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In this work we study the possible advantages of an updated Lagrangian perspective in the numerical simulation of aluminium
extrusion. For this purpose, we have employed a well established meshless technique known as Natural Element Method (NEM). This
technique presents some advantages over finite element simulations, such as no remeshing requirements and the accuracy of the approx-
imation even with highly distorted triangles or tetrahedra. It is employed in conjunction with the notion of a-shapes of the cloud of nodes 
in order to extract the geometry of the extrudate as it evolves. This state-of-the-art geometrical concept allows us to avoid complex
geometrical checks of self-contact on the boundary of the domain. Aluminium is modelled as a rigid-plastic material, governed by a
Sellars–Tegart-type law. The paper includes some examples that illustrate the potential of the method.
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1. Introduction

Direct aluminium extrusion is one of the most extended forming processes worldwide. Roughly speaking, it is a process
used to produce long profiles by pressing a billet of hot aluminium through a hole with a certain shape. A schematic rep-
resentation of the process is given in Fig. 1.

The design and manufacturing of extrusion dies has been traditionally driven by the experience of designers. Nowadays,
numerical simulation tools—mainly based on finite elements—greatly simplify the design process, though no definitive
automatization has been achieved. This is in part due to the complexity of the process (that involves large transformations
in a coupled thermo-mechanical setting) and the limitations inherent to the FEM. These limitations are often due to the
large mesh distortion during the simulated process. To avoid these, one of the possible solutions is to perform remeshing
when required. But this method is far from being automatized in three dimensions. Other possibility is to employ Arbitrary
Lagrangian–Eulerian simulations [20], in which the mesh displacement can be set independently of the material displace-
ment, thus minimizing the remeshing process.

In this paper we turn back to an updated Lagrangian framework. Since the irruption of meshless or meshfree methods in
the middle nineties [4,11,17] a new possibility has opened. These methods are of different nature, but all share the same
main characteristic: accuracy is not strongly affected by the nodal distribution. In addition, nodal connectivity is con-
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Fig. 1. Schematic representation of the extrusion process.
structed in a process transparent to the user, thus greatly alleviating the user effort in the pre-processing stage of the model.
This allows us to establish updated Lagrangian models that do not suffer from mesh distortion.

Nevertheless, these methods have some drawbacks. Among these, imposition of essential boundary conditions is not
straightforward, being necessary to employ some techniques like Lagrange multipliers, modified variational principles
or others [17]. Other problems, like numerical integration errors, have been recently overcome or, at least, alleviated [6].

The natural element method [26,9] is a meshless method with somewhat different characteristics. Firstly, it is based on
some kind of natural neighbour-based interpolation [24,16]. These interpolation schemes are strictly interpolant and, under
some weak restrictions, they are strictly interpolant on the boundaries of the domain [8,7]. As other meshless methods, the
employ of this kind of interpolation in a Galerkin framework has proved to render accurate results independently of the
‘‘mesh’’ distortion, as shown in [25,21].

In order to avoid complex geometrical checks in the free-surface flow of the extrudate, we have modelled the flow
through a collection of three-dimensional a-shapes [12] that evolve in time. This allows us to deal with a set of nodes only,
without any explicit information on the geometry of the boundary. Thus, development of holes in the material or merge of
flows are treated in a consistent manner with great accuracy in mass conservation.

In this paper we do not pursue the development of a novel model to describe aluminium behaviour, but to analyse the
potential of use of a-shape-based natural element methods to simulate complex forming processes like aluminium extru-
sion. In this paper we have modelled the hot aluminium as a viscoplastic material. This assumption has been accepted
in a vast number of prior works, provided that plastic strains are large enough when compared to elastic ones. This has
been often referred to as flow formulation [33,32] in the forming processes community. Of course, this simple model does
not allow us to predict ‘‘spring-back’’ phenomena. Some basic assumptions have also been taken regarding the simulation
of extrudate-die contact, etcetera.

The outline of the paper is as follows. In Section 2 we introduce a brief review on aluminium behaviour during the extru-
sion process. In Section 3 we review the basics of natural neighbour interpolation and the natural element method. In Sec-
tion 4 we describe the implementation of the coupled thermo-mechanical procedure and, finally, in Section 5 we present
some results that show the potential of the method. The paper finishes summarising the most important conclusions in
Section 6.

2. Aluminium behaviour during the extrusion process

Extrusion, as briefly presented in the introduction before, is a forming process that causes large strains in the aluminium
so as to be able to flow through the die, thus acquiring the desired shape. In this situation, strains are so large when com-
pared to elastic strains, that it has been a common practice in many prior works (see [33,31,32,20], just to cite some of the
first and more recent works using this assumption) to neglect these and to assimilate the aluminium to a visco-plastic mate-
rial. This assumption simplifies the numerical simulation, but that makes impossible the spring-back prediction, whose
modelling requires more accurate behaviour laws also including elasticity. In this setting, aluminium can be considered
as a particular instance of non-newtonian fluids, whose behaviour could be described by

_e ¼ f ðrÞ. ð1Þ
In the pioneer work by Zienkiewicz and Godbolet (see [31] and references therein), the visco-plastic strain rate tensor (sym-
metric part of the gradient of velocities) was defined by a general expression of the type

dvp ¼ _c
oY ðr; qÞ

or
; ð2Þ

where Y is the viscoplastic potential—usually coincident with the plastic criterion as has been considered here, _c is a scalar
function given by
2



_c ¼ hgðY ðr; qÞÞi
g

with hxi ¼ xþ jxj
2

; ð3Þ

hgi is a monotone function that takes zero value only if Y(r,q) 6 0, g is a positive parameter often called viscosity and q
represent the hardening parameters. In what follows we will avoid the use of the vp superscript to indicate viscoplastic if
there is no risk of confusion.

It is common to assume a von Mises type flow for the aluminium in such conditions, so as to give

Y ðr; qÞ ¼ rðsÞ � ryðd; T Þ; ð4Þ
where s ¼ r� tr r

3
I ¼ r� pI is the deviatoric part of the stress tensor, r ¼

ffiffiffiffiffiffiffiffiffiffiffi
3
2
s : s

q
¼

ffiffiffiffiffiffiffi
3J 2

p
represents the effective stress,

and the yield stress ry follows a Sellars–Tegart law:

ryðdÞ ¼ Sm arcsinh
d
A

� �
eQ=RT

� �1=m
" #

; ð5Þ

Sm, m and A are material parameters. A is a factor depending on the magnesium and silicium matrix solute content (see [20]
and references therein). Q represents the activation energy of the deformation process, R is the universal gas constant and,
finally, T is the absolute temperature. d is the only internal variable in this model and is sometimes called effective strain

rate:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
d : d

r
. ð6Þ

Note that if the strain rate tends to zero, so does yield stress. This is not related to the well-known behaviour of aluminium,
so it is a common practice [19] to modify the Sellars–Tegart law to include this initial strain rate, d0:

ryðdÞ ¼ Sm arcsinh
d1

A

� �
eQ=RT

� �1=m
" #

with d1 ¼ maxfd; d0g. ð7Þ

If we combine now the general form of the strain rate tensor given in Eq. (2), assuming W = f(r,q), with Eq. (4), we arrive
to

d ¼ _c
3s

2r
. ð8Þ

It is immediate now, by combining Eq. (6) and the definition of effective stress, r, to prove that _c is precisely the effective
strain rate:

d ¼ _c
r

ffiffiffiffiffiffiffiffiffiffiffi
3

2
s : s

r
¼ _c. ð9Þ

On the other hand, and by following the Perzyna-like model employed in Eqs. (2) and (3) and taking g(f) = f, we arrive to a
relationship between equivalent stress and equivalent strain rate:

d ¼ _c ¼ hr� ryi
g

) r ¼ gd þ ry if r P ry ð10Þ

that, introduced in Eq. (8), accounting Eq. (9), gives the following visco-plastic constitutive equation:

s ¼ 2
gd þ ryðdÞ

3d
d. ð11Þ

Note that, depending on the g value, return to the yield surface is done with different velocity.
Since it is common to describe aluminium behaviour as rigid-plastic (rather than viscoplastic) we employ null viscosity,

so as to enforce Y ¼ r� ry ¼ 0, leading to

s ¼ 2ry

3d
d. ð12Þ

Finally, the constitutive equation, accounting the incompressibility of plastic flow results:

r ¼ 2ld � pI ; with l ¼ ry

3d
. ð13Þ

Of course, this simple model has important limitations. Undoubtedly, the lack of elastic behaviour is one of the most
important. Thus, spring-back cannot be predicted. However, as mentioned before, it has rendered good results and seems
to be widely accepted in the forming processes community [31,33,20].
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3. The natural element method

The natural element method (also known as natural neighbour Galerkin method) can be considered a member of the
vast family of meshless methods. It relies on any of the various natural neighbour-based interpolation schemes to construct
the space of trail and test functions of the Galerkin method. So, it is necessary to introduce these kind of interpolation prior
to describe the characteristics of the NEM.

3.1. Natural neighbour interpolation

There exist various types of natural neighbour-based interpolations, but they all are based on the construction of the
Delaunay triangulation [10] of the cloud of points, D, used to discretise the domain. The Delaunay triangulation of a
set of points N = {n1,n2, . . . ,nN} is the unique triangulation of the set that verifies the so-called empty circumcircle criterion.
This means that no point of the set lies in the interior of a circle that passes through the three vertices of each triangle, see
Fig. 2.

The dual structure of the Delaunay triangulation is the Voronoi diagram of the cloud [28]. For a given node nI, its asso-
ciated Voronoi cell is composed by all of the points which are closer to the node nI than to any other node. Formally,

T I ¼ fx 2 Rn : dðx; xIÞ < dðx; xJ Þ 8J 6¼ Ig; ð14Þ
where TI is the Voronoi cell and d( Æ , Æ ) represents the Euclidean distance. In the problems considered in this paper, n = 3.
Two nodes whose Voronoi cells share one edge are called natural neighbours and hence the name of these interpolation
schemes.

The first, and most obvious, interpolation scheme based on natural neighbours is the so-called nearest neighbour or
Thiessen interpolation [27]. If we give the nodal value to the whole associated Voronoi cell, we obtain a C�1 interpolation
scheme. This interpolation scheme is not suitable for solving second-order partial differential equations, but has been
employed in [15] to construct mixed velocity–pressure approximations for the simulation of incompressible media (see
Fig. 3).

The most extended form of natural neighbour-based interpolation is due to Sibson [24]. For the definition of Sibson
interpolation it is necessary to previously introduce the concept of second-order Voronoi cell. It is defined as the locus
of the points that have the node nI as the closest node and the node nJ as the second closest node:

T IJ ¼ fx 2 Rn : dðx; xIÞ < dðx; xJÞ < dðx; xKÞ 8K 6¼ J ; 8K 6¼ Ig. ð15Þ
If a new point is added to a given cloud of points, the Voronoi cells will be modified by its presence. Sibson [23] defined the
natural neighbour coordinates of a point x with respect to one of its neighbours I as the ratio of the cell TI that is trans-
ferred to Tx to the initial cloud of points to the total area of Tx. In other words, being j(x) and jI(x) the Lebesgue measures
of Tx and TxI respectively, the natural neighbour coordinates of x with respect to the node I is defined as

/sib
I ðxÞ ¼

jIðxÞ
jðxÞ . ð16Þ

The resultant shape function depends obviously on the relative position of the nodes. An example for a node surrounded
by other six is depicted in Fig. 4.

The resultant shape function has some remarkable properties (see [25] or [9] for more in-deep explanations and rigorous
proofs of this behaviour). Firstly, it is smooth (C1) everywhere except from the nodes, as can be seen from Fig. 4. Natural
neighbour (Sibson) shape functions posses linear completeness [25] and form a partition of unity. Therefore, it is possible to
enrich natural neighbour interpolants in order to increase the order of the polynomial reproduced by the interpolation, as
proposed in [3].

Recently, Hiyoshi and Sugihara [16] have generalised the form of natural neighbour interpolants. One different type of
interpolation has attracted the interest of researchers, since it is slightly faster to compute, although gives less smooth inter-
polations. It has received the name of Laplace interpolant. The Laplace interpolant is defined by using geometrical entities
Fig. 2. Delaunay triangulation and Voronoi diagram of a cloud of points. On the right, an example of a degenerate distribution of nodes, with the two
possible triangulations depicted. In this last case, four points lie in the same circumcircle and thus no single triangulation exists.
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Fig. 3. Definition of the natural neighbour coordinates of a point x.

Fig. 4. Natural element (Sibson) shape function (photo courtesy N. Sukumar).
of one dimension less than the original space under consideration. If we define the cell intersection tIJ ¼ fx 2 T I \ T J ;
J 6¼ Ig (note that tIJ may be an empty set) we can define the value

aJ ðxÞ ¼
jtIJ j

dðx; xJ Þ
. ð17Þ

Thus, the point x shape function value with respect to node 4 in Fig. 5 is defined as

/ns
4 ðxÞ ¼

a4ðxÞPn
J¼1aJðxÞ

¼ s4ðxÞ=h4ðxÞPn
J¼1 sJ ðxÞ=hJ ðxÞ½ � ; ð18Þ

where sJ represent the length of the Voronoi segment associated to node J and n represents the number of natural neigh-
bours of the point under consideration, x.

Derivatives of the Laplace shape function are not defined along the edges of the Delaunay triangles that lie inside its
support (see [26]). For the purposes of the work here presented, Sibson�s interpolation has been considered.

In the context of two- and three-dimensional approximations, the unknown variable is approximated in the form:

uhðxÞ ¼
Xn

I¼1

/IðxÞuI ; ð19Þ

where uI is the vector of nodal displacements or velocities and n the number of natural neighbours of each point x. This
leads to a C0 interpolation scheme. With the unknown variable thus approximated, a Galerkin discrete system of equations
is then built.
5



Fig. 5. Definition of non-Sibsonian coordinates.
3.2. Properties of natural neighbour interpolation

Firstly, unlike many other approximation techniques used in meshless methods, Sibson�s interpolation scheme is strictly
interpolant, i.e., the approximated surface pass through the data. This can be expressed as

/IðxJ Þ ¼ dIJ ð20Þ

with dIJ the Kronecker delta tensor.
The natural neighbour (Sibson) interpolant also has linear consistency. This can be demonstrated from the before men-

tioned partition of unity property and its ability to exactly reproduce linear fields (also known as local coordinate property,
see [24]):

Xn

I¼1

/IðxÞxI ¼ x. ð21Þ

The fact that Sibson functions form a partition of unity has been used in [15] to enrich the velocity field so as to give a
mixed velocity–pressure approximation that verifies the inf–sup or Babuška–Brezzi condition.

One important property that derives from the before mentioned ones is that the imposition of essential boundary con-
ditions in NE methods is straightforward. Like in the FEM, it is sufficient to prescribe nodal values to reproduce essential
boundary conditions. In addition, natural neighbour interpolants can be strictly interpolant on the boundaries (convex or
not), under very weak conditions, as demonstrated in [8] by using the theory of a-shapes. This proof was later generalised in
[7]. This means that no interior point of the domain takes influence on the boundary. A brief review of the theory of a-
shapes is presented in Section 4.

These properties are in sharp contrast with many of the most extended meshless methods, which usually need Lagrange
multipliers, modified variational principles, penalty formulations or other methods to verify—often only at a node-wise
level—essential boundary conditions (see [13] for an interesting review on this topic). This and other properties (like its
sound geometrical properties, that will be further analysed next) make the NEM, in the authors� opinion, an appealing
choice for the simulations of forming processes, and in particular, extrusion processes.

4. Numerical implementation

In this section we describe the numerical model of the extrusion process, as explained before, in the context of a natural
neighbour Galerkin method. We firstly review the governing equations and the mixed approximation used to deal with the
incompressibility conditions. Then, we describe the technique used to deal with the free-surface flow that extrusion pro-
cesses involve.

4.1. Governing equations

We consider the balance of momentum equations, without inertia and mass terms

$ � r ¼ 0 ð22Þ
6



and the assumed incompressibility of a von Mises-like flow:

$ � v ¼ 0; ð23Þ
where v represents the velocity field. The stress–strain rate relationship is given by Eq. (12). Parameters governing the
aluminium yield stress (see Eq. (8)) are summarised in Table 1.

This rigid-plastic material is coupled with the following heat transfer equations:

$ðk$T Þ þ _r � ðqcp
_T Þ ¼ 0; ð24Þ

where k denotes the thermal conductivity, _r the heat generation rate, q the specific density and cp the specific heat of the
metal. The rate of heat generation in the aluminium billet due to plastic deformation is given by

_r ¼ br : d; ð25Þ
where b represents the fraction of mechanical energy transformed to heat and is assumed to be 0.9 [30]. Together with these
equations, appropriate boundary conditions are considered:

r � n ¼ t in Ct; ð26Þ
v ¼ v in Cv; ð27Þ

where Ct and Cv represent, respectively, the part of the boundary C = oX where tractions and velocities are prescribed.
In addition, along the boundary, either temperature or heat flux is prescribed.

If we write the incremental variational equation at time t + Dt we arrive to:Z
XðtþDtÞ

�ðpt þ DpÞI þ 2lðd t þ DdÞðd t þ DdÞð Þ : d� dX ¼ 0. ð28Þ

Due to the non-linear character of the constitutive equations, an iterative approach has been applied, using the Newton–
Raphson scheme, thus leading toZ

XðtþDtÞ
�DDpI þ 2l

olðd tþDt
k Þ

od
: DDd

� �
d tþDt

k þ 2lðd tþDt
k ÞDDd

� �
: d� dX

¼ �
Z

XðtþDtÞ
ð�ptþDt

k I þ 2lðd tþDt
k Þd tþDt

k Þ : d� dX; ð29Þ

where the subscript k indicates the iteration within a time increment. The incremental form of the incompressibility con-
dition resultsZ

XðtþDtÞ
$ � ðDDvÞp� dX ¼ �

Z
XðtþDtÞ

$ � ðvtþDt
k Þp� dX. ð30Þ

If we approximate the velocities and pressures, as well as their variations, by employing a finite-dimensional set of basis
functions, we arrive to a discrete form of the previous equations (Bubnov–Galerkin method)

DDvhðxÞ ¼
Xn

I¼1

/IðxÞDDvI ; ð31Þ

DDphðxÞ ¼
Xn

I¼1

wIðxÞDDpI ; ð32Þ

where n represents the number of nodes considered in the approximation. The functions wI(x) and /I(x) in this work rep-
resent some form of natural neighbour interpolation, which will be studied in the following section. This leads to the linear
system:
Table 1
Material parameters for AA6063 aluminium alloy (values taken from [20])

Parameter Units Value

d0 s�1 0.005
Sm MPa 25
m 5.4
A s�1 6 · 109

Q
J

mol
1.4 · 105

R
J

mol K
8.314
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K tþDt
k G

GT 0

!
DDv

DDp

� �
¼ f tþDt

k

0

 !
ð33Þ

being the updating given by

vtþDt
kþ1 ¼ vtþDt

k þ DDv; ð34Þ
ptþDt

kþ1 ¼ ptþDt
k þ DDp. ð35Þ

Obviously, Eqs. (29) and (30) will be solved iteratively until convergence.

4.2. Mixed natural neighbour approximations

The above Eqs. (29) and (30) represent the linearised form of a Hellinger–Reissner-like functional. There are two essen-
tial variables, namely velocities and pressure. It is well known that trial spaces for these two variables must be chosen care-
fully, in order to avoid locking in the solution. In other words, these approximation spaces must be chosen so as to
guarantee stability of the resulting formulation. This choice must thus verify the so-called inf–sup or Babuška–Brezzi con-
dition [2,5], together with the ellipticity condition.

The LBB condition may be written as

inf
ph2Ph

sup
vh2Uh

Z
X

ph$ � vh dX

kphk0kvhk1

¼ ch P c > 0; ð36Þ

where c is a positive constant independent of the mesh size, h. Uh and Ph represent, respectively, the displacement and
pressure approximation spaces whose norms are defined as

k � k2
0 ¼

Z
X
ð�Þ2 dX; ð37Þ

k � k2
1 ¼

Z
X

X2

i;j¼1

oð�Þi
oxj

� �2

dX. ð38Þ

This condition is rarely proved analytically. Instead, its fulfillment is usually checked numerically.
In [15], an analysis of the stability of different mixed approximations employing natural neighbour-based interpolants

was made. Although Sibson–Thiessen interpolation for velocities and pressures, respectively, has been found not to verify
the inf–sup condition, it has rendered excellent results in previous works in the field of Fluid Mechanics [22,21] and rarely
presents locking. In [15] an enriched formulation was developed by employing the partition of unity paradigm. Thus, a
formulation with quadratic consistency in velocities and constant or linear pressures was found to verify the inf–sup con-
dition. In this work, a Sibson–Thiessen formulation has been employed, which has one nodal degree of freedom less than
the previous one.

4.3. Theory of a-shapes

In free-surface flows like extrusion, and notably in three-dimensional cases, tracking the flow boundaries is a complex
issue. Nodes on the boundary must be marked and checks must be done so as to verify the development of holes in the fluid
or the coalescence of two or more flows. In this work we have employed a distinct technique, based in the extraction of the
shape of the domain at each time step, without any supplementary information.

The concept of ‘‘shape’’ has usually no formal meaning in geometry (as opposed to others like diameter. . .). Edelsbrun-
ner [12] gave a rigorous parameterisation of the set of shapes that a set of nodes can describe. To this end, a parameter a,
related to the level of detail up to which the set is to be represented, must be introduced.

An a-shape is a polytope that is not necessarily convex nor connected, being triangulated by a subset of the Delaunay
triangulation of the points. Thus, the empty circumcircle criterion holds. Let N be a finite set of points in R3 and a a real
number, with 0 6 a <1. A k-simplex rT with 0 6 k 6 3 is defined as the convex hull of a subset T � N of size jTj = k + 1.
Let b be an a-ball, that is, an open ball of radius a. A k-simplex rT is said to be a-exposed if there exist an empty a-ball b

with T ¼ ob \ N where o means the boundary of the ball. In other words, a k-simplex is said to be a-exposed if an a-ball
that passes through its defining points contains no other point of the set N.

Thus, we can define the family of sets Fk,a as the sets of a-exposed k-simplices for the given set N. This allows us to define
an a-shape of the set N as the polytope whose boundary consists on the triangles in F2,a, the edges in F1,a and the vertices or
nodes in F0,a.
8



A three-dimensional simplicial complex is a collection, C, of closed k-simplices (0 6 k 6 3) that satisfies:

(i) If rT 2 C then rT 0 2 C for every T 0 � T.
(ii) The intersection of two simplexes in C is empty or is a face of both.

Each k-simplex rT included in the Delaunay triangulation, D, defines an open ball bT whose bounding spherical
surface (in the general case) obT passes through the k + 1 points of the simplex. Let .T be the radius of that bounding
sphere, then, the family Gk,a, is formed by all the k-simplexes rT 2 D whose ball bT is empty and .T < a. The family Gk,a

does not necessarily form simplicial complexes, so Edelsbrunner and Mücke [12] defined the a-complex, Ca, as the sim-
plicial complex whose k-simplexes are either in Gk,a, or else they bound (k + 1)-simplexes of Ca. If we define the under-
lying space of Ca, jCaj, as the union of all simplexes in Ca, the following relationship between a-shapes and a-complexes
is found:

Sa ¼ jCaj 8 0 6 a <1. ð39Þ

In order to clarify the before presented concepts, consider some examples of a-shapes computed from a cloud of points
corresponding to the simulation of two-dimensional extrusion process. We restrict ourselves to geometrical concepts
only.

Consider the extrusion example shown in Fig. 6, where the contour plot of equivalent plastic strain rate is depicted. The
key idea of the method here proposed is to extract the shape of the domain at each time step by invoking the concept of a-
shape of the cloud. The a parameter will be obtained by geometrical considerations. In this case the radius at the inlet of the
die, for instance, seems to be the smallest level of detail up to which the domain (i.e., the billet) must be represented. In
order to appropriately represent this value, the nodal distance h must be accordingly chosen.

In Fig. 7 some members of the family of a-shapes of the cloud of points in its final configuration (corresponding to
Fig. 6(b)) are depicted. In Fig. 7(a) the member for a = 0, i.e., the cloud of points itself, is shown. Note how, as a is in-
creased, the number and size of the simplexes (in this case, triangles) that belong to the shape is increasing. For a = 1.0
we obtain an appropriate shape for the cloud. Note, however, that this is not an exact value to be determined at each time
step. Since the number of a-shapes is finite, there generally exists an interval of valid a values for a single shape. Finally, by
increasing the a value, we arrive to the convex hull of the cloud of points (Fig. 7(f)).

Note, however, that the idea is not to choose a parameter a appropriate for the cloud. a represents a measure of the level
of detail of the model. Once a is fixed by the user, a nodal cloud of typical size h < a must be generated in order to be able to
reproduce the desired level of detail. Thus, a can be kept fixed throughout the simulation, although it can take different
values at different regions of the model.

The use of a-shapes has also a direct outcome in the imposition of essential boundary conditions. As mentioned before,
if natural neighbour (Sibson or Laplace) interpolants are computed over an a-shape of the cloud, linear interpolation of
essential boundary conditions on convex as well as non-convex boundaries is guaranteed (see [8] and [7] for an in-deep
demonstration of this property). We have coined this method the a-shape based NEM, or simply a-NEM [8].
Fig. 6. Two snapshots of a two-dimensional simulation of an extrusion process. Equivalent plastic strain rate is depicted.
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Fig. 7. Some members of the family of a-shapes of the cloud of points used in the extrusion example. (a) S0 (the cloud of points), (b) S0:3, (c) S0:5,
(d) S1:0, (e) S1:5 and (f) S1 (the convex hull of the set).
4.4. Uncoupled thermo-mechanical procedure

The resulting, coupled, non-linear problem is solved using a semi-implicit scheme combined with a fixed point iteration
algorithm to treat the non-linear coupling. Moreover, the fixed point algorithm allows to de-couple the resolution of the
mechanical and thermal problems at each iteration. Thus, assuming known the velocities and temperatures at time tn, vn

and Tn respectively, we proceed as follows:
10



(1) Explicit updating of the material domain. this process is performed moving all the nodes with the associated velocity:

xnþ1
I ¼ xn

I þ vn
I Dt.

(2) Velocity updating. Compute vnþ1
0 using Eq. (29) and (30) assuming the temperature Tn unchanged (the temperature

field affects the pseudo-viscosity parameter l (Eq. (13)) through the expression of the yield stress (Eq. (7)).
(3) Temperature updating. Update T nþ1

0 solving Eq. (24). The material derivative of the temperature field is discretised in a
Lagrangian form, i.e.,

dT
dt

����
I

¼ T ðxnþ1
I Þ � T ðxn

I Þ
Dt

.

The resulting thermal diffusion problem is integrated by a semi-implicit Cranck–Nicolson scheme. In each step, the
velocity field that defines the rate of heat generation (Eq. (25)) is assumed unchanged and given by the just computed
kinematics vnþ1

0 .
(4) Velocity correction. We recompute step (2) assuming T nþ1

0 in the yield stress expression, leading to the new velocity
field vnþ1

1 .
(5) Temperature correction. We recompute step (3) using vnþ1

1 in the rate of generation expression, leading to the field
T nþ1

1 .
(6) Convergence check.

if kvnþ1
1 � vnþ1

0 k < e

and

jT nþ1
1 � T nþ1

0 j < e

then proceed to the next time step. Otherwise return to (4).
Remark 1. Using a fully explicit time discretisation the model becomes uncoupled at each time step.

Remark 2. If, after convergence in step (6), the previous nodal updating is recomputed, that is, if we return to step (1),
then the fixed point algorithm is applied to solve the fully implicit coupled model.

This algorithm has proven to converge in at most three iterations per time step in the examples presented in Section 5.

5. Numerical results

5.1. 3D simulation of plane strain extrusion

In this section we study a simple, academic, example of extrusion of a hollow, rectangular-shaped profile, where the
dimension of one of the rectangle sides is much bigger than the other. Its geometry is shown in Fig. 8. Thus, the central
section of the profile with respect to the largest rectangle side can be simulated under the assumption of plane strain, if we
focus our interest in the region closer to the axis of symmetry. This section is labelled as ‘‘A’’ in Fig. 8. In addition, the
other symmetry on section A has been taken into account in order to simulate only one half of the domain. Moreover,
Fig. 8. Geometry of the extrusion die and detail of the simulated region.
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Fig. 9. Initial configuration of the cloud of points for the plane strain problem.
only the small region depicted in the detail of Fig. 8 has been simulated (this is a usual practice in the simulation of this
kind of processes).

The cloud of points consisted of 575 nodes, whose initial configuration is shown in Fig. 9. Plane strain conditions were
imposed by appropriate boundary conditions. The billet was assumed to be 0.5 mm thick because we conduct a 3D sim-
ulation, so we need to give an arbitrary value to the thickness in the out plane direction. A prescribed velocity of 1 mm/s,
normal to the surface, was imposed at the lower and rightmost faces of the billet. Slip boundary conditions were assumed at
the billet-die contact, where a null heat flux was imposed. Convective boundary conditions were assumed when the ex-
truded billet gets out of the die, namely, at y = 4, being the initial temperature 773 K. Finally, in Table 2, thermal prop-
erties of aluminium are summarised.

The simulation ran for 96 time steps of 0.0025 s. a-shapes for several time steps are depicted in Fig. 10. Note that in this
case the level of detail is bounded by the minimum radius of curvature to be reproduced, namely 0.2 mm (see detail in
Fig. 8). The computed equivalent strain rate is depicted in Fig. 11. The corresponding temperature distributions for these
time steps are shown in Fig. 12.

These results are in perfect agreement with those obtained in [1] using a two-dimensional formulation. Despite of the
highly distorted tetrahedra (see Fig. 10), our results are also in good agreement with those obtained by Lof [18,19] using
an ALE formulation in a similar geometry. In our case, however, due to the updated Lagrangian character of the formu-
lation, no special treatment was necessary to deal with free surfaces and the advection term in the heat equation, as re-
quired in ALE formulations (see [19] and references therein), where it is frequent that a flow out of the mesh appears
when the extrudate gets out of the die. In this situation, mesh adjustments must be done.

5.2. 3D extrusion simulation

In this section a more realistic simulation is presented. We deal with the extrusion of a cross-shaped profile whose geom-
etry is shown in Fig. 13 and which was simulated using finite elements by Zhou et al. in [30]. The formulation described in
Sections 2 and 4 has been employed, namely a Sellars–Tegart formulation for the behaviour of hot aluminium, as well as
Table 2
Thermal parameters for AA6063 aluminium alloy

Parameter Units Value

b 0.9
k N/s K 180.0
qcp N/mm2 K 2.39
h N/s mm K 0.1
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Fig. 10. a-shapes at different time steps: (a) 1st step, (b) 30th step, (c) 60th step, (d) 96th step.

Fig. 11. Equivalent strain rate at different time steps: (a) 1st step, (b) 30th step, (c) 60th step, (d) 96th step.
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Fig. 12. Temperature distribution at different time steps: (a) 1st step, (b) 30th step, (c) 60th step, (d) 96th step. Note the different temperature scales in each
figure.

Fig. 13. Geometry of the die for the extrusion of the cross-shaped profile. (a) Perspective view and (b) geometry.
the semi-implicit algorithm previously described for solving the non-linear coupled model. Aluminium characteristics re-
main the same as in the previous example. An initial temperature of the whole billet of 723 K was considered, and slipping
boundary conditions with the die walls were assumed, where the heat flux is supposed vanishing.

By applying appropriate boundary conditions only one eighth of the geometry was modelled. An initial cloud of 1313
nodes was considered as shown in Fig. 14. Extrusion was forced by imposing a velocity of 2 mm/s at the outer face of the
billet. The simulation ran in 42 time steps of 0.025 s.

Resulting a-shapes for time steps 1, 20, 30 and 42 are depicted in Fig. 15, being the equivalent strain rate and the tem-
perature shown in Figs. 16 and 17 respectively. Note that, for post-processing purposes only, symmetry has been applied to
the results in order to render the whole geometry of the extrudate. In Fig. 18 the interior distribution of temperatures is
shown.
14



Fig. 14. Initial configuration of the cloud of points for the 3D problem.

Fig. 15. a-shapes for the extruded profile at different time steps: (a) 1st step, (b) 20th step, (c) 30th step, (d) 42nd step.
The updated Lagrangian formulation employed allowed us to predict the final shape of the profile with great accuracy.
Results of this simulation can be compared to some extent (boundary conditions are not exactly the same) to those of Zhou
et al. [30] by employing a FE updated Lagrangian approach and continuous remeshing. While temperature and equivalent
strain rate distributions show similar patterns, it is expected that the lack of remeshing in our technique would produce less
numerical diffusion in the results. Of course, this assert must be verified in additional test problems.
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Fig. 16. Equivalent strain rate for different time steps: (a) 1st step, (b) 20th step, (c) 30th step, (d) 42nd step.

Fig. 17. Temperature profiles for different time steps: (a) 1st step, (b) 20th step, (c) 30th step, (d) 42nd step.
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Fig. 18. Interior distribution of temperatures at the final time step.
6. Conclusions

In this paper we have presented a study of the potential applicability of the natural element method to the numerical
simulation of aluminium extrusion. This technique allows us to employ an updated Lagrangian formulation in spite of
the large material transformations that this process exhibits, avoiding remeshing. This means that the cloud of nodes re-
mains the same throughout the simulations (though it is possible to add or delete nodes) and no mapping of secondary
variables is necessary if stabilized nodal integration is used [14]. This Lagrangian approach also avoids many of the burden
associated with ALE techniques, such as how to determine the velocity of the mesh.

We have employed a Sellars–Tegart formulation to model the behaviour of hot aluminium coupled with the appropriate
thermal equations using a semi-implicit algorithm for solving the non-linear coupled mechanical model. From the geomet-
rical point of view, an a-shape-based approach to extract the geometry of the domain at each time step has been used. This
avoids the use of complex geometrical information to locate nodes belonging to the boundary, such as those necessary to
determine the presence or development of holes or merge of flows. As discussed, this has also a direct outcome in the impo-
sition of essential boundary conditions, thus rendering a truly conforming method, in sharp contrast with the vast majority
of meshless methods.

All this leaded us to conclude that the NEM has a big potential in its application to various forming processes (in gen-
eral, those with large transformations) and in particular to extrusion processes. Moreover, the computational cost of the
NEM, which is bigger than that of the FEM, is not a big difficulty in this class of problems, where the vast majority of time
is passed in iterating in the Newton–Raphson scheme.

Other aspects remain, however, unclear, such as the more appropriate technique for the simulation of extrusion of thin-
walled profiles. In this case, for instance, an a-shape approach can be more demanding, since more nodes must be placed
along the thickness of the resulting profile in order to accurately capture the geometry of the domain. Related approaches,
such as the Constrained-NEM (C-NEM, [29]) could be probably applied in order to reduce the number of nodes employed
in the simulation.
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[8] E. Cueto, M. Doblaré, L. Gracia, Imposing essential boundary conditions in the natural element method by means of density-scaled a-shapes, Int. J.
Numer. Methods Engrg. 49-4 (2000) 519–546.
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[15] D. González, E. Cueto, M. Doblaré, Volumetric locking in natural neighbour Galerkin methods, Int. J. Numer. Methods Engrg. 61 (4) (2004) 611–

632.
[16] H. Hiyoshi, K. Sugihara, Two generalizations of an interpolant based on Voronoi diagrams, Int. J. Shape Model. 5 (2) (1999) 219–231.
[17] S. Li, W.K. Liu, Meshfree and particle methods and their applications, Appl. Mech. Rev. 55 (2002) 1–34.
[18] J. Lof, Developments in finite element simulations of aluminium extrusion, Ph.D. thesis, Department of Mechanical Engineering, Applied Mechanics

Section. University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, 2000.
[19] J. Lof, Elasto-viscoplastic FEM simulation of the aluminium flow in the bearing area for extrusion of thin-walled sections, J. Mater. Process. Technol.

114 (2001) 174–183.
[20] J. Lof, Y. Blokhuis, FEM simulations of the extrusion of complex thin-walled aluminium sections, J. Mater. Process. Technol. 122 (2002) 344–354.
[21] M.A. Martinez, E. Cueto, I. Alfaro, M. Doblare, F. Chinesta, Updated Lagrangian free surface flow simulations with natural neighbour Galerkin

methods, Int. J. Numer. Methods Engrg. 60 (13) (2004) 2105–2129.
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