
HAL Id: hal-01007389
https://hal.science/hal-01007389

Submitted on 10 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Toward efficient and robust computation of energy
release rate and mode mix for delamination

Frans van der Meer, Lambertus J Sluys, Nicolas Moës

To cite this version:
Frans van der Meer, Lambertus J Sluys, Nicolas Moës. Toward efficient and robust computation
of energy release rate and mode mix for delamination. Composites Part A: Applied Science and
Manufacturing, 2012, 43 (7), pp.1101-1112. �10.1016/j.compositesa.2012.02.021�. �hal-01007389�

https://hal.science/hal-01007389
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Toward efficient and robust computation of energy release rate 

and mode mix for delamination

F.P. van der Meer a,⇑, L.J. Sluys a, N. Moës b
aDelft University of Technology, Faculty of Civil Engineering and Geosciences, PO Box 5048, 2600 GA Delft, The Netherlands

b Ecole Centrale de Nantes, GeM Institute, UMR CNRS 6183, 1 Rue de la Noë, 44321 Nantes, France

Different methods for computing energy release rates for delamination are assessed with emphasis on 
their performance with large elements and irregular meshes. The jump in stress and strain that appears 
at the crack front with shell kinematics is used to compute the energy release rate in a simple manner via 
the jump in Eshelby tensor, without the mesh requirements that are associated with the virtual crack clo-
sure technique. The robustness of the results is examined for different kinematic formulations. For mode 
partitioning, another method that also makes use of the jump in stress [15], is modified for better perfor-
mance with large elements. In this manner, the proposed method connects to existing concepts for char-
acterization of fracture toughness based on linear elastic fracture mechanics. However, by presenting a 
size effect in the mode mix predicted with a cohesive method, it is emphasized that the validity of these 
concepts is questionable.

1. Introduction

It is a central thesis of fracture mechanics that a crack grows

when the energy that will be released upon crack growth, the

energy release rate G, is greater than the amount of energy that

is required to form new crack surface, the fracture toughness Gc

[1]. The criterion for crack growth is written as:

GP Gc ð1Þ

Hence, energy release rate computation is of interest for simple

assessment of criticality of a given crack under given loads, as well

as for more advanced progressive cracking analysis. The energy re-

lease rate can be computed with stress intensity factors, [2], with

the J-integral [3] or with the virtual crack closure technique (VCCT)

[4,5]. The VCCT is often applied to delamination problems, particu-

larly for cases where one is interested in the energy release rate for

a given front location. In the VCCT, the energy release rate is ob-

tained in a relatively simple post-processing step, but it is required

that the crack front coincides with element boundaries and that the

mesh is fine and regularly spaced around the crack front. These

requirements make the method laborious, particularly for progres-

sive failure analysis. For this reason, cohesive methods are preferred

for progressive failure simulations [6–10]. However, cohesive meth-

ods have a restriction on the mesh size, which causes their applica-

bility to be limited to relatively small samples. The element size is

namely required to be several times smaller than the length of the

cohesive zone, which is for most laminates and load cases of the or-

der of 1 mm.

In a fracture mechanics approach to delamination, it is impor-

tant to account for the fact that the interfacial fracture toughness

of laminates is not a material constant but rather a function of

the opening mode [11,12]. For evaluation of criterion (1), it is

therefore necessary to compute not only the energy release rate

G but also a measure for the current opening mode which can be

related to measurements of the fracture toughness Gc under differ-

ent conditions. In cohesive methods and the VCCT, this is done by

partitioning G into three contributions that are related to the fun-

damental modes:

G ¼ GI þ GII þ GIII ð2Þ

and postulating that Gc is a function of the ratios between those

three values:

Gc ¼ Gc

GI

G
;
GII

G

� �
ð3Þ

It should be noted that the partitioning in pure mode release

rates in Eq. (2) is theoretically not valid for cracks on a bimaterial

interface [13]. In the VCCT this is reflected in non-convergence of

the pure mode release rates [14]. This can be eliminated by assum-

ing that cracking occurs in a thin homogeneous interphase layer

[14], but this comes at the cost of having to use very small finite
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elements. Zou et al. [15–17] have introduced an alternate tech-

nique in which the oscillations are removed without the assump-

tions of an interphase layer.

But even when partitioning of the energy release rates is possi-

ble, the assumption that the fracture toughness depends on the ra-

tios between the pure release rates is debatable. In Eq. (3) a

separation of scales is assumed between the length of the fracture

process zone and the fluctuations in the surrounding stress and

strain fields. Only in that case, the stress field that drives the micro-

mechanical fracture process can be completely characterized by

the stress intensity factors KI, KII and KIII and hence also by pure

mode energy release rates GI, GII and GIII. This condition is not gen-

erally true for laminates, where the fracture process zone is often

larger than the ply thickness [6]. Indeed, Davidson et al. have

shown that a fracture mechanics characterization of the mode

mix does not in all cases give the best estimate of Gc [18,19]. Fur-

thermore, it should be noted that the fracture toughness may also

depend on ply thickness [20] and relative fiber orientation [21].

The problem how to characterize the fracture toughness will not

be solved in this paper, but the fact that this is an open question

will be highlighted with new numerical results.

In recent work [22], we have proposed a new method for pro-

gressive delamination analysis. This method uses level sets to al-

low for an implicit representation of the moving crack front

through the domain without restrictive mesh requirements. The

energy release rate is computed along the front with the jump in

Eshelby tensor. It is shown that, after making the right kinematic

assumptions, there is no need to compute the singular field around

the crack tip in order to get an accurate value for the energy release

rate.

In the current paper the proposed method to compute the

energy release rate is investigated in more detail. The primary

motivation for this study comes from the development of the men-

tioned progressive delamination model, but it is acknowledged

that energy release rate computation with a fixed crack location

is also of interest. Therefore the current paper deals only with cases

with a given crack location that coincides with element bound-

aries. The aim is to find a method for energy release computation

which gives accurate values for coarse and possibly irregular

meshes as well as an indication of the mode mix.

In the two sections that follow this introduction, two different

topics are investigated. Firstly, the performance of different dis-

cretization types is examined in terms of accuracy of the computed

total energy release rate. The main questions are how the connec-

tion between the cracked and the uncracked part is best repre-

sented and whether solid elements or beam/shell elements are to

be preferred. Secondly, the topic of mode mixity is addressed. For

this purpose, the method developed by Zou et al. [15–17] is inves-

tigated as a method that not only gives the total energy release rate

but also allows for partitioning of this number into three pure

mode contributions. The accuracy of this method in predicting

pure mode energy release rates with large elements is evaluated

with mesh-refinement studies on mixed-mode cases. An improved

formulation is proposed in this paper. In the course of this investi-

gation, an inconsistency is demonstrated in different accepted ap-

proaches to energy release rate partitioning.

2. Total energy release rate

Let the domain of a partially delaminated plate be subdivided

into three regions A, B and C, such that A represents the uncracked

part, and B and C the bottom and top arms of the cracked part,

respectively (see Fig. 1). When the kinematic assumptions of shell

theory are applied, the interface that separates A from B and C is a

configurational interface over which a jump in strain occurs. The

jump in strain is the shell equivalent of the singularity that

is known to exist around the crack tip in the continuum

Nomenclature

A, B, C different subdomains of a partially delaminated beam/
shell

A, I cross-section and second moment of inertia of a beam
c crack length
c1, c2 auxiliary coefficients (Davidson’s method)
Dij laminate bending stiffness matrix
E Young’s modulus
Fi distributed force vector between sublaminates (Zou’s

method)
Fm, Fe point loads in mixed-mode bending test
G energy release rate
GI, GII, GIII pure mode components of energy release rate
G reference energy release rate (test-dependent, for nor-

malization)
Gc fracture toughness
h, hB, hC thickness
Hij laminate transverse shear stiffness matrix
Kn, Ks Elastic rotation spring stiffness
KI, KII stress intensity factors
L specimen length
n, s, z coordinates aligned with the crack front
n normal vector to the crack front
N, Nij shell force tensor
Nc,Mc equivalent force and moment (Davidson’s method)
M,Mij shell bending moment tensor
P, Pij Eshelby tensor
Q, Qi shell transverse shear force vector

Ti distributed bending moment vector
u, ui displacement vector
u0; u0

i displacement vector at the shell mid-plane
x, y, z global coordinates
Dx element length
a Timoshenko’s shape coefficient
bin global mode ratio from beam theory
bout mode ratio computed from local quantities
c, ciz shell transverse shear deformation vector
C,X auxiliary coefficients (Davidson’s method)
dij Kronecker delta
eij strain tensor
j beam curvature
k slenderness coefficient
l shear modulus
rij stress tensor
/, /i shell rotation vector

Abbreviations

6ECT six-point edge cracked torsion
DCB double cantilever beam
LEFM linear elastic fracture mechanics
MITC mixed interpolation of tensorial components
MMB mixed mode bending
UDCB unsymmetric double cantilever beam
VCCT virtual crack closure technique
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three-dimensional solution. Just as the intensity of the stress sin-

gularity in the continuum solution gives information on the energy

release rate, so does the magnitude of the jump in elastic energy in

the shell solution. The energy that will be released when the con-

figurational interface moves (i.e., when the crack grows) with unit

velocity can be expressed as a function of the location along the

crack front as [22]:

GðsÞ ¼
Z hC

�hB

n � sPt � ndz ð4Þ

where n is the normal unit vector to the configurational interface

(see Fig. 1) and sPt is the jump in Eshelby tensor, defined as

sPt ¼ Pjn¼0þ � Pjn¼0� ð5Þ

with

Pij ¼
1

2
eklrkldij � uk;irkj ð6Þ

In Eq. (6), ekl is the strain tensor, rkl is the stress tensor, uk,i is the

gradient of the displacement vector, dij is the Kronecker delta, and

the Einstein convention is used to indicate summation over re-

peated indices k, l 2 [x,y,z]. In shear deformable shell analysis,

strains and stresses are decomposed into mid-plane displacement

gradients ru0, curvatures r/, transverse strains c, and generalized

forces N, moments M and shear forces Q. The through-thickness

integration of Eq. (4) can then be performed a priori for each of

the parts A, B and C to give
Z

h

n � P � ndz ¼ 1

2
u0
i;jNij þ /i;jMij þ cizQ i

� �

� u0
i;nNni þ /i;nMni þ uz;nQn

� �
ð7Þ

with summation over i, j 2 [n, s].

2.1. Representation of the uncracked part: three different models

One question that needs to be answered is how the domain A

should be discretized to obtain an efficient but accurate description

of the partially cracked shell. The most efficient strategy would be

to use a single layer of elements through the thickness. However,

better results may be obtained when two layers of elements from

the cracked part are continued in the uncracked part. Ousset [23]

termed the different approaches ‘‘Model 2’’ and ‘‘Model 1’’, respec-

tively (see Fig. 2), and showed that locking near the free edge in

Model 2 may cause a disturbance in the energy release rate profile.

A drawback of Model 1 seems to be that a small-scale phenomenon

is introduced in the solution even for very simple cases. To illus-

trate this, stress fields from a double cantilever beam with the

kinematic assumptions of Model 1 and Model 2 are schematically

represented in Fig. 3. In both cases there is a jump in strain and

stress over the configurational interface, but in Model 1 the discon-

tuity appears in rxx and in Model 2 in rxz. What is pointed out here

is that in Model 1 there are stress gradients in length direction that

occur over a small region. These may harm the accuracy in energy

release computation when large elements are used. While in Model

2 the stress can be captured perfectly well with very large

elements.

One strategy to remove locking near the free edge as well as the

small-scale stress variations is to lump the deformation of the

undeformed part on the configurational interface. This can be done

by using one layer of elements in the uncracked part, while relax-

ing the stiff rotation connection between the three parts with an

elastic spring: Model 3.

2.2. Model 3 formulation

In order to get deformation of the uncracked part only for oppo-

site curvature of the arms, the rotation spring is placed between

the arms B and C, while the rotation of uncracked part A is tied rig-

idly to the weighted average of the two rotations as:

/A ¼ hB/B þ hC/C

hB þ hC

ð8Þ

where /A, /B and /C are the rotations of the three parts where they

meet at n = 0. The distributed moments Tn and Ts acting on arms B

and C from the rotation spring are related to the jump in rotations

via a linear constitutive law with two stiffness parameters:

TB
n

TB
s

( )
¼ � TC

n

TC
s

( )
¼ Kn 0

0 Ks

� �
� /B

n � /C
n

/B
s � /C

s

( )
ð9Þ

The first parameter, Kn, can be related to the rotation stiffness of a

beam on elastic foundation. In finite element analysis of such sys-

tem, for typical laminate properties the elastic foundation part (cf.

Kanninen [24]) has been found to be smaller than the rotation

due to shear deformation. Therefore the system is simplified to a

semi-infinite shear deformable beam on stiff support, for which

the following stiffness is found analytically:

Fig. 1. Definitions for a partially delaminated plate.

Fig. 2. Three different representations of a partially delaminated beam.
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Mend

/end

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
alAEI

p
ð10Þ

where a is Timoshenko’s shape coefficient, l is the shear modulus, A

the beam cross-section, E the Young’s modulus and I the beam’s sec-

ond moment of inertia. For plane strain conditions perpendicular

the front, this can be related to laminate stiffness quantities to get

the stiffness for the distributed moment along the front. After sum-

mation of the compliance related to the two arms B and C, the rela-

tion for Kn becomes:

Kn ¼ 1

DB
nn
eHB

nn

� ��1=2

þ DC
nn
eHC

nn

� ��1=2
ð11Þ

where Dnn and eHnn are entries from the bending and shear stiffness

matrices from shear deformable laminate theory (notations from

[25]) rotated into the {n,s}-frame aligned with the front.

The second stiffness parameter, Ks, can be set to 0. This does not

lead to any spurious mechanism since global rotation of the arms

around the normal to the configurational interface is prevented

by the still-constrained displacements.

2.3. Numerical example: DCB

To investigate the behavior of the different models, the energy

release rate along the front in a double cantilever beam (DCB) test

is analyzed following Davidson [26]. For different layups and

geometries, the results that have been obtained compare well to

those reported by Davidson [26]. But the main emphasis here is

on performance with large elements. Therefore results are pre-

sented only for one specimen (crack length/beam width = 1) with

an isotropic material while the element size is varied. Simulations

are performed with MITC9 shell elements (see Appendix A for

more information on the elements used in this paper).

Results for the energy release rate distribution along the front

are shown for the different models in Fig. 4. Results are normalized

with respect to the energy release rate from the plane strain beam

solution, where the shear deformation of the uncracked solution is

taken into account according to Eq. (10). The results converge to a

unique solution with all three methods, apart from the spurious

small scale phenomenon that is observed near the free edge in

Model 2. This is a similar locking as the one that has been observed

by Ousset [23]. This phenomenon is indeed effectively removed by

applying the rotation spring from Model 3. In fact, any low value

for Ks is efficient in removing the locking effect, while the chosen

value for Kn leads to the better match with the Model 1 results in

the center of the specimen (s = 0). The maximum value at the cen-

ter of the specimen is higher for Model 2. This is due to the in-

creased stiffness of the uncracked part of Model 2 which in

combination with a prescribed displacement leads to a higher en-

ergy release rate. For constant bending without shear load, the val-

ues from all models converge to the same value. Even though the

jump in stress and strain are of different nature for Model 1 on

the one hand and Models 2 and 3 on the other (see Fig. 3) the jump

in Eshelby tensor gives realistic release rates for the different

models.

Model 1 performs well with large elements, even though a

small scale phenomenon is introduced in the formulation. Appar-

ently, the energy release rate can be computed sufficiently accu-

rate whether or not this phenomenon is resolved with a

sufficiently fine mesh. Because Model 2 does not work well near

the free edge, and Model 3 involves elastic parameters which are

still somewhat uncertain, Model 1 is to be preferred. Another rea-

son for using Model 1 is that it allows for straightforward applica-

tion of Zou’s method, which will show to be useful for the mode

partitioning in Section 3.

2.4. Solid vs. shell formulation

Model 1 involves the stacking of shear deformable plates or

shells. Each layer is represented as a 5-parameter shell: a 2D field

is defined in the shell mid-surface consisting of three translations

and two rotations. In the uncracked part the two layers are

connected; 3 of the 10 parameters of the two-layered shell are

dependent variables. In a small deformation framework this is eas-

ily achieved through elimination of degrees of freedom. In large

deformations, however, nonlinear surface ties have to be applied.

Especially in large deformations, a more straightforward imple-

mentation is possible when a 6-parameter shell is adopted with

Fig. 3. Stress field near the sharp crack tip using either one or two layers of elements for the uncracked part.

4



only displacement degrees of freedom.1 The two different ap-

proaches are compared in Fig. 5 for the case of a beam (here it is a

3-parameter extensible Timoshenko beam vs. a 4-parameter 2D so-

lid representation). It is obvious from the figure that the coupling is

more straightforward in the solid case, because it is handled through

connectivity of the nodes located at top and bottom surfaces.

However, the solid representation is much less robust in terms

of the energy release computations in irregular meshes. This is

illustrated with a simple example of beam analysis of a double can-

tilever beam. A finite element mesh of 6-node solid elements (see

Fig. 6) or 3-node beam elements is used to model half of a DCB-

specimen. The mesh is regular with element length Dx = 4h, except

that one additional element interface is located at a variable loca-

tion defined by the crack length c. This means that the mesh is

irregular around the crack tip, similar to what it would be when

the front is moving through an element and modeled with our re-
cent level set model [22]. The material is isotropic. The energy re-

lease as computed with the jump in Eshelby tensor is presented in

Fig. 6 for different values of the tip location with both solid and

beam models. Results are normalized with G which is the value

Fig. 4. Convergence of energy release rates along the front of a DCB test for different models. The mesh numbers (4–24) refer to number of elements over the width of the

half-specimen. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Beam and solid representation of Model 1 in 2D.

Fig. 6. Energy release rate in DCB test as a function of tip location with crack tip on

an additional element boundary in an otherwise regular mesh.

1 In fact, with nonzero Poisson’s ratio, such formulation requires a seventh

parameter to avoid Poisson thickness locking, but this one may be condensed out

[27,28]. Here we only consider a simple example with m = 0.
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obtained with Model 1 and beam elements for a/Dx = 5.5. The in-

crease in G as the ‘‘crack tip’’ moves to the left is due to the con-

stant load that is applied on the end and the difference between

Models 1 and 2 is again due to the spurious stiffness in Model 2.

It is most striking that a big error is observed for Model 1 with solid

elements when the crack tip approaches one of the fixed element

boundaries.

The inaccuracy for irregular meshes with solid elements is dif-

ferent to what happens with VCCT when elements ahead and be-

hind the crack tip are unequally sized, for which Rybicki and

Kanninen have proposed a variation to standard VCCT [4]. In con-

trast with VCCT the element size is completely absent from the for-

mulation with the jump in Eshelby tensor, which consists only of

local stress and deformation quantities. The inaccuracy of the solid

elements here is due to inaccuracy in the stress field, particularly in

relation to the thickness stretch and the coupling between thick-

ness stretch and transverse shear strain. With a fine mesh, the

transverse shear and thickness stretch can be solved accurately;

with a regular coarse mesh, inaccuracies in the deformations do

not affect the jump in Eshelby tensor; but with a coarse irregular

mesh severe inaccuracies appear. This kind of inaccuracy is very

harmful for the robustness of the energy release rate computation

and therefore a Model 1 approach with solid elements is not advis-

able. In the following section, a Model 1 formulation with beam/

shell elements is further investigated in relation to mixed-mode

cracking.

3. Mode partitioning

It is a well-documented fact that the delamination fracture

toughness of composites depends on the opening mode [11,12].

Therefore, computation of the energy release rate alone as done

in the previous section does not suffice to evaluate Griffith’s crite-

rion in Eq. (1). It is also necessary to extract information about the

opening from the surrounding field that can be used to relate Gc to

experimental measurements. Unfortunately, the expression for the

Eshelby tensor cannot be decomposed into three components that

can be unambiguously related to the three fundamental modes

[29]. Because the expression with the jump in Eshelby tensor can

be related to the J-integral, decomposition of the fields in symmet-

ric and antisymmetric parts could be considered, following work

on the J-integral [30]. However, this approach is not suitable for

generic application to cracking in laminates. It cannot be applied

to cracking on bimaterial interfaces, and requires the integration

path to be symmetric around the crack plane, which is in the cur-

rent approach only true when the delamination crack is located at

the center plane. With the use of Model 1 from the previous sec-

tion, however, another method to compute the energy release rate

for which such decomposition is possible comes within reach,

namely the method by Zou et al. [15–17].

3.1. Zou’s method

Zou et al. [15–17] have proposed a method which was based on

Model 1 with a 5-parameter shell description. They also make use

of the jump in strain that appears across the configurational inter-

face. Moreover, they have shown that the jump does not disappear

when more elements are used through the thickness. This is obvi-

ously only true when shell elements are used, refinement through

the thickness with solid elements would lead to the LEFM solution

with stress singularity.

There is a distributed force vector acting from one sublaminate

to the other along the crack front. The magnitude of the distributed

force is equal to the jump in generalized force in top and bottom

parts (see Fig. 7)

Fz ¼ Qþ
n � Q�

n ð12Þ
F i ¼ Nþ

ni � N�
ni; i ¼ n; s ð13Þ

In these equations, and the rest of this section, we still use the

{n,s,z}-frame as defined in Fig. 1, which means that n is normal to

the crack front rather than to the crack surface. When this force vec-

tor is multiplied with the opening gradient vector, the energy re-

lease due to crack growth is obtained and it can immediately be

decomposed in three pure mode contributions:

GI ¼ Fzsuz;nt ð14Þ
GII ¼ Fnsun;nt ð15Þ
GIII ¼ Fssus;nt ð16Þ

where suz,nt, sun,nt and sus,nt are the differences in displacement

gradients right of the top and bottom crack surface at the crack

front:

suj;nt ¼ uj;njn¼0� ;z¼0þ � uj;njn¼0� ;z¼0� ; j ¼ z;n; s ð17Þ

In general, there may also be distributed moments acting on the

crack front. However, Zou et al. [15] have shown from equilibrium

considerations that these moments are theoretically equal to zero.

Nevertheless, in a discretized system they may be significant while

the overall solution is still of acceptable accuracy. In that case, it is

better to bring them into the formulation, because the bending

moments do contribute to the energy dissipation for the discret-

ized system. For the Tn-term, which is multiplied with a jump in

curvature /n,n, it is clear that it is related to mode I. For the

Tss/s,nt-term, this not so obvious, not in the last place because it

is not a primary deformation mode (in the thin-plate limit, this

jump in curvature necessarily equal to zero). For completeness,

we also ascribe it to mode I. Thus, Eq. (14) is replaced with

GI ¼ Fzsuz;ntþ Tns/n;ntþ Tss/s;nt ð18Þ

Another issue that may affect the performance is related to the

transverse shear terms, which receive a special treatment to avoid

shear locking. In the thin elements that are used in this paper,the

transverse shear deformation and force fields are supposed to be

extrapolated from a reduced set of sampling points rather than di-

rectly interpolated from the displacement field. It is found that

away from the sampling points the direct interpolated rotation

field values are more accurate than those obtained from reduced

integration. Therefore uz,n is obtained with mixed interpolation:

GI ¼ Fzscnz � /DI
n tþ Tns/n;ntþ Tss/s;nt ð19Þ

where superscript DI is used to indicate that the rotation is com-

puted with direct interpolation of the nodal values.

3.2. Numerical example: DCB

Before several mixed mode cases are treated in detail, Zou’s for-

mulation with adaptations is tested on the DCB example from

Fig. 4. The mesh-refinement study has been repeated with and

without the additional moment and direct interpolation of the

rotation field. In Fig. 8 the results are presented for the total G

using two different expressions for GI (for this case it holds GII =

GIII = 0). It can be observed that the energy release rate distribution

along the front converges to the same values as in Fig. 4 for both

expressions, but that the accuracy of the coarser meshes is much

higher with Eq. (19). The gain in performance for large elements

will be examined in more detail in the mixed mode examples that

follow.
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3.3. Review of other methods

Other methods for mode partitioning will also be applied to

these examples for comparison. Firstly there are the curvature

based relations described by Nilsson and Storåkers [31]. These

are very simple, and therefore appealing, but not accurate for even

basic cases with unequal arms (with respect to the LEFM solution)

and therefore eventually not recommended by Nilsson and Storå-

kers. But because they possess such attractive simplicity, we in-

clude them once more in the comparison. The first relation is

based on the idea that equal curvature of the two arms gives a pure

mode II case:

K II

K I

¼ jB þ jC

jB � jC

ð20Þ

The second is based on the idea that opposite curvature weighed

with respect to the arm heights gives a pure mode I case:

K II

K I

¼ hBjB þ hCjC

hBjB � hCjC

ð21Þ

Notably, for equal arm heights the two criteria are equivalent. These

ratios in stress intensity factors KI and KII are related to ratios in re-

lease rate contributions via the standard fracture mechanics

relation:

K2
II

K2
I

¼ GII

GI

ð22Þ

Then there are the relations by Davidson et al. [18,19] which

have been shown to offer a more realistic characterization of the

mode mixity in terms of predicting the fracture toughness than

LEFM. The basic relation for mixed mode I/II loadings is given as

GII

G
¼ ½Nc

ffiffiffiffiffi
c1

p
cosXþMc

ffiffiffiffiffi
c2

p
sinðXþ CÞ�2

c1N
2
c þ c2M

2
c þ 2

ffiffiffiffiffiffiffiffiffi
c1c2

p
NcMc sinC

ð23Þ

where Nc andMc depend on the stress state around the front and the

thickness and stiffness of the arms. Coefficients C, c1 and c2 also de-

pend on thickness and stiffness of the arms, while X is a phenom-

enological function of the ratio of arm heights. The expression is

based on fracture mechanics considerations, with the exception of

the relation for X. This relation is optimized to give a good fit with

experimental data, i.e. the relation is chosen such that a fixed ratio

GII/G corresponds with a constant measured value of Gc for a range

of different cases and layups [18]. For the complete relations, the

reader is referred to [19].

3.4. Numerical example: MMB

The mixed mode bending (MMB) test is designed as a combina-

tion of the pure mode I double cantilever beam and pure mode II

end-notched flexure test. With a fixed specimen geometry, the the-

oretical mode mix is prescribed by changing the ratio of applied

loads Fe/Fm (see Fig. 9a). For the MMB test, it has been shown that

cohesive methods give the same mode-mix as LEFM [8,32].

As a starting point, we use an analytical solution for a shear

deformable beam with Eq. (10) for the deformation of the un-

cracked part. The mode ratio is computed as:

Fig. 7. Definition of force jumps according to Zou et al. [15] on the free body diagram of an infinitesimal extension of the bottom sublaminate around the front.

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

Fig. 8. Mesh-refinement study for energy release rate along the front computed with Zou’s method in a DCB test, cf. Fig. 4. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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bin ¼ GII

GI þ GII

¼
3
64
F2
m

3
64
F2
m þ Fe � 1

4
Fm

	 
2ð1þ 2kþ k2Þ
ð24Þ

with

k ¼ h

c

ffiffiffiffiffiffiffiffiffiffiffiffi
E

12al

s
ð25Þ

where c is the crack length, h the height of the beam arms and a = 5/

6 is Timoshenko’s shape coefficient that is also used to reduce the

stiffness of the finite elements.

The mixed mode bending test is analyzed for different load

pairs Fm/Fe which correspond with different values of the mode

mix bin according to Eq. (24). A slenderness ratio c/h of 32 is used

and two different ratios between the shear and Young’s modulus:

E/l = 2 and E/l = 20, the former being typical for an isotropic mate-

rial, the latter for a unidirectional fiber reinforced composite mate-

rial. Furthermore, a relatively coarse mesh of 3-node shear

deformable beam elements with Dx/h = 4 is used for Zou’s method,

while the relations by Nilsson and Storåkers [31] and Davidson

et al. [19] are applied analytically. The computed mode ratios bout

with the different methods are compared with the input values bin

in Fig. 9. It can be observed that the simplest formulation based on

the curvature of the two arms as proposed by Nilsson and Storå-

kers is not accurate even for this very basic case. The more ad-

vanced formulation by Davidson et al. is very accurate for the

beam with high shear stiffness. It is exact for the limit case of very

large k. For the case of relatively small k however, it is less accurate

because shear deformation of the uncracked part does not appear

in the formulation. The original formulation by Zou et al. [15]

(Eq. (14), denoted Zou) is not accurate for this relatively coarse

mesh. However, when the proposed modifications are applied

(Eq. (19), denoted ZOU +M,DI) an accurate value is obtained over

the whole range for both cases.

The inaccuracy of Zou’s original method is due to the use of

large elements which is demonstrated with a mesh-refinement

study for the case with bin = 0.4. In Fig. 10, computed values for

pure mode and total energy release rates from different formulas

are given for a range of meshes. We use E/l = 2 which proved to

be the more challenging case for Zou’s model and element aspect

ratios in the range of 0.04 < Dx/h < 16. The energy release rate val-

ues are normalized with respect to the analytical total energy re-

lease for the given geometry and loads. With bin = 0.4 this means

that values of 0.4, 0.6 and 1.0 should be obtained for GII, GI and

G, respectively.

It can be observed that GII as computed with Zou’s method con-

verges very quickly, while there is a big error in GI computed with

the original version. An element size of Dx = 0.1h or smaller is

needed to get an accurate prediction for GI, which is indeed the de-

gree of mesh density Zou et al. use when verifying their method

[15]. The adapted relations, however, correct the error for large ele-

ments. The largest gain is made when adding the moment terms

Fig. 9. Error in predicted mode ratio bout for different values of bin according to Eq. (24). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 10. Mesh-refinement study for energy release rate in MMB test with bin = 0.4

and E/l = 2. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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going from Zou with Eq. (14) to Zou + M with Eq. (18). The second

modification for Zou + M,DI leads to further improvement such

that highly accurate values are obtained for all aspect ratios up

to a value of 10. The fact that both Zou and Zou + M converge to

the same value for GI upon mesh refinement confirms that the con-

tribution from the concentrated moment vanishes theoretically.

3.5. Numerical example: UDCB

Next we analyze the case of an unsymmetric double cantilever

beam with equal moments, see Fig. 11. For this case a LEFM refer-

ence solution is available. With a single material in the specimen,

this is still a fairly simple case. Nevertheless, different models do

not agree here, as illustrated in Fig. 12, where the phase angle

KII/KI in stress intensities (or
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GII=GI

p
) as predicted by different

models is shown. Results are shown for linear elastic fracture

mechanics following Hutchinson and Suo [33], for the modified

fracture mechanics solution by Davidson et al. [19] and for the sim-

ple solution by Nilsson and Storåkers. As noted by Nilsson and

Storåkers their solution does not follow the LEFM solution. Nota-

bly, however, the solution by Davidson et al. differs significantly

from the LEFM solution as well, and they have presented experi-

mental evidence that theirs gives a better characterization of the

material behavior [19].

Furthermore, results are shown that have been obtained with

interface elements and a simple isotropic damage-based cohesive

law (see Appendix A for details). The analyses are performed with

different values of Gc. The total beam thickness is equal to 3 mm

and the fracture toughness Gc is varied from 2 N/mm to 0.002

N/mm. The material is considered isotropic with E = 100 � 103

N/mm2 and m = 0.3. It is found that the computed mode mix

depends significantly on the fracture toughness. For very small

fracture toughness the LEFM solution is retrieved, while for

relatively high fracture toughness, the mode mix approaches the

values predicted by Davidson’s method. The variability in cohesive

results can alternatively be understood as a size effect, since a sim-

ilar trend could be obtained by changing the beam thickness while

keeping Gc constant.

The difference between mode mix predictions by LEFM and a

cohesive method fortifies the question how the mode mix should

be characterized. When the two are not equal, this indicates that

Fig. 11. Unsymmetric double cantilever beam (UDCB).

Fig. 12. Mode phase angle from unsymmetric double cantilever beam (UDCB)

analysis with different models. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 13. Mesh-refinement study for energy release rate in UDCB test with hC/

hB = 0.5 and E/l = 2. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Fig. 14. Total energy release rates in UDCB test computed with different methods

(cf. Fig. 13). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 15. Six-point edge-cracked torsion test [34].
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the small-process-zone assumption of fracture mechanics is not

valid, which is in line with the experimental observations by

Davidson et al. [19]. And indeed the cohesive zone results are not

far from those predicted by Davidson’s theory. However, the cohe-

sive mode mix does approach the LEFM values when Gc is de-

creased (or the beam height is increased). This indicates that

there is a size effect in the mode mix which is not present in David-

son’s relations either. Whether such size effect exists will have to

be verified experimentally. In any case, the inconsistency between

LEFM and cohesive methods for this simple case demands further

research.

Notwithstanding these uncertainties, it is of interest to assess

how the proposed method performs for the UDCB case with large

elements. For this purpose, a mesh refinement study is performed

for the case of hC/hB = 0.5. Zou et al. [15] have shown their method

to converge to the LEFM results only if multiple elements are used

through the thickness of both arms. For this case, four and two lay-

ers of elements in the thick and thin arms, respectively, were

shown to be sufficient. For this through-thickness discretization

and a range of element sizes, results are shown in Fig. 13. Again re-

sults are normalized with respect to the total energy release rate

and dotted lines indicate reference values, derived from the value

for KII/KI from the 2D VCCT analysis reported by Zou et al. [15]. It

can be observed that, also in this case, GII converges very quickly,

while the results for GI are much better for large elements when

the additional term with the concentrated moment is added

(Zou + M). Improvement due to the direct interpolation of rota-

tions (Zou + M,DI) is also still present, but much smaller than

before. Altogether, the minimum in-plane mesh size that is needed

to obtain high accuracy is approximately an order of magnitude

larger when the proposed improvements are applied. This is less

than the almost two orders of magnitude improvement in the

MMB case, but still considerable.

Fig. 14 presents the total energy release rate computed with dif-

ferent methods in a detailed plot around G=G ¼ 1. It can be ob-

served that the method with the Eshelby tensor is most accurate

for all used discretizations.

The results in Figs. 13 and 14 are for an isotropic material

(E/l = 2). Also in this case much smaller errors (with respect to

the LEFM limit) are found with the same discretization when the

E/l ratio is increased.

3.6. Numerical example: 6ECT

Finally, the performance of the method is shown for a more

complex case, namely that of the six-point edge cracked torsion

test developed by Pereira et al. [34] (see Fig. 15). This setup has

been developed for mode III characterization of laminates, but

there is a small mode II contribution near the free edges. The case

is analyzed with two different coarse discretizations: a structured

mesh of 9-node shell elements and an unstructured mesh of 6-

node shell elements. Material parameters and geometry are taken

from the symmetric laminate described by Pereira et al. [34] and

results are compared with VCCT results presented in that same pa-

per (for notch length 30 mm).

In Fig. 16, the used meshes and the obtained energy release rate

distributions are shown. The results are in good agreement with

each other. Most notably, the discretizations are many times coar-

ser than the VCCT mesh in [34]. Moreover, the fact that similar re-

sults are obtained with an unstructured mesh emphasizes the

applicability of this method to cases where the crack front has a

more complex shapes and/or is evolving. For this coarse discretiza-

tion, the unstructured mesh gives minor fluctuations in the com-

puted release rate, but these are related to standard inaccuracies

in the discretized stress field and therefore they vanish upon mesh

refinement.

4. Conclusions

In this paper, different methods for computing the energy re-

lease rate for delamination crack growth have been assessed with

emphasis on their performance for relatively coarse meshes. It has

been shown that as far as computation of the total energy release

rate is concerned, the expression with the Eshelby tensor proposed

in earlier work [22] gives excellent results, even for very large ele-

ments. The accuracy of this technique is compared for three differ-

ent representations of the uncracked part. Using a single layer of

elements in the uncracked part is the most efficient version, but

this results in locking near the free edge. The locking can be re-

moved with a rotation spring. Another alternative is to use two lay-

ers of elements in the uncracked part. Although this introduces a

small-scale phenomenon in the system, it has been shown that

large elements can be used for accurate energy release rate compu-

tation, provided that an element formulation is adopted which ex-

cludes stretching in thickness direction.

With two layers of elements in the uncracked part, another

method with which the energy release rate can be computed

comes within reach, in which it is possible to partition the release

rate into three pure mode rates. This formulation by Zou et al. [15]

has been adapted to give better performance for large elements.

Particularly the inclusion of concentrated bending moments in

Fig. 16. Energy release rate as computed with Zou’s method and a structured and unstructured mesh in comparison with VCCT results by Pereira et al. [34]. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the expression for mode I dissipation improves the accuracy with

large elements significantly.

As indicated in the introduction, relations based on the assump-

tion in Eq. (3) do not completely reflect the complexity of the inter-

facial fracture process. The inconsistency in results that has been

shown in this paper from different approaches to the simple

UDCB-case, contributes to the uncertainty about the reliability of

existing methods. There is need for further research into how the

fracture toughness for mixed mode interfacial crack growth is best

characterized in a generic sense. The proposed method for mode

partitioning is in this respect not different from other methods,

but with respect to existing methods it is still commendable for

its relaxed mesh-requirements.

In future work with moving crack fronts, the Eshelby tensor and

Zou’s method can both be used to compute the energy release rate,

while Zou’s method can furthermore be used to give information

on the mode of crack growth. Multiple elements through the thick-

ness are in some cases needed for accurate mode partitioning with

Zou’s method. But in an adaptive scheme with crack growth, it is

possible to use the through-thickness discretization only in a nar-

row zone around the crack front to further improve efficiency.
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Appendix A. Element formulations

Different element formulations have been used in the numerical

examples, in each case with special care to avoid shear locking be-

cause thin elements are used. In this appendix, a brief overview of

the different elements is given, with references to literature where

more details can be found. The computation of the energy release

rates is in all cases performed in a post-processing step with the

displacement field from linear finite element analysis.

For shell analysis (in Sections 2.3, 3.2 and 3.6) the concept of

mixed interpolation of tensorial components (MITC), first proposed

for bilinear quadrilateral elements by Dvorkin and Bathe [35], is

used. Quadratic elements are used, following the interpolation

schemes for 9-node quadrilaterals and 6-node triangles given by

Lee and Bathe [36]. However, assumed strains are not used for

the in-plane stress components, because curved structures are

not considered. In contrast with the original formulation by Bathe

and coworkers, the elements are formulated in small displace-

ments, following Alfano et al. [25]. The elements contain five de-

grees of freedom per node: three translations and two rotations.

In Sections 2.4, 3.4 and 3.5, 3-node beam elements are used.

These are extensible shear-deformable beam elements without

torsion, which means that there are three degrees of freedom per

node: two translations and one rotation. Details of the formulation

of such elements can be found in finite element textbooks, e.g.

Hughes [37]. Shear locking is avoided with uniform reduced inte-

gration, which means that for the quadratic element two integra-

tion points are used [37].

In Section 2.4, a comparison is made between solid and beam

elements. For this comparison, a solid element is used that is clo-

sely related to the 3-node beam element: a 6-node quadrilateral

element with quadratic interpolation in length direction and linear

interpolation through the thickness. For this element, shear locking

is avoided with selective reduced integration [37]: the shear strain

contribution is evaluated with a 2 � 1 integration, while full 3 � 2

integration is used for the other contributions.

Finally, in Section 3.5, brief reference is made to cohesive zone

analyses. In those analysis, a fine mesh of 4-node quadrilateral so-

lid elements with selective reduced integration is used and the

interface is modeled with cohesive elements with damage law as

described by Turon et al. [8]. The interface is made isotropic by set-

ting GIc = GIIc to make the results better reproducable and less

dependent on the specific cohesive law. These are the only nonlin-

ear analyses performed for this paper. The local mode ratio is com-

puted with pure mode release rates that are obtained through

integration of the cohesive law during the analysis:

GI ¼
R
tz dsuzt; GII ¼

R
tx dsuxt. The plotted mode ratio is the aver-

age of the local mode ratio over a length that is larger than the size

of the cohesive zone.
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