the law of seven elements per wavelength
and 500 modes in the reduced basis would have been
necessary to derive the correct FRF over [0–2000 Hz].

Carrying out such calculation is prohibitive and can also
lead to numerical difficulties.

Table 3 summarizes the space discretized problems in
MSC.Nastran for the calculation of the FRF over [0–
450 Hz] on the one hand and over [0–2000 Hz] on the other
hand.

5.4.2. Space discretization of the medium-frequency problem

For complex structures, the VTCR turned out to be a
suitable computational method for the medium-frequency
range: it is very efficient because its multiscale point of view
leads to use a very low number of DOFs even at high fre-
quencies. Ref. [24] shows that when the frequency
increases, the use of a classical finite element approach
leads to huge numbers of DOFs whereas the VTCR enables
one to use a constant mesh size maintaining very good
accuracy while decreasing the CPU time.

For the VTCR, the number of substructures and of rays
needed per substructures is selected as advised in [24]. Here,
the structure was divided into 12 substructures which cor-
respond to the 12 plates of the assembly. Thirty-two inte-
rior modes and 5 edge modes per edge were used per
substructure. The computation of the medium-frequency
range was performed with the dedicated software CORAY
MF. Table 4 summarizes the spatial discretization of the
medium-frequency range.

5.5. Contribution of the medium frequencies

The feasibility of the method and the importance of the
medium frequencies in transient dynamics have been
pointed out on academic examples made of assemblies of
beams in [3]. In the absence of the medium frequencies,
the small oscillations due to these frequencies, the kinetic
energy of which is very significant, are killed.

Same conclusions can be made for more complex
structures.

Indeed, looking at the FRFs of the two patches plotted
in Fig. 8, we can notice that, as expected, the first peak of
the FRFs, plotted in Fig. 8, at x = 75.6 Hz, is the global
bending mode (see Fig. 14) which is highly excited by the
chosen impact load. But we can also notice that many

Table 4

Characteristics of the space discretization with the VTCR

Frequency range [450–2000 Hz]

Number of substructures 12

Number of rays (DOFs) 624

Table 2

Frequency sampling

Frequency range

[0–450 Hz] [400–2000 Hz]

Time to fade out To 1 s 0.1 s

fo ¼ xo

2p 1 Hz 10 Hz

Number of calculations 451 161

Table 3

Characteristics of the mesh in MSC. Nastran for the computation of the

FRF

Frequency range

[0–450 Hz] [0–2000 Hz]

Number of DOFs 19,700 336,000

Reduced basis 50 modes 500 modes
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higher frequencies contribute to a great extent in the con-
tent of the FRF. Indeed, looking at the local aspect of
the impact load, medium-frequency modes which are local
modes are excited. The most important excited modes are
illustrated Fig. 15.

In this example, almost all of the kinetic energy induced
in patch 1, situated near the impact load, is due to the med-
ium frequencies as can be noticed in Fig. 9. As an example,
the velocity of a point located in this patch is plotted in
Fig. 16. The low-frequency part of the velocity is plotted
with a light grey color in order to highlight the importance
of the medium-frequency content.

These medium frequencies damp more rapidly than the
low-frequency waves: indeed the relative proportion
between the medium-frequency content and the low-fre-
quency content is lower in patch 2, situated further from
the impact load, than in patch 1 as can be noticed in Figs.
9 and 17.

5.6. Advantage of the frequency-domain method

The advantage of the frequency-domain method is that
the solution is explicitly known over the whole time.
Indeed, the discretized problem described in Table 2

enables one to compute the response of the structure for
a large time interval until the transient response dies out,
here To = 1 s.

As for time domain methods that use numerical
schemes, the transient response is known step by step and
they require at least 7000 time steps to compute the
response of the structure studied here: the number of time
steps is evaluated according to the law of at least seven time
steps to well describe the sine form of the impact load and
7000 time steps unable to compute the response over the
time period necessary for the velocity to fade out. Further-
more the required mesh would have been much more
refined in each direction which would have lead to
336,000 degrees of freedom and consequently to numerical
difficulties [5].

For such complex structures, the construction of a
reduced basis sufficiently rich in modes to deal with fast
dynamics, such as shocks, is often unfeasible; therefore,

Fig. 14. Mode at frequency 75.6 Hz.

Fig. 15. Higher local modes that contribute in the response: (a) 790 Hz, (b) 1170 Hz, (c) 1220 Hz and (d) 1470 Hz.
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in these cases, the time integration is carried out on the
finite element matrices directly: this leads to even greater
computation times.

In our method, the frequency content is extended using
only a few VTCR calculations. The frequency-domain
analysis procedure also requires discrete Fourier trans-
forms, which are performed using the iFFT algorithms.
The use of the iFFT makes the frequency approaches effi-
cient for the analysis of the dynamic response of linear sys-
tems [30].

In the case of nonlinear systems, many iFFT need to be
performed. Having reduced the amount of VTCR calcula-
tions as explained in Section 5.3.3 is then critical.

Finally, the costs of a classical time-domain approach,
using a finite element mesh and an explicit numerical
scheme, and the proposed frequency-domain approach
for the studied linear example are compared in Table 5:

• the time-domain approach requires at least 7000 time
steps and a refined finite element mesh of 336 · 103

DOFs. In order to take the frequencies up to 2000 Hz
into account, the 500 first eigenmodes need to be com-
puted for the use of a reduced basis;

• in the frequency-domain approach, the FRF is predicted
by solving 451 forced vibration problems with a small
reduced basis constructed from the 50 first eigenmodes

for the low-frequency range [0–450 Hz], and by solving
only 161 forced vibration problems for the medium fre-
quencies [450–2000 Hz] thanks to the VTCR using 624
rayons complexes.

6. Conclusion

We have developed a new robust method for the calcu-
lation of transient dynamic responses with a high frequency
content for a rather complex structure made of plates that
tend towards engineering structures. The method is now to
be applied on assemblies of shells, plates and beams with
heterogeneities. The point of this technique is to restitute
both the low and especially the medium frequencies that
easily occur in complex structures while decreasing the
CPU-time. Moreover with this approach, the transient
response is explicitly known on the whole time observation.
The extension to nonlinearities expressed in the time
domain and to 3D-problems is the subject of further
developments.
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dynamic models. In: Ladevèze P, Zienkiewicz O, editors. New

advances in computational structural mechanics. Elsevier; 1992. p.

347–65.

[11] Soize C. Reduced models in the medium frequency range for general

dissipative structural-dynamics systems. Eur J Mech A/Solids

1998;17(4):657–85.

[12] Sarka A, Ghanem R. Mid-frequency structural dynamics with

parameter uncertainty. Comput Methods Appl Mech Engrg

2002;191:5499–513.

[13] Desmet W, Van Hal B, Sas P, Vandepitte D. A computationally

efficient prediction technique for the steady-state dynamic analysis of

coupled vibro-acoustic systems. Adv Engrg Softw 2002;33:527–40.

[14] Belov VD, Ryback SA. Applicability of the transport equation in the

one-dimensional wave propagation problem. Akust Zh Sov Phys

Acoust 1975;21/2:173–80.

Table 5

Sizes of the computational problems for the time-domain (TD) and the

frequency-domain (FD) approaches over To = 1 s

Approach TD FD

Reduced

basis

Reduced

basis

VTCR

DOFs 336,000 19,700

Eigenmodes 500 50

Complex rays 624

Number of calculations 7000 451 161

Size of the computational

problem

7000 · 500 451 · 50 + 161 · 624

CPU-time 43 h 1 h

0 0.1 0.2 0.3 0.4 0.5
–4

–3

–2

–1

0

1

2

3

4
x 10 Velocity of the point (0.75 0.02 0.08) in patch 2

Time (s)

V
e
lo

c
it
y
 (

m
/s

)

LF+MF content

LF content

Fig. 17. Velocity of a point located in the patch 2.

13



[15] Ichchou MN, Le Bot A, Jézéquel L. Energy model of one-
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