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THREE-DIMENSIONAL PASSIVE EARTH PRESSURES BY

KINEMATICAL APPROACH

By Abdul-Hamid Soubra,1 Member, ASCE, and Pierre Regenass2

ABSTRACT: The 3D passive earth pressure problem is investigated by the upper-bound method in limit analysis.
Three kinematically admissible failure mechanisms referred to as M1, Mn, and Mnt are considered for the
calculation schemes. The M1 mechanism is an extension into three dimensions of the classical 2D Coulomb
mechanism. The Mn mechanism is a generalization of the M1 mechanism and is composed of a sequence of
rigid blocks. Finally, the Mnt mechanism is a more elaborate mechanism in which the final block of the Mn
mechanism is truncated by two portions of right circular cones. The lowest upper-bound solutions given by the
present analysis are compared with other authors’ results and presented in a form of design tables relating the
geometrical parameters, soil properties, and the 3D passive earth pressure coefficients.
INTRODUCTION

The problem of the passive earth pressures acting on rigid
retaining walls has been widely studied in the literature. Most
of the research effort has concentrated on a refinement of 2D
analyses with little attention given to 3D aspects. The calcu-
lation schemes are based on either the limit-equilibrium
method (Coulomb 1773; Terzaghi 1943; Shields and Tolunay
1972, 1973; Rahardjo and Fredlund 1984; Zakerzadeh et al.
1999), the slip line method (Caquot and Kérisel 1949; Soko-
lovski 1960), or the limit analysis methods (Lysmer 1970; Lee
and Herington 1972; Chen and Rosenfarb 1973; Soubra et al.
1999; Soubra 2000).

In this paper, the 3D nature of the passive earth pressure
problem is investigated by the upper-bound method of the
limit analysis theory. Three kinematically admissible failure
mechanisms are considered for the calculation schemes. The
analysis will consider the general case of a frictional and co-
hesive (f and c) soil with an eventual surcharge loading q on
the ground surface. The numerical results of the 3D passive
earth pressures are presented in the form of dimensionless co-
efficients Kpg, Kpc, and Kpq representing the effect of soil
weight, cohesion, and surcharge loading, respectively.

THEORETICAL ANALYSIS

It is well known that the 3D nature of the passive earth
pressure problem has the favorable effect of increasing the
passive earth pressures exerted on the wall. In this paper, the
increase of the passive pressures due to the decrease of the
wall breadth is investigated using the kinematical approach of
the limit analysis theory. The following assumptions have been
made in the analysis:

• The wall of dimensions b 3 h (b = breadth; h = height)
is vertical, and the backfill is horizontal.

• A translational soil-wall movement is assumed.
• The soil is homogeneous and isotropic. It is assumed to

be an associated flow rule Coulomb material obeying
Hill’s maximal work principle.

1Prof., IUP Génie Civil et Infrastructures, LGCNSN, Bd. de
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• The angle of friction d at the soil-structure interface is
assumed to be constant. This hypothesis is in conformity
with the translational kinematics assumed in this paper.

• A tangential adhesive force Pa is assumed to act at the
soil-structure interface. The intensity of this force is c(tan
d/tan f)bh.

• The velocity at the soil-structure interface is assumed tan-
gential to the wall (Chen 1975). Other investigators (Col-
lins 1969, 1973; Mroz and Drescher 1969) assumed that
the interfacial velocity is inclined at d to the wall in order
to respect the normality condition. Both hypotheses lead
to the same result of the limit load (Drescher and De-
tournay 1993; Michalowski 1999). [For more details, the
reader may refer to Soubra (2000).]

Upper- and Lower-Bound Theorems of Limit Analysis

As is well known, the limit theorems of the limit analysis
theory enable us to determine upper- and lower-bound solu-
tions for the stability problems of a rigid perfectly plastic ma-
terial. Whereas the lower-bound method is complex due to the
fact that it requires the construction of a complete stress field,
the upper-bound method is simpler: Equating the rate of ex-
ternal work to the internal rate of energy dissipation for a
kinematically admissible velocity field gives an unsafe solu-
tion of the collapse or limit load. A kinematically admissible
velocity field is one that satisfies the flow rule, the velocity
boundary conditions, and compatibility. Note that the velocity
field at collapse is often modeled by a mechanism consisting
of rigid blocks that move with constant velocities. Because no
general plastic deformation of the soil mass is permitted to
occur, the energy is dissipated solely at the interfaces between
adjacent blocks that constitute velocity discontinuities. This
kind of velocity field will be used herein.

It should be noted that the limit load calculated from limit
analysis is based on the normality condition, which is not true
for granular material. However, recent theoretical considera-
tions made on translational failure mechanisms (Drescher and
Detournay 1993; Michalowski and Shi 1995, 1996) allow one
to conclude that, for a nonassociative material, the limit load
can be obtained by the use of the flow rule associated with a
new yield condition in which c and f are replaced by c* and
f* as follows:

cos c sin f
tan f* = (1)

1 2 sin c sin f

cos c cos f
c* = (2)

1 2 sin c sin f

where c = dilatancy angle. Hence, the results presented in the
present paper can be used for nonassociative material provided



FIG. 2. Velocity Field of M1 Mechanism 

FIG. 1. (a) Failure Mechanism M1; (b) Vertical Section through
xOy

that the internal friction angle f and the cohesion c are re-
placed with f* and c* calculated from (1) and (2), respec-
tively.

Failure Mechanisms

In this paper, three translational failure mechanisms referred
to as M1, Mn, and Mnt are considered for the calculation
schemes. These mechanisms are presented in the following
sections.

One-Block Mechanism M1

A simple failure mechanism for a rectangular vertical wall
is shown diagrammatically in Fig. 1(a). This mechanism is an
extension into three dimensions of the 2D well-known Cou-
lomb mechanism. The horizontal movement of the wall
AA9BB9 is accommodated by movement of the material
AA9BB9DD9. The Cartesian coordinate system is selected so
that the plane of symmetry coincides with z = 0. Fig. 1(b)
shows the vertical section through xOy.

As shown in Fig. 1(a), the M1 mechanism is composed of
a single rigid block AA9BB9DD9 bounded by the vertical plane
2

xOy
FIG. 3. (a) Failure Mechanism Mn; (b) Vertical Section through

AA9BB9, the lower plane AA9DD9, and the lateral planes ABD
and A9B9D9; it outcrops on the ground surface by the trape-
zoidal area BB9DD9. This mechanism is defined by a single
angular parameter b1, the dihedral angle between the horizon-
tal plan and the lower plan AA9DD9.

As in the case of the 2D analysis, the soil mass AA9BB9DD9
moves with velocity V1 inclined at an angle of b1 1 f to the
horizontal direction (Fig. 2); the wall moves with velocity V0

and V0,1 representing the relative velocity at the soil-structure
interface. All of these velocities are parallel to the vertical
symmetrical plane xOy. Note that the velocity V1 should also
make an angle f with the lateral plane ABD (respectively,
A9B9D9) in order to respect the normality condition. This im-
poses that the angle between the vector V1 and its orthogonal
projection on the lateral plane ABD (respectively, A9B9D9)
must be equal to f. This condition yields the orientation of
the lateral planes ABD and A9B9D9 for a given inclination b1

of the lower plane AA9DD9. It can be shown that the dihedral
angle j1 [cf. Fig. 1(a)] between the lateral plane ABD (respec-
tively, A9B9D9) and the vertical plane xOy can be expressed as

sin f
tan j = (3)1 2 2cos f 2 sin (b 1 f)Ï 1

where b1 [ ]0, p/2 2 2f[. The condition b1 < p/2 2 2f
ensures that the lateral planes are at maximum in the plane of
the wall.

Multiblock Mechanism Mn

A better upper-bound solution would require a more elab-
orate failure mechanism Mn [cf. Fig. 3(a)] composed of n rigid
blocks. Note that in Fig. 3(a) only five blocks are shown; how-
ever, the formulation is applicable to any number of blocks.
In this improved mechanism, the horizontal movement of the
wall AA9BB9 is accommodated by movement of n rigid blocks.
Fig. 3(b) shows the vertical section through xOy.

As shown in Fig. 3(a), the first rigid block isAA9BB9D D91 1



FIG. 4. Velocity Field of Mn Mechanism

adjacent to the vertical wall and is bounded by the radial plane
the lower plane and the lateral planesBB9D D9, AA9D D9,1 1 1 1

ABD1 and An intermediate block i is limited by twoA9B9D9.1

radial planes and the lower planeBB9D D9 BB9D D9 ,i21 i21 i i

and the lateral planes BDi21 Di andD D9 D D9 , B9D9 D9.i21 i21 i i i21 i

The last block outcrops on the ground surface by a trapezoidal
area This mechanism is defined by 2n 2 1 angularBB9D D9.n n

parameters ai (i = 1, . . . , n 2 1) and bi (i = 1, . . . , n) [cf.
Fig. 3(b)].

As shown in Fig. 4, the block velocities Vi and the inter-
block velocities are parallel to the vertical symmetricalVi21,i

plane xOy. The kinematics of the first block adjacent to the
wall is similar to that of the M1 mechanism. For the remaining
blocks, the orientation of the lateral plane (respec-BD Di21 i

tively, is defined by the dihedral angle zi betweenB9D9 D9)i21 i

the plane and the lateral plane (respec-BB9D D9 BD Di21 i21 i21 i

tively, This angle is determined by orthogonal pro-B9D9 D9).i21 i

jection of vector Vi (cf. Fig. 4) on planes andBB9D D9i21 i21

(respectively, The calculation details areBD D B9D9 D9).i21 i i21 i

given in Regenass (1999). As for the M1 mechanism, b1 < p/
3

FIG. 5. Failure Mechanism Mnt

2 2 2f. However, the condition b1 > 0 does not hold in the
present mechanism.

Truncated Multiblock Mechanism Mnt

Further improvement in the upper-bound solution may be
obtained by a volume reduction of the final block in the Mn
mechanism. In this improved mechanism (cf. Fig. 5), the lower
plane and the lateral planes of the last block of the Mn mech-
anism are truncated by two portions of right circular cones
with vertices at and respectively. The right (re-D D9 ,n21 n21

spectively, left) cone is tangent to the lateral plane BD Dn21 n

(respectively, and the lower planeB9D9 D9) D D9D D9 .n21 n n n n21 n21

These cones have axes collinear with the velocity Vn of the
last block. They are characterized by an opening angle equal
to 2f in order to satisfy the normality condition for an asso-
ciated flow rule Coulomb material. The present mechanism is
kinematically admissible because it verifies all of the kine-
matical and velocity boundary conditions. The velocity ho-
dographs of this mechanism are identical to the ones of the
Mn mechanism.

Work Equation

The work equation is obtained by equating the rate of ex-
ternal work done by the external forces to the rate of internal
energy dissipation along the different velocity discontinuities.
TABLE 2. Values of Kpq and Corresponding Geometrical Parameters (M1 Mechanism)

f
(deg)
(1)

b/h = 0.25

Kpq

(2)
b1

(3)
AGS /bh

(4)

b/h = 1

Kpq

(5)
b1

(6)
AGS /bh

(7)

b/h = 10

Kpq

(8)
b1

(9)
AGS /bh

(10)

15 9.03 32.76 5.60 4.12 30.36 2.86 2.58 26.14 2.19
20 20.39 27.14 10.80 7.83 25.79 4.48 3.98 22.51 2.72
25 51.63 21.72 22.24 17.25 21.04 7.79 6.81 18.72 3.58
30 160.18 16.39 52.08 47.86 16.09 15.47 13.99 14.68 5.26
35 736.18 11.04 159.28 201.78 10.95 44.18 41.21 10.31 9.76
40 9,108.49 5.60 977.12 2,348.34 5.59 252.79 319.89 5.45 35.58
45 — — — — — — — — —

TABLE 1. Values of Kpg and Corresponding Geometrical Parameters (M1 Mechanism)

f
(deg)
(1)

b/h = 0.25

Kpg

(2)
b1

(3)
vol/bh2

(4)

b/h = 1

Kpg

(5)
b1

(6)
vol/bh2

(7)

b/h = 10

Kpg

(8)
b1

(9)
vol/bh2

(10)

15 6.86 32.31 2.16 3.56 29.46 1.29 2.52 25.77 1.09
20 14.82 26.86 4.00 6.42 25.21 1.90 3.83 22.15 1.33
25 36.36 21.59 7.92 13.41 20.70 3.10 6.41 18.38 1.72
30 110.27 16.33 18.00 35.36 15.93 5.98 12.71 14.40 2.44
35 498.68 11.02 54.04 142.38 10.89 15.70 35.20 10.13 4.26
40 6,103.99 5.60 327.60 1,597.19 5.58 86.16 244.60 5.40 13.79
45 — — — — — — — — —



TABLE 3. Values of Kpc and Corresponding Geometrical Parameters (M1 Mechanism)

f
(deg)
(1)

b/h = 0.25

Kpc

(2)
b1

(3)
Adis/bh

(4)

b/h = 1

Kpc

(5)
b1

(6)
Adis/bh

(7)

b/h = 10

Kpc

(8)
b1

(9)
Adis/bh
(10)

15 29.84 32.76 14.38 11.50 30.36 6.15 5.78 26.14 3.66
20 53.09 27.14 22.17 18.59 25.79 8.35 8.01 22.51 4.21
25 108.36 21.72 37.70 34.63 21.04 12.62 12.25 18.72 5.14
30 275.44 16.39 75.03 80.90 16.09 22.62 22.24 14.68 6.97
35 1,049.62 11.04 199.69 286.43 10.95 55.14 57.11 10.31 11.87
40 10,853.5 5.60 1,086.06 2,797.09 5.59 280.84 379.68 5.45 39.36
45 — — — — — — — — —
TABLE 4. Ratios Kpg(3D)/Kpg(2D) for d/f 5 1 from M1 Mecha-
nism

f
(deg)
(1)

Kpg(3D)/Kpg(2D)

b/h = 0.25
(2)

b/h = 1
(3)

b/h = 10
(4)

20 4.20 1.82 1.09
30 10.92 3.50 1.26
40 65.93 17.25 2.64

TABLE 5. Kpg versus Number of Rigid Blocks n from Mn Mech-
anism (f 5 458; d/f 5 1; and b/h 5 0.25, 1, and 10)

n
(1)

b/h

0.25
(2)

1
(3)

10
(4)

Reduction (%)

0.25
(5)

1
(6)

10
(7)

2 1,981.59 533.19 98.35 — — —
3 1,515.94 411.15 79.49 23.50 22.89 19.17
4 1,404.46 381.83 74.85 7.35 7.13 5.85
5 1,359.87 370.08 72.97 3.18 3.08 2.51
6 1,337.47 364.18 72.02 1.65 1.59 1.30
7 1,324.62 360.80 71.48 0.96 0.93 0.76
8 1,316.56 358.67 71.14 0.61 0.59 0.48

The external forces contributing to the rate of external work
consist of the passive earth force Pp, the weight of the soil
mass in motion, and the surcharge q on the ground surface.
The total rate of external work is given by

˙ ˙ ˙ ˙W = W 1 W 1 W (4)P g qp

where

Ẇ = P cos d cos(b 1 f)V (5)P p 1 1p

n

Ẇ = 2g vol sin(b 1 f)V (6)g i i iO
i=1

Ẇ 2 qA sin(b 1 f)V (7)q GS n n

where voli = volume of block i; and AGS = area of the failure
mechanism at the ground surface.

Energy is dissipated at the soil-wall interface, at the lower
and lateral planes between the material at rest and the material
in motion, at the radial plane(s) separating the rigid block(s),
and at the conical surfaces between the lateral and the lower
planes in the Mnt mechanism. The total rate of energy dissi-
pation is given by

˙ ˙ ˙D = D 1 D (8)w low1lat1rad1con

where

Ḋ = (P sin d 1 P )V (9)w p a 0,1

Ḋlow1lat1rad1con

n n21

= c cos f V (A 1 A ) 1 V A 1 V Ai low lat n con i21,i radF O O Gi i i
i=1 i=1 (10)
4

FIG. 6. Comparison of Kpg and Kpq between M1 and Mn Mech-
anisms (d/f 5 1)

By equating the total rate of external work to the total rate
of energy dissipation along the different velocity discontinui-
ties, one obtains

2h
P = K ?g ? ?b 1 K ?c ?h ?b 1 K ?q ?h ?b (11)p pg pc pq2



TABLE 6. Ratios Kpg(3D)/Kpg(2D) for d/f 5 1 from Mn Mecha-
nism

f
(deg)
(1)

Kpg(3D)/Kpg(2D)

b/h = 0.25
(2)

b/h = 1
(3)

b/h = 10
(4)

20 3.95 1.75 1.08
30 8.33 2.85 1.19
40 20.12 5.79 1.48

FIG. 7. Traces of Mn Mechanism: (a) Plan View; (b) Vertical
Section through xOy (f 5 308, d/f 5 1, and b/h 5 1)
5

TABLE 7. Kpg versus Number of Rigid Blocks n from Mnt
Mechanism (f 5 458; d/f 5 1; and b/h 5 0.25, 1, and 10)

n
(1)

b/h

0.25
(2)

1
(3)

10
(4)

Reduction (%)

0.25
(5)

1
(6)

10
(7)

2 784.56 235.81 69.14 — — —
3 728.41 217.45 61.53 7.16 7.79 11.01
4 717.13 213.71 59.84 1.55 1.72 2.74
5 713.09 212.36 59.22 0.56 0.63 1.04
6 711.21 211.74 58.92 0.26 0.30 0.50
7 710.18 211.39 58.76 0.14 0.16 0.28

where Kpg, Kpc, and Kpq = passive earth pressure coefficients
due to soil weight, cohesion, and surcharge loading, respec-
tively. These coefficients are function of f, d, and b/h.

NUMERICAL RESULTS

The most critical passive earth pressure coefficients can be
obtained by a minimization procedure of these coefficients
with respect to the angular parameters describing the different
failure mechanisms. Three computer programs using the VBA
programming language that resides in Microsoft Excel have
been written to define the coefficients of passive earth pres-
sures as function of the mechanisms’ parameters. The mini-
mization procedure is performed using the Solver optimization
tool of Microsoft Excel. The method of minimization used is
the general reduced gradient method. The programs give the
minimal passive earth pressure coefficients and the corre-
sponding critical slip surfaces. In the following sections, one
first presents the Kpg, Kpq, and Kpc coefficients obtained from
the three failure mechanisms. Then, in the spirit of the upper-
bound approach, the lesser of the three solutions is given in
the form of design tables for practical use in geotechnical en-
gineering.

Results from M1 Mechanism

Some results from the M1 mechanism are presented in Ta-
bles 1–3 where the values of Kpg, Kpq, and Kpc are tabulated
for f ranging from 157 to 457, for d/f = 1, and for three values
of b/h (b/h = 0.25, 1, and 10). The optimum values of the
parameter b1 and the corresponding normalized critical ge-
ometry of the potentially sliding mass (i.e., vol/bh2 for Kpg,
AGS/bh for Kpq and Adis/bh for Kpc) are also listed against the
coefficients of passive earth pressures K where vol = total vol-
ume of the soil mass in motion; and Adis = area of velocity
discontinuities.

Note that for f = 457, there is no solution since the restric-
tive condition concerning angle b1 implies that b1 = 0 in that
particular case. Tables 1–3 clearly shows that the passive earth
pressure coefficients and the corresponding optimal geometry
(i.e., volume or surface) increase with increasing f. This in-
crease is significant for great f values. For instance, for b/h
= 1 and d/f = 1, an increase in the soil internal friction angle
from 207 to 257 increases the coefficient Kpg by a factor of 2.1
and the volume vol/bh2 by 1.6. However, an increase in f from
357 to 407 increases Kpg by a factor of 11.2 and the volume
vol/bh2 by 5.5. Hence, the present mechanism seems to greatly
overestimate the passive earth pressure coefficients for great
f values.

Of particular interest in Tables 2 and 3 is the same optimal
parameter b1 obtained from the minimization of both Kpq and
Kpc coefficients. It is also interesting to note that these coef-
ficients are related by the following relationship [cf. theorem
of corresponding states of Caquot (Caquot and Kérisel 1949)]:



TABLE 8. Ratio Kpg(3D)/Kpg(2D) for d/f 5 1 from Mnt Mecha-
nism

f
(deg)
(1)

Kpg(3D)/Kpg(2D)

b/h = 0.25
(2)

b/h = 1
(3)

b/h = 10
(4)

20 3.39 1.64 1.07
30 6.16 2.36 1.15
40 12.08 3.86 1.33

FIG. 8. Comparison of Kpg and Kpq between Mn and Mnt Mech-
anisms (d/f 5 1)

1
K 2pq cos d

K = (12)pc tan f

Thus, in the following sections, only Kpg and Kpq coefficients
will be presented; Kpc may be computed using (12).

Table 4 presents the ratios Kpg(3D)/Kpg(2D) for f ranging
from 207 to 407, for d/f = 1, and for three values of b/h (b/h
= 0.25, 1, and 10).
6

Section through xOy (f 5  308, d/f 5  1, and b/h 5 1)
FIG. 9. Traces of Mnt Mechanism: (a) Plan View; (b) Vertical



FIG. 10. Traces in Plan View of Mnt Mechanism for f 5 208, 308, 408; d/f 5 0 and 1; and b/h 5 1
Notice that as the length b/h increases, the ratio Kpg(3D)/
Kpg(2D) decreases; that is, the end effect decreases. It should
be emphasized that, when 2D problems (i.e., large values of
b/h) are used, the passive earth pressure coefficients predicted
based on the current analysis are identical to those of 2D anal-
ysis given by Chen (1975). As shown in Table 4, the end
effects are most pronounced for great f values. For instance,
for b/h = 10, the ratio Kpg(3D)/Kpg(2D) is equal to 1.09 when
f = 207 and attains 2.64 when f = 407.

Results from Mn Mechanism

Table 5 presents the Kpg coefficient obtained from the Mn
mechanism for various values of n (the number of rigid
blocks) when f = 457; d/f = 1; and b/h = 0.25, 1, and 10.
This table shows that the upper-bound solution can be im-
proved by increasing the number of rigid blocks. The reduc-
tion in the Kpg value decreases with the n increase (1.59% for
n = 6 and b/h = 1). Hence, all subsequent results are given for
n = 5 blocks.

Some results of Kpg and Kpq obtained from the Mn mecha-
nism are compared to those given by the M1 mechanism in
Fig. 6 for f ranging from 157 to 457, for d/f = 1, and for
three values of b/h (b/h = 0.25, 1, and 10).

As expected, the Mn mechanism gives better results than
the M1 mechanism. This may be explained by the fact that the
geometry of the Mn mechanism is less restrictive than that of
7

FIG. 11. Kpg versus f for d/f 5 0, 1/2, and 1 when b/h 5 1

the M1 mechanism. For instance, when f = 407, d/f = 1, and
b/h = 1, the improvement of the solution attains 92.8%.

Table 6 presents the ratios Kpg(3D)/Kpg(2D) for f ranging
from 207 to 407, for d/f = 1, and for three values of b/h (b/h
= 0.25, 1, and 10). This table exhibits trends similar to those



TABLE 9. Kpg Values for Various Governing Parameters f, d,
and b/h

b/h
(1)

f
(deg)
(2)

d/f

0
(3)

1/3
(4)

1/2
(5)

2/3
(6)

1
(7)

0.25 15 3.633 3.634 3.635 3.636 3.637
20 5.399 5.400 5.401 5.402 5.403
25 7.983 7.984 7.985 7.986 7.987
30 11.886 11.887 11.888 11.889 11.890
35 20.044 20.045 20.046 20.047 20.048
40 50.430 50.431 50.432 50.433 50.434
45 215.455 215.456 215.457 215.458 215.459

0.5 15 2.673 3.062 3.282 3.524 4.054
20 3.726 4.538 5.041 5.629 6.994
25 5.229 6.849 7.963 9.379 12.776
30 7.443 10.604 13.096 16.634 25.085
35 11.984 17.354 22.855 32.487 54.064
40 28.594 40.954 53.74 79.700 131.753
45 114.009 148.475 178.689 224.310 379.494

1 15 2.190 2.490 2.658 2.841 3.191
20 2.887 3.487 3.853 4.279 5.139
25 3.850 5.001 5.779 6.760 8.798
30 5.221 7.391 9.067 11.418 16.273
35 7.954 11.518 15.150 21.308 33.202
40 17.676 25.317 31.218 49.269 77.015
45 63.152 82.517 99.555 125.324 212.364

2 15 1.946 2.189 2.340 2.492 2.737
20 2.466 2.956 3.252 3.593 4.171
25 3.159 4.069 4.677 5.435 6.746
30 4.111 5.777 7.038 8.787 11.764
35 5.939 8.600 11.279 15.683 22.607
40 12.218 17.499 22.962 32.329 49.371
45 37.520 49.289 59.708 75.515 128.306

5 15 1.798 2.022 2.145 2.256 2.451
20 2.211 2.633 2.885 3.133 3.561
25 2.743 3.505 4.006 4.542 5.456
30 3.444 4.801 5.808 6.965 8.948
35 4.73 6.849 8.938 11.519 16.035
40 8.942 12.808 16.806 21.145 32.361
45 21.743 28.869 35.262 45.043 76.983

10 15 1.748 1.962 2.069 2.169 2.352
20 2.125 2.524 2.748 2.954 3.348
25 2.604 3.315 3.770 4.178 5.004
30 3.222 4.473 5.394 6.209 7.958
35 4.327 6.266 8.150 9.870 13.730
40 7.851 11.244 14.754 17.226 26.424
45 16.153 21.665 26.684 34.430 59.215

Strip 15 1.698 1.891 1.987 2.080 2.250
20 2.040 2.393 2.579 2.768 3.127
25 2.464 3.080 3.427 3.794 4.529
30 3.000 4.052 4.692 5.402 6.905
35 3.690 5.484 6.677 8.075 11.242
40 4.599 7.698 9.992 12.863 19.938
45 5.828 11.350 16.019 22.313 39.644

observed in Table 4. On the other hand, for b/h = 10 and f =
407, the present value of the ratio Kpg(3D)/Kpg(2D) = 1.48 may
be compared with the previous value of Kpg(3D)/Kpg(2D) = 2.64
obtained from the M1 mechanism. One may conclude that the
present mechanism gives better predictions of the 3D effect.

Fig. 7 shows the plan view and the cross section through
xOy of the Mn mechanism as obtained from the minimization
of Kpg when f = 307, d/f = 1, and b/h = 1.

It can be observed that the volume of the last block
is significant in comparison to the remainingBD D B9D9D94 5 4 5

blocks.

Results from Mnt Mechanism

Table 7 presents the Kpg coefficient obtained from the Mnt
mechanism for various values of n when f = 457; d/f = 1;
and b/h = 0.25, 1, and 10.

The reduction in the Kpg value is equal to 7.8% when n =
3 and attains 0.3% when n = 6 for b/h = 1. One may conclude
8

TABLE 10. Kpq Values for Various Governing Parameters f, d,
and b/h

b/h
(1)

f
(deg)
(2)

d/f

0
(3)

1/3
(4)

1/2
(5)

2/3
(6)

1
(7)

0.25 15 4.588 5.315 5.735 6.201 6.983
20 7.068 8.704 9.736 10.960 13.015
25 10.736 14.202 16.635 19.770 24.817
30 16.329 23.415 29.140 37.382 49.352
35 28.104 40.698 53.606 77.039 104.684
40 72.265 103.502 135.815 170.861 243.616
45 221.247 283.828 336.637 412.522 646.788

0.5 15 3.153 3.628 3.900 4.198 4.625
20 4.563 5.583 6.219 6.967 8.057
25 6.606 8.690 10.135 11.984 14.599
30 9.664 13.810 17.113 21.829 27.909
35 16.014 23.190 30.545 43.615 57.371
40 39.512 56.591 74.259 91.492 130.190
45 115.741 148.661 176.444 216.319 338.705

1 15 2.432 2.777 2.972 3.182 3.419
20 3.307 4.014 4.449 4.956 5.543
25 4.540 5.926 6.873 8.073 9.445
30 6.332 8.999 11.084 13.951 17.124
35 9.969 14.436 19.006 25.670 33.627
40 23.136 33.136 43.481 51.724 73.351
45 62.912 80.988 96.248 118.102 184.474

2 15 2.068 2.345 2.499 2.620 2.798
20 2.677 3.223 3.554 3.848 4.256
25 3.505 4.536 5.229 5.902 6.819
30 4.666 6.585 8.055 9.562 11.656
35 6.946 10.059 13.218 16.622 21.638
40 14.947 21.408 26.666 31.723 44.748
45 36.374 47.008 55.993 68.811 107.059

5 15 1.848 2.081 2.185 2.271 2.409
20 2.296 2.741 2.969 3.148 3.453
25 2.882 3.694 4.176 4.533 5.189
30 3.666 5.127 6.147 6.865 8.277
35 5.133 7.433 9.615 11.077 14.269
40 10.034 13.923 16.376 19.515 27.268
45 20.194 26.327 31.524 38.875 60.019

10 15 1.773 1.986 2.072 2.152 2.274
20 2.168 2.577 2.746 2.906 3.173
25 2.673 3.410 3.748 4.060 4.620
30 3.333 4.637 5.316 5.924 7.100
35 4.528 6.558 7.951 9.155 11.708
40 8.263 10.838 12.821 15.303 21.219
45 14.571 19.177 23.101 28.599 43.854

Strip 15 1.698 1.878 1.956 2.027 2.133
20 2.040 2.365 2.516 2.655 2.881
25 2.464 3.026 3.302 3.565 4.021
30 3.000 3.947 4.443 4.937 5.846
35 3.690 5.278 6.173 7.105 8.949
40 4.599 7.286 8.928 10.750 14.643
45 5.828 10.486 13.657 17.367 26.168

that the present mechanism rapidly converges to the optimal
solution. Hence, in the following section, only five rigid blocks
are used, which means that the minimization procedure is
made with respect to nine angular parameters.

The results of Kpg and Kpq obtained from the present mech-
anism are compared to those given by the Mn mechanism in
Fig. 8.

As expected, the Mnt mechanism gives better results than
the Mn mechanism. For instance, when f = 457, d/f = 1, and
b/h = 1, the improvement of the solution attains 42.6%.

Table 8 presents the ratios Kpg(3D)/Kpg(2D) for f ranging
from 207 to 407, for d/f = 1, and for three values of b/h (b/h
= 0.25, 1, and 10).

As shown in Table 8, the Mnt mechanism gives better pre-
dictions of the 3D effect because, for the same case considered
in the preceding sections (i.e., b/h = 10 and f = 407), the
present value of the ratio Kpg(3D)/Kpg(2D) = 1.33 is smaller
than the one obtained from the Mn mechanism (cf. Table 6).

Fig. 9 shows the plan view and the cross section through



FIG. 12. Blum’s Failure Mechanism

xOy of the Mnt mechanism as obtained from the minimization
of Kpg when f = 307, d/f = 1, and b/h = 1.

In the plan view, the Mnt mechanism is bounded by the
traces of the lateral planes BM and B9M9, the trace of the lower
plane NN9, and the traces of the conical sectors MN and M9N9.
As is the case with Mn, the present failure mechanism mobi-
lizes a great volume for the last block.

Fig. 10 shows the traces in the plan view of the Mnt mech-
anism for f = 207, 307, and 407 when d/f = 0 and 1 and b/h
= 1.

For d/f = 0, one can observe a significant change in the
failure surface between f = 307 and 407. This can be explained
by the fact that, for a smooth wall and when f < 307, the
critical failure mechanism as given by the numerical minimi-
zation is obtained for n = 1 (i.e., one-block truncated mecha-
nism). The five-block mechanism is of interest only for great
f and d values.

Finally, it should be mentioned that the trace of the present
failure mechanism in plan view is smooth as observed exper-
imentally by Meksaouine (1993).

Discussion of Results

As shown before, the Mnt mechanism gives the least upper-
bound solution to the 3D passive earth pressure problem.

Fig. 11 shows the variation of Kpg with f for d/f = 0, 1/2,
and 1 when b/h = 1.

For a rough wall (d/f > 2/3), the critical Kpg values are
obtained with the maximal allowable number of blocks (i.e.,
five blocks in the present case). However, when d/f < 2/3 and
f < 407, the critical failure mechanism as obtained from the
numerical minimization is reduced to the one-block truncated
mechanism. On the other hand, it should be mentioned that
for b/h > 7 the maximal number of blocks is needed to obtain
the optimal solution. This is to be expected because, in that
case (i.e., 2D analysis), the one-block mechanism greatly over-
estimates the passive earth pressure coefficients for great f
and d values.

Finally, extensive numerical results of Kpg and Kpq as ob-
tained from the Mnt mechanism for various governing param-
eters are given in Tables 9 and 10 for practical use in geo-
technical engineering.

Comparison with Existing Solutions

Although the 2D passive earth pressure problem has been
widely treated in the literature using different approaches, the
3D passive earth pressure problem has received little attention
apart from the work of Blum (1932) using the limit-equilib-
rium method. As shown in Fig. 12, Blum’s mechanism is an
extension into three dimensions of the traditional one-block
Coulomb mechanism in which the frictional forces at the lat-
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FIG. 13. Comparison with Blum (1932) for: (a) f 5 158; (b) f =
358

eral planes are neglected. According to Blum (1932), the 3D
passive earth force is given by

31 p f h p f2 2 2P = gh b tan 1 1 g tan 1 (13)p S D S D2 4 2 6 4 2

Figs. 13(a and b) show the comparison between the present
results and those given by Blum (1932) for f = 157 and 357;
for d/f = 0, 1/3, 1/2, 2/3, and 1; and for different values of
b/h.

These figures clearly show that Blum’s solutions are in good
agreement with the present solutions only for loose sand and
a smooth wall. However, for dense sand and rough wall,
Blum’s solutions greatly underestimate the passive earth pres-
sure coefficients. This difference may be explained by the fact
that the lower slip surface in Blum’s mechanism is assumed
to be planar. Furthermore, Blum made an a priori assumption



concerning the length of DC at the ground level (cf. Fig. 12).
Finally, Blum neglected the frictional forces on the lateral
planes AED and BFC.

CONCLUSIONS

Similar to the 2D analysis, the one-block 3D failure mech-
anism M1 greatly overestimates the passive earth pressures for
great f and d values.

The multiblock mechanism Mn improves the results given
by the M1 mechanism due to the flexibility of this mechanism
especially for great values of f and d. It gives better predic-
tions of the 3D effect. However, the trace of the failure mech-
anism in the plan view is not as smooth as observed experi-
mentally by Meksaouine (1993).

Finally, the truncated multiblock mechanism is more effi-
cient than the Mn mechanism because it gives smaller upper-
bound solutions and leads to a critical slip surface in the plan
view that is similar to that observed experimentally.

The numerical results have shown that the truncated mul-
tiblock mechanism is reduced to the truncated one-block
mechanism for d/f < 2/3 and f < 407; otherwise, the truncated
five-block mechanism is needed to obtain the optimal upper-
bound solutions.

The comparison of the results obtained from the Mnt mech-
anism with those given by the classical Blum solutions has
shown that this author greatly underestimates the passive earth
pressure coefficients for a rough wall and a dense sand.

Finally, numerical results based on the Mnt mechanism for
various governing parameters are given for practical use.
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