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The variational formulation of viscoplastic constitutive updates 
M. Ortiz*, L. Stainier

Graduate Aeronautical laboratories, California Institute of Technology, Pasadena, CA 91125, USA 

We present a class of constitutive updates for general viscoplastic solids including such aspects of material behavior as finite elastic and 

plastic deformations, non-Newtonian viscosity, rate-sensitivity and arbitrary flow and hardening rules. The distinguishing characteristic of 

the proposed constitutive updates is that, by construction, the corresponding incremental stress-strain relations derive from a pseudo-elastic 

strain-energy density. This, in tum, confers the incremental boundary value problem a variational structure. In particular, the incremental 

deformation mapping follows from a minimum principle. This minimum principle may conveniently be taken as a basis for error estimation 

and mesh adaption. The accuracy and robustness of the variational constitutive updates is demonstrated with the aid of convergence tests 

involving the finitely-deforming Mises solid and ductile single crystals. The ability of the updates to resolve the complex patterns of slip activity 

which arise in the latter application is particularly noteworthy. 

1. Introduction 

The numerical integration of history-dependent constitutive relations plays a central role in computational 
plasticity. Considerable effort has been devoted to the formulation of constitutive updates which retain 
acceptable accuracy and efficiency over finite time steps. A widely used class of constitutive updates is the 
so-called return mapping algorithms. The essence of this approach dates back to the pioneering work of Wilkins 
[74], and has subsequently been extended to include non-smooth yield surfaces, such as arise in multi-surface 
plasticity, rate sensitivity and other aspects of material behavior [ 16,17,41,48-51,54,56,57,63-65] . Key 
mathematical tools which have aided these developments are convex analysis [20,43-46,48]; operator splitting 
and product formulae [48,50,54,57]; and nonlinear semi-group theory, specially as regards issues related to the 
analysis of consistency, stability and convergence [48,50,51,57]. Variational formulations for the elastoplastic 
boundary value problem have also been recently advanced [15,23,24]. These principles provide an effective 
basis for the formulation of mixed finite-element approximations, wherein both the displacement and the 
state-variable fields are represented by interpolation. 

However, perhaps the most compelling aspect of variational formulations, specially when they take the form 
of a minimum principle, is that they provide a suitable basis for error estimation and, by extension, for mesh 
adaption in strongly nonlinear problems [58]. While methods of error estimation and mesh adaption for linear 
problems are presently well understood (e.g. [71 ]), they are comparatively less developed in the context of 
strongly nonlinear, possibly dynamic, problems [8,17,31,52] . Radovitzky and Ortiz [58] have recently shown 
that the solutions of the incremental boundary value problem for a wide class of materials, including nonlinear 
elastic solids, compressible Newtonian fluids, and viscoplastic solids, obey a minimum principle, even in the 
presence of inertia, provided that the constitutive updates are formulated appropriately. Under these conditions, 
the finite element error is bounded above by the corresponding interpolation error and, consequently, the 
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classical interpolation-error bounds of approximation theory apply (e.g. [14]). The resulting error bounds in turn 
provide an effective framework for mesh adaption. 

In this paper, we present a class of constitutive updates for general viscoplastic solids including such aspects 
of material behavior as finite elastic and plastic deformations, non-Newtonian viscosity, rate-sensitivity and 
arbitrary flow and hardening rules. The distinguishing characteristic of the proposed constitutive updates is that, 
by construction, the corresponding incremental stress-strain relations derive from a pseudo-elastic strain-energy 
density. While the focus of this work in on the time-integration of the constitutive relations, it follows 
immediately that the existence of a pseudo-elastic strain-energy density confers the incremental boundary value 
problem a variational structure. In particular, the incremental deformation mapping follows from a minimum 
principle. 

As already mentioned, this minimum principle may be taken as a basis for error estimation and mesh adaption 
[58] . However, an essential difficulty in dealing with finitely deforming viscoplastic solids is that the 
incremental pseudo-elastic strain energy density is not convex in general [4], and often fails to be quasi-convex, 
e.g. due to latent hardening or to geometrical softening in single crystals [53]. This lack of quasi-convexity may 
give rise to arbitrarily fine oscillations in the solution (see e.g. [5, 13] ), which compounds matters of mesh 
adaption. However, Friesecke and Dolzmann [57] have shown that certain forms of viscosity regularize the 
problem and render the effective time-discretized energy density quasi-convex for sufficiently small time step. 
Similar conclusions were drawn by Needleman [47] as regards the stabilizing effect of rate-dependency in 
problems involving strain localization. These observations provide an incentive for the explicit consideration of 
viscosity and rate-sensitivity in the material description.  

The constitutive framework adopted here is based on a conventional internal-variable formulation of 
continuum thermodynamics (see e.g. [33,34]). Within this framework, Coleman's relations characterize the 
equilibrium properties of the solid and the kinetics of the internal processes is described by a general set of rate 
equations. In particular, these rate equations account for the rate-sensitivity of the solid. In addition, we endow 
the solid with non-Newtonian viscosity. We note, however, that in order to describe general plastic flow rules, 
the conventional internal variable formalism must be extended so as to include non-holonomic internal 
constraints. We show that, for a given rate of deformation, the internal-variable rates and the direction of plastic 
flow, or flow rnle, may jointly be derived from a variational principle which generalizes the principle of 
maximum dissipation. This variational characterization of the constitutive relations applies even in the presence 
of rate-sensitivity and non-Newtonian viscosity . 

The cornerstone of the variational updates proposed here is a time-discretized version of the variational 
statement of the constitutive relations just described. We show that the minimization of a quasi-thermodynamic 
function, which combines the free energy of the solid, the conjugate inelastic potential for the kinetic equations 
and the viscous potential, jointly returns the updated value of the internal variables and the effective plastic flow 
direction, or flow rule, over the time step. In addition, we show that the minimum of the quasi-thermodynamic 
function thus obtained acts as a potential for the stress-strain relations, thus ensuring the variational character of 
the update. In particular, the consistent or algorithmic tangent moduli [ 66] are automatically symmetric. 

The constitutive update is thus reduced to a nonlinear optimization problem for the updated internal variables 
and such kinematic parameters as determine the plastic flow direction. In the case of multi-surface plasticity, as 
exemplified by models of ductile single crystals, the determination of the active constraints becomes the central 
problem. A number of efficient nonlinear optimization techniques are presently in existence which furnish a 
systematic means of determining the active constraint set (see e.g. [9]). The accuracy and robustness of the 
variational constitutive updates is demonstrated with the aid of convergence tests for the finitely-deforming 
Mises solid and ductile single crystals. The ability of the updates to resolve the complex patterns of slip activity 
which arise in the latter case is particularly noteworthy. 

2. General formulation of viscoplasticity 

In order to nairnw down the discussion, we begin by drawing a sharp distinction between internal processes 
whose kinetics involve gradients, e.g. heat conduction and diffusion, and internal processes which are ostensibly 
local. The former class of internal processes are governed by field equations such as the heat equation. We shall 
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presume that the multi-physics aspects of the problem are addressed by recourse to a staggered procedure 
[ l ,2,10,11,32,40], with the result that during a mechanical step the internal variables governed by nonlocal 
kinetics, such as temperature, entropy, or second-phase concentrations, are held fixed at known values. The 
problem is thus reduced to the integration of the constitutive equations which describe the local internal 
processes. 

Our primary focus in the present paper concerns plastic and viscoplastic solids. These solids are characterized 
by the existence of a certain class of deformations FP, or 'plastic' deformations, which leave the crystal lattice 
undistorted and unrotated, and, consequently, induce no Jong-range stresses. In addition to the plastic 
deformation F P, some degree of lattice distortion Fe may also be expected in general. One therefore has, 
locally, 

F =FeFr (2 . 1) 

This multiplicative elastic-plastic kinematics was first suggested by Lee [30] and further developed by others 
[3,25,26,37,60,68] within the context of ductile single crystals .  

For purposes of illustration, we shall refer below to the l inearization of (2.1 ) .  Let u be a displacement field 
about the undeformed configuration. Then, the linear part of the deformation gradient F about the undeformed 
configuration in the direction of u is (e.g. [38] ) 

(DF, u) =Vu== p (2.2 ) 

The l inearization of (2.1) is, therefore: 

(2 .3) 

where pc and pr are the l inear parts of Fe and FP, respectively. The linearized strain tensor Eis the symmetric 
part of p. Likewise, the elastic and plastic strain tensors Ee and Er are the symmetric parts of pe and pP, 
respectively. 

We adopt an internal variable formalism [33,34] to describe the local inelastic processes and postulate the 
existence of a Helmholtz free energy density of the form 

A= A(Fe, Fr, Q) = A(FFp-I' FP, Q )  == A(F, FP, Q) (2 .4) 

where Q E RN denotes some suitable collection of internal-or hardening-variables. The free energy may also
depend on other variables, such as temperature, vacancy and solute concentrations, and others, whose evolution 
is governed by partial differential field equations. As remarked earlier, we presume such variables to be 
integrated independently as part of a staggered procedure and for present purposes they may be regarded as 
given. The complete set of internal variables is, therefore, {FP, Q}. The local state of the material is described 
by the variables {F, Fr, Q}. 

We shall denote by P the first Piola-Kirchoff stress tensor (e.g. [38]). The equilibrium part of P follows from 
Coleman's relations as A,F(F, Fr, Q ). The tacit assumption in writing (2 .4) is that

A_F(F° =I, Fr, Q )  = 0 (2.5) 

i .e. that the solid fully relaxes its free energy when its plastic deformation F P exactly matches the overall 
imposed deformation F. However, the kinematics of plastic flow, as embodied in the plastic flow rule, generally 
results in incompatible plastic deformation fields. This incompatibility prevents the full plastic relaxation of the 
free energy and the material becomes stressed. 

EXAMPLE 2.1: Structure-insensitive elastic response. In materials such as metals, the elastic response is
ostensibly independent of the internal processes and the free energy (2 .4)  decomposes additively as 

(2 .6 ) 
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The function we determines the elastic response of the metal, e.g. upon unloading, whereas the function WP
describes the hardening of  the material. Physically, W P  represents the stored energy due to the plastic working of 
the material. If WP is independent of FP and the state of hardening if fully described by a single internal
variable, i.e. N '= 1, then the material is said to undergo isotropic hardening. The case in which W P  depends on 
F P  only is known as kinematic hardening. The back-stress tensor: 

(2.7) 

represents a shift in the plastic flow potential, or the elastic domain in the rate-independent limit. 

EXAMPLE 2.2.· Power-law hardening. The commonly employed isotropic hardening model assumes a 
power-law structure of the form: 

nY0Q0 ( Q )(n+l)ln
W P =YQ+ -- -o n + l Qo 

where Y0 and Q 0 are constants, and n is the hardening exponent. 

If, in addition, the material possesses viscosity, the stresses follow in the form 

(2.8) 

(2.9) 

where Pv is the viscous part of the stresses. The viscosity law Pv (F; F, Q) is said to derive from a potential if
there exists a function </>(F; F, Q) such that 

(2. IO) 

We shall assume the usual regularity condition of Pv , namely, that 

Pv(F; F, Q). F = o( jF j) (2.11) 

where, here and subsequently, the dot product between two second-order tensors A and B is understood to be
A · B =A ijBiJ" The regularity condition (2.11) ensures that quasi-static processes do not result in viscous
dissipation. 

EXAMPLE 2.3: Newtonian viscosity. In the case of Newtonian viscosity, the viscous stresses follow as 

(2.12) 

where 

(2.13) 

is the viscous part of the Cauchy stress tensor. In this latter relation, 

d = sym(FF-1) (2.14) 

is the rate of deformation tensor, ddev is its deviatoric component, and T/ is the viscosity of the fluid. A simple
calculation reveals that the Newtonian viscosity law possess the potential structure (2 . IO), and that the viscous
potential is given by 

(2.15) 

which is quadratic in F. 
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In order to determine the evolution of the internal variables, suitable kinetic equations must be supplied. 
Assuming that the rate of the local internal processes described by Q is  determined solely by the local
thermodynamic state, the general form of the kinetic equations is 

(2 .16) 

In addition, the rate of plastic deformation F P is subject to the kinematic restrictions imposed by a flow rule of 
the general form: 

(2.17) 

where K is a set of additional kinematic variables, the significance of which will subsequently be clarified by 
way of example. 

EXAMPLE 2.4: Tresca 's flow rule. The kinematical basis of Tresca's plasticity theory is the assumption that
there exists a pair of orthogonal unit vectors s and m, or instantaneous slip system, such that the direction of the
plastic deformation rate is: 

(2 .18) 

where the rate y is the slip rate on the instantaneous slip system {s, m }. In this example one has:

M=s®m (2.19) 

and the kinematic parameters K are simply the vectors s and m. 

EXAMPLE 2.5: von Mises' flow rule. A possible extension of von Mises' theory of plasticity to the finite
deformation range is obtained by postulating a flow rule of the form: 

(2.20) 

where Er is the effective plastic strain and the matrix M is required to satisfy the incompressibility constraint:

trace(M) = 0 

and the normalization condition: 

3 
M·M=-

2 

(2.21) 

(2.22) 

but is otherwise unspecified. The normalization condition (2.22) is chosen so that iP coincides with the rate of 
axial stretching in the uniaxial test. The kinematic variable K coincides with M. It follows that flow rule (2.20) 
specifies both the plastic rate of deformation tensor, sym(FpFp-1), and the plastic spin, skew(FpFp-1).

EXAMPLE 2.6: Single crystals. Plastic deformations in single crystals are crystallographic in nature. The
conventional flow rule in this case is of the form [60] 

where y" is the slip strain, ands", and m" are orthogonal unit vectors defining the slip direction and slip-plane
normal corresponding to slip system a. The collection y of slip strains is part of the internal variable set Q. A
zero value of a slip rate y" signifies that the corresponding slip system a is inactive. The flow rule (2.23) allows
for multiple slip, i .e. for simultaneous activity on more than one system over a region of the crystal. The vectors 
{s", m"} remain constant throughout the deformation and are determined by crystallography. For instance, in 
f.c .c. crystals s" is any cube face diagonal and m" any cube diagonal. We therefore have: 

M = {s11l®m11l, ... ,s1N'®m1Nl}

5



and the parameter set K is empty. In the rate-independent limit, the elastic domain of a single crystal follows as 
the intersection of a finite collection of half-spaces. Therefore, single crystals furnish a convenient-and 
technologically important-example of multi-surface plasticity. 

The general structure of the kinetic equations (2.16 ) and the flow rule (2.17) merits further discussion. These 
equations may jointly be written in differential form as 

(2.25) 

These relations may be regarded as a set of non-holonomic constraints operating on the full internal variable set 
{FP, Q}. In the context of structural mechanics, this view has been developed by [69,70,72] . We also note that
the kinematic parameters K could in principle be eliminated from (2.17), leading to non-holonomic constraints 
of the form: 

(2.26) 

where the constraint function g is homogeneous of degree one in the rates {FP, Q}. 

EXAMPLE 2. 7: van Mises ' flow rule. The kinematic matrix M may be eliminated from flow rule (2.20) by
recourse to the normalization condition (2.22), with the result: 

g = llFpFp�Ill- �WI= 0 

where !Viii= v'.4-A. 

(2.27) 

However, the resulting constraint functions may be cumbersome and it is often advantageous to work with a 
parameterized flow rule of the form (2.17). The variational statement of the constitutive relations given in 
Section 3 may then be invoked in order to optimize the parameters K. As we shall see, by an appropriate choice 
of parameterization this approach leads to such conventional flow rules as Tresca's and von Mises'. 

The thermodynamic force conjugate to pP is 

T= - A.FP (2.28) 

Correspondingly, the thermodynamic force conjugate to Q is 

(2.29) 

where we have accounted for the fact that, in view of the flow rule (2.17 ), a variation in Q necessarily implies a 
variation in F P. 

EXAMPLE 2.8: Structure-insensitive elastic response. For solids possessing a free energy with the structure 
(2.6) and exhibiting kinematic hardening, i.e. a dependence of W P  on pP, the thermodynamic force conjugate to 
pP follows from (2.28) and (2.7) in the form: 

(2.30 ) 

whence it is seen that T, does indeed act as a back-stress. 

EXAMPLE 2.9: Isotropic Tresca 's model. In the case of Tresca's flow rule (2.18) and an isotropically hardening 
material, the thermodynamic driving force acting on the instantaneous slip strain rate follows from the general 
expression (2.29) in the form: 
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where 

eT PT IQ. r=(F PF )·(s'<Ym) 

is the resolved shear stress on the plane of normal m in the ditrection s, and 

r;=WP'(y) 

is the shear flow stress. 

(2.31) 

(2.32) 

(2.33) 

EXAMPLE 2.10: Isotropic von Mises' model. For an isotropically hardening material obeying the finite
deformation extension (2.20) of von Mises flow rule, the thennodynamic driving force (2.29) reduces to: 

where 

is the equivalent uniaxial stress and 

a; =WP' (Ep) 

is the uniaxial flow stress. 

(2.34) 

(2.35) 

(2.36) 

EXAMPLE 2.11: Single crystals. For a single crystal possessing a structure independent elastic response, Eq.
(2.6), the thermodynamic driving force acting on slip system a is:

(2.37) 

where 

(2.38) 

is the resolved shear stress on the plane of normal m" in the direction s ", and

(2.39) 

is the critical resolved shear stress of system a. The hardening relations (2.39) may be expressed in rate form as
N 

i; = 2: h"1\y)y13f3=l 
where 

h"13 = w:,,a,,�(y)
is the hardening matrix of the crystal. 

EXAMPLE 2.12: Latent hardening. Many of the intricacies in the behavior of single crystals, such as the
development of certain micro-structures, may be traced to the phenomenon of latent hardening [17,18,53] . In 
many crystals, it is found that activity in a slip system hardens other systems more than it hardens the system 
itself [6,7,21,28,29,59] . Ortiz and Repetto [53) have devised a simple model of latent hardening based on two 
premises: (i) a parabolic hardening in single slip; (ii) off-diagonally dominant hardening matrix. A simple form 
of wr consistent with these assumptions is 

N 
"" n ( ')')(n+l)/n

WP= L.., r;o'Y" ++I 'To'Yo -a=l n 'Yo (2.42) 

where r;0 is the initial critical resolved shear stress in slip system a, 70 is reference resolved shear stress, 'Yo is a
reference slip strain, a"13 is a matrix of interaction coefficients, n is a hardening exponent, and
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(2.43) 

is an effective slip strain. Parabolic hardening is obtained by setting n = 2. For crystal classes in which all slip 
systems are of the same crystallographic type, the diagonal components aaa of the interaction matrix may be
normalized to unity without loss of generality. In the linear case, n = 1, the hardening matrix (2.41) evaluates to: 

(2.44) 

where h0 = 70/y0. The latent hardening ratio (LHR) between systems a and f3 is then

(2.45) 

The LHR has often been taken to be constant and independent of the pair of interacting systems [55]. A 
commonly adopted value for f.c.c. crystals is LHR = 1.4. 

The kinetic relations (2.16) are said to derive from an inelastic potential if there exists a differentiable 
function l/J(Y) such that 

Q = I/I (l') .Y 

Additionally, we may introduce the dual potential lf;*(Q) by recourse to the Legendre transformation 

l/J*(Q) = y. Q - lf;(Y) 

Then, one has 

Y= lf;* (Q) .Q 

(2.46) 

(2.47) 

(2.48) 

which constitutes a restatement of the kinetic equations (2.46). Eq. (2.48) embodies both the hardening 
relations, through the dependence of Y on Q, and the rate-sensitivity law. For single crystals, the concept of
inelastic potential was introduced by Rice [ 61]. 

EXAMPLE 2.13: Power-law rate sensitivity. A frequently employed class of kinetic equations is obtained by
postulating a power-law relation between each of the internal variable rates Q and its corresponding 
thermodynamic force, which leads to a flow potential of the form: 

(2.49) 

where Y0 and Q0 are constants and m is the rate sensitivity exponent. The corresponding dual potential is:

mYoQo (Qa)(m+l)lm lf;*=2:--- -. a m + 1 Qo 

If;* = 00 

We note that (2.51) constraints the internal variable rates to be in the range Qa �O.

(2.50) 

(2.51) 

The preceding constitutive relations are subject to material frame indifference, i.e. must remain invariant 
under superimposed rigid body motions. 
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3. Variational form of the constitutive relations 

We proceed to develop a variational restatement of the above constitutive relations which will subsequently 
provide the basis for the formulation of variational updates. To this  end we introduce the function: 

D(F, Q; K) = A F . F - y. Q + !/J*(Q) + <f>(F) (3.l) 

where all state functions are evaluated at the current state {F, F P, Q}. It should be noted that the flow rule (2.17)
is built into D through Y, Eq. (2.29).

It is evident from this definition that the dual form (2.48) of the kinetic relations is recovered by optimizing D 
with respect to the rates Q. Indeed, the corresponding Euler equation is (2.48), i.e.

D . = !/J* - Y = 0 (3.2) .Q .Q 
In addition, we shall optimize D with respect to the kinematic parameters K, which leads to the variational
principle: 

min D(F, Q; K) = D0rr(F) (3.3)
Q.K 

In this approach, it is incumbent upon the variational principle (3.3) to determine the optimal kinematic
variables K. This optimization in tum renders the flow rule determinate. Since D depends on K only through the
term T(MFP) in Y, the minimization of D with respect to K is equivalent to the problem:

max T[M(K)FP] · Q K (3.4) 

which may be regarded as a statement of the principle of maximum plastic dissipation (e.g. [35]). It also follows
from (3.3) that

p = Derr = A + </> .,F ,F .F (3.5) 

i.e. D0rr(F) acts as a rate-potential for the stresses P. Next we show that the familiar flow rules of classical
plasticity are indeed recovered from the preceding variational principle. 

EXAMPLE 3.1: Tresca 's solid. For a Tresca solid, the flow rule is given by (2.18) in terms of the kinematical
parameters s and m. The instantaneous value of these variables follows from the maximum principle (3.4 ) , 
which specializes to 

max (TFpT) · (s ®m).i;;,m 

subject to: llsll = llmll = 1, s · m = 0 

In order to interpret this rule, it proves convenient to introduce the stress tensor:. 

s = TFpT

(3.6) 

(3.7) 

(3.8) 

Then, the vectors s and m define simply the direction and the plane of maximum shear corresponding to S, and
the resolved shear stress (2.32) is the attendant maximum resolved shear stress. Evidently, in the context of
linearized kinematics S reduces to the Cauchy stress tensor u and the familiar formulation of Tresca's theory is
recovered. 

EXAMPLE 3.2: Mises solid. The extension of von Mises' theory to finite deformations formulated in the 
foregoing is amenable to a similar treatment. The instantaneous value of the plastic deformation rate direction M 
follows from the maximum principle (3.4 ), which specializes to: 

max (TFpT) · M (3.9) M 
3 

subject to: trace(M) = 0, M · M = 2 

The solution of this problem is 

(3.10)
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where 

(J' = �"dev. sdev (3.12) 

is the effective uniaxial stress. As before, in the context of linearized kinematics S reduces to the Cauchy stress
tensor u and the classical von Mises flow rule 

(3.13) 

is recovered. 

4. Constitutive updates 

Next, we address the time-integration of the constitutive equations (2.9) and (2.16). In particular, we seek to 
formulate constitutive updates possessing an incremental potential structure, i.e. updates such that the 
incremental stress-deformation relations derive from a potential. As remarked in the introduction, this potential 
structure facilitates error estimation [58] and ensures that the tangent stiffness matrix is symmetric. A stress 
update having the requisite potential structure may be obtained by integration of the constitutive relations along 
'minimizing paths', i.e. along such deformation histories as minimize the incremental work of deformation. The 
work of deformation itself then supplies the sought strain energy potential. This approach has been used in the 
past to derive deformation, or pseudo-elastic, theories of plasticity [12,36,39,49,67]. A recent application of 
minimizing paths to the study of dislocation structures in ductile single crystals may be found in [53]. However. 
the task of determining minimizing paths for specific models is often daunting, specially for rate-sensitive 
materials, which detracts from the practicality of the approach. Here, we give an alternative and more direct 
method for formulating updates possessing the requisite potential structure. 

We envision an incremental solution procedure and concern ourselves with a generic time interval [tn, tn+il· 
Let the initial state (F", F;,, Q") and the updated deformations Fn+I be given. The first step in effecting an
integration of the constitutive relations is to provide an incremental rule for updating FP in a manner compatible 
with the flow rule (2.17). We take this rule to be of the form: 

F;,+I =exp{aQM(K)}F;, (4.1) 

where exp( · ) denotes the exponential mapping for square matrices, and 

(4.2) 

By the properties of the exponential mapping, the update ( 4.1) satisfies the condition 

[:.A exp{ .A aQ M(K)} J A=o+ = aQ M(K) (4.3) 

which establishes the consistency of ( 4.1) with (2.17). 
The exponential mapping has been applied to the integration of finite-deformation flow rules by Weber and 

Anand [73], Eterovic and Bathe [19], Cuitiiio and Ortiz [16], Miehe and Stein [42] and Miehe [41]. A 
particularly appealing aspect of the exponential mapping is that it satisfies exactly the finite-deformation 
extension of kinematic constraints operating on M. For instance, if M is traceless, in keeping with plastic 
incompressibility, then the plastic deformation F;,+1 computed through (4.l) has a determinant of one, as 
required. 

EXAMPLE 4.1: Flow-rule update for the Tresca solid. The flow-rule update ( 4.1) for a Tresca solid takes the 
particularly simple form: 
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F;,+1 = exp{Ay s@m}F� = (I + Ay s ®m)F�

which follows from the orthogonality of s and m. 

(4.4) 

EXAMPLE 4.2: Flow-rule update for the Mises solid. For a Mises solid, the exponential update of (2.20) leads
to: 

F;,+1 = exp {At:,,M}F� =A(At:,,)F;, (4.5) 

Evidently, A(AEP) may be taken to be any matrix satisfying the incompressibility constraint: 

det(A) = 1 (4,6)

The corresponding increment At:r in the effective plastic strain follows from the normalization condition (2.22) 
as 

(4.7) 

where log(·) is the logarithmic mapping for square matrices. 

EXAMPLE 4.3: Flow-rule update for crystals. For single crystals, the exponential update of (2.23) yields:

F�+ 1 = exp{�
1 
Liyas" ®ma }F� (4.8) 

This update has been used by Ortiz and Repetto [53] to effect a time-discretization of the rate equations of 
single crystal plasticity. 

Suppose that the kinetic equations and the viscosity law poss.ess a potential structure such as expressed in Eqs. 
(2.46) and (2.10). A class of variational constitutive updates can then be modeled after the rate variational 
principle (3.3). In particular, we seek to characterize the updated internal variables Qn+i and the kinematic
variables K which determine F;,+ 1 as minimizers of a suitably chosen function. To this end, we define the
incremental energy density as 

where it is tacitly understood that F�+i is computed through (4.1), and we write 

Fn+a =( I - a)F" + aFn+i 

Qn+a = (1- a)Qn + aQ,,+I

(4.10) 

( 4.11) 

in terms of an algorithmic parameter a E [O, 1]. Evidently, the choice of incremental energy density W is not
unique. The particular form (4.9) adopted here is motivated by the midpoint rule for numerical integration (e.g. 
[27]). 

The optimality condition for the kinematic variables K is 

But letting At--tO and using the consistency (4.3) of the flow rule update gives 

Jim WK = -Tn AQ[M(K)] K F;, = 0 !H-->0 • • 

(4.12) 

(4. 13) 

which establishes consistency with the maximum principle (3.4). Effecting the minimization with respect to 
Q" + 1 in ( 4.9), letting At --t 0 and using ( 4.13) gives the identity:

11



( 4.14) 

which demonstrates consistency with the dual form (2.48) of the kinetic relations. This completes the proof of 
consistency of the variational update with the constitutive relations. 

Imagine now perturbing F,,+ 1 � Fn+ 1 + 8F,,+ 1 .  The corresponding variation of W is

aw={ A.F(F,,+ I' F�+I' Q,,+1) + Pv( F,,+ �� F,,; F,,+a)} · aF,,+1 + °R'.'Q,,+, · 80,,+1 + W,K · aK ( 4.15) 

But the last two terms vanish by virtue of the stationarity condition of W with respect to {Q,, +I' K}, and ( 4.15)
reduces to: 

aw={ Ay(Fn+I'  F�+I' Q n+1 )  + Pv( F,,+�� Fn
; Fn+a)} . aF,,+1

Setting 

which is clearly consistent with (2.9), Eq. ( 4.16) adopts to form: 

aw= P,,+. · aF,,+1

But, since aF,, + 1 is arbitrary, this identity implies that 

p = W. n+ I ,1'11+ 1 

(4.16) 

( 4.17) 

( 4.18) 

( 4.19) 

Eq. ( 4.17), or, equivalently, ( 4.19), furnishes the sought stress update. In particular, we verify that W indeed acts
as a potential for P,, + 1 ,  as advertised. 

The variational statement ( 4.9) of the constitutive update opens the way for the application of the tools and 
principles of nonlinear optimization. These tools are particularly useful in the context of multi-surface theories 
of plasticity. In particular, the efficient determination of active constraints is one of the central problems 
contemplated in nonlinear optimization, and the methods which have been developed to effect that determination 
in tum provide a systematic means of determining which internal processes are active, or, equivalently, which 
yield surfaces are undergoing plastic loading. Some simple models, however, are amenable to an explicit 
analytical treatment, as demonstrated in the following examples. 

EXAMPLE 4.4: Small-strain variational update for an isotropic Mises solid. We begin by considering, by way
of illustration, the simple and analytically tractable case of an isotropically hardening Mises solid undergoing 
small strains. For simplicity, we further assume that the free energy has the additive structure (2.6) and that the 
elastic response of the material is isotropic. The tensor M which determines the direction of the plastic strain 
rate ir follows from the problem:

(4.20) 

subject to the constraints (2.21) and (2.22). In (4.20) we have introduced the notation 

( 4.21) 

for the deviatoric strain tensor and 

(4.22) 

is the predictor deviatoric elastic strain, i.e. the deviatoric elastic strain which would be attained at time t,, + 1 if 
the solid were to unload elastically. The solution may readily be obtained by recourse to Lagrange multipliers, 
with the result: 

(4.23) 
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Once optimal direction of plastic flow for the step has been determined, the increment in effective plastic strain 
follows from the problem: (Lit:p)min µjje0·�r,e - Lit:P Mjl2 + WP(Lit:P) + Lit l/J* � 

A•P n IJ.t 
(4.24)

We note that Lit:P must satisfy the constraint Lit:P;;:;: 0 by virtue of (2.51 ). The value Lit:P = 0, which corresponds
to elastic unloading, defines a non-smooth point of the objective function ( 4.24 ). A conventional means of 
sidestepping this difficulty is to first investigate the solution �.t:P = 0, which corresponds to a purely elastic 
update, or elastic predictor. If the attendant driving force <r - a0 > 0 then one must have LiEP > 0 instead, and 
the solid is loaded plastically. Since the function ( 4.24) of LiEP is smooth away from the origin, the case of
plastic loading may be solved, e.g. by a local Newton-Raphson iteration. 

EXAMPLE 4.5: Variational update for an isotropic Mises solid. Next, we extend into the finite deformation
range the treatment given in Example 4.4 to the Mises solid. As in Example 4.4, we consider an isotropically 
hardening Mises solid possessing a free energy with the additive structure (2.6). The elastic response of the 
material is further assume to be isotropic. The kinematic tensor A follows from the problem:

. W0(F Fp-iA-1)min n+I n A ( 4.25) 

But, by material frame indifference, We can only depend on Fe through the corresponding elastic right
Cauchy-Green deformation tensor Ce= FeTFe, and (4.25) becomes

(4.26) 

where 

(4.27) 

is the predictor value of C� + 1, i.e. the value that would be obtained if the material underwent elastic unloading.
Furthermore, by the assumed elastic isotropy of the material, the incremental plastic deformation tensor A may
be assumed to be symmetric without loss of generality. To veriify this statement, start from a general A and
introduce its polar decomposition A =RV, where R E S0(3) is a proper rotation and V = VT is a symmetric
tensor. Insertion into ( 4.26) gives 

(4.28) 

where the last identity follows from isotropy. It therefore follows that we can identify A = U in calculations.
The rotation tensor R remains undetermined in the isotropic case, but this indeterminacy is entirely
inconsequential. It also follows that the matrix M may be taken to be symmetric.

As previously stated, the focus of the present example is on models which are amenable to an explicit 
analytical treatment. One such model consists of assuming an elastic energy density of the form: 

we = f(Je) + µlleell2

where I° = det(F 0) is the elastic Jacobian and e obeys a relation of the form ( 4.21 ) , with

e 1 e E =-log(C )
2 

playing the role of an equivalent elastic strain tensor. We further introduce the predictor 

1 e,pre = -1 (Ce.pre)En+ I 2 og n+ I 

(4.29) 

(4.30) 

( 4.31) 

To make further progress, we introduce the ansatz that the symmetric tensors c�·��e and A commute, i.e. they
have the same eigenvectors. Under these conditions, one has the identity 

(4.32) 

which exactly parallels the small-strain kinematics of Example 4.4. In particular, the plastic flow direction M 
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follows from problem ( 4.20), the solution of which is, therefore, ( 4.23). Finally, LiEP follows from ( 4.24 ). The 
analogy between the finite deformation and small-strain theories of plasticity afforded by the introduction of the 
exponential and logarithmic mappings has been exploited by Cuitino and Ortiz [16] to develop a material­
independent method of extension of small-strain updates to the finite deformation range. 

EXAMPLE 4.6: Variational update for crystals. In applications to crystal plasticity, the variational updates lead, 
by construction, to an optimal choice of active slip systems. From an optimization perspective, the identification 
of the active slip systems is equivalent to the determination of the active constraint set, which is the cornerstone 
of most nonlinear optimization algorithms [9]. Here we have evaluated two alternative approaches, namely, 
(quasi-)Newton methods and sequential quadratic programming (SQP). The minimization problem of interest 
can be written in the form: 

with 

. F( 13 • F F P 13) . h 13 :::,, /3 f3 - 1 N min 'Yn+I' n+I' n' Jin Wit 'Yn+I � 'Yn' - '''' ' 
'Y�+ I 

( 4.33) 

(4.34) 

Conveniently, in the case of single-crystal plasticity the only unknowns are the updated slip strains, and no 
additional kinematic parameters need be considered. In particular, the appropriate flow-rule tensor is 

A= exp(M) =exp{#
, 

b.y13 s13 ®m13} (4.35) 

Algorithm 1 

Projected Newton method 

(i) Initialize the set of active constraints .ff: 
'Y�ol =')':,a= 1, .. . ,N

(ii) Liy" 0= - (F,r;)��f',113, a E .ff: 
Liy" 0= 0, a E .ff: 

(iii) If lliiYll < E find O :f',1a = minaEY{f',1a)
IfFa<O ,y 

remove o from .f£, go to (ii)
else 

go to (v) 

(iv) Find A= minaeY{A > 0 : -y�J + ,\ Liy" = y:} (corresponding index=o)
If�" Liy" F,y"(1fo + Ab.y)�O 

add o to .ff: 
'Y�+t) = 'Y�l + ALi-y", aE.:£ 

else 
find optimal .A* along Liy" 
'Y�+1) = 'Y�) + .A* Liy", a E .ff: 

go to (ii) 

(v) 'Y:+, = 'Y�l' a= 1, . . .  , N 

The projected Newton algorithm is outlined as Algorithm 1. The line-search step notwithstanding, this 
algorithm is similar in spirit to one previously proposed by Cuitino and Ortiz [ 17] for the identification of the 
active slip systems. In both approaches, the active-set strategy consists of releasing the constraints one by one 
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based on the value of their Lagrangian multipliers, which amounts to adding the slip system for which the yield 
criterion is most violated . However, a notable difference is that here we release a constraint only after a local 
minimum is reached in the projected space. This avoids zigzagging, a common problem in very constrained 
problems such as considered here. 

Algorithm 2 
Sequential Quadratic Programming 

(i)  Initialize the set of active constraints 2 
y�>> = y17, a = 1, . . . , N 

(ii) Solve the quadratic problem 

· T 1 T 
mm Q(Ay) == Ay FY( Yck) + 2 Ay Fn( Yckl) Ay

(iii) If jjAyjj < E go to (v) 

(iv) Find A= min"E 'l{A > O:y�> +A Aya = r:} (corresponding index o) 
If 2:a Ay"F-r,.,( Ycki + X Ay) � 0

add o to 2 
r;:+ 11 = y�1 + X Aya, a E 2

else 
find optimal A* along Ay" 
Y�+i>=y�>+A*Ay", a E IE  

g o  to (ii) 

The SQP algorithm is listed as Algorithm 2. The algorithm replaces the nonlinear problem by a sequence of 
quadratic problems, which can be solved efficiently by a constrained conjugate gradient method. It should be 
noted that constraint removal is treated as a part of the quadratllc programming step, with the same active-set 
strategy as in the projected Newton method described earlier. One advantage in using the SQP method is that 
most of the work in determining the active set of constraints, or <>lip systems, is accomplished on the basis of a 
quadratic function. This stabilizes the iterative process and also helps to avoid zigzagging between the 
constraints . The iterations are mostly performed within the quadratic problem, thus reducing the number of 
evaluations of the Hessian matrix CF,y;:+, Y� + , ) .

For both algorithms, direct evaluation of the Hessian matrix may be replaced by a quasi-Newton update. This 
may help to maintain convergence in cases in which the update is applied to a non-convex hardening model, 
such as the latent hardening model described above. However, the exact Hessian is required in order to compute 
the consistent tangent moduli. 

It bears emphasis that the theoretical and practical insights revealed by nonlinear optimization theory apply 
generally to all multi-surface plasticity models and are not restricted to crystal plasticity. 

The tangent moduli corresponding to the variational updates follow from a direct linearization of ( 4.19), with
the result: 

i!Pn+I = W + W . i!Qn+I + W _ ____!!!£_
i!Fn+I .F,,+1F,,_, .F,,+,Q,,_, (!Fn+I .F,,+,K JFn+I

The sensitivities to Qn+ 1 and K11+1 derive from the stationarity condition of W, which gives

(4.36) 
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aQ aK 
WKF,,4 I + WKQ,,�1 • " F

n + I + WKK. -;---F = 0 
" 11+ I . 11 n+ I 

( 4.37) 

( 4.38) 

Eqs . ( 4.37) and ( 4.38) form a linear system of equations, the solution of which may be inserted in ( 4.36) to 
yield 

( 4.39) 

In writing this expression, we have assumed that the linear system deriving from the stationarity conditions is 
nonsingular. 

It should be carefully noted that the function W is incremental in nature and depends on the initial conditions 
{F,,, F;,, Q,,} for the time step . This in turn allows for hysteretic behavior, as required. A distinct advantage of 
stress updates possessing a potential structure, such as just formulated. is that the tangent moduli aP,, +I I aF,, +I 
are symmetric, which in turn results in symmetric tangent stiffness matrices upon finite element discretization. 
The existence of a symmetric and coercive Dirichlet form, leading to error estimates in the energy norm, is 
directly related to the convexity properties of the incremental strain energy density W(F11+1; F,,, Q,), [58]. 

S. Numerical examples 

In this section we investigate the convergence properties of the variational updates just derived by way of 
direct numerical testing. We also illustrate the robustness conferred to the updates by the optimization procedure 
as regards the selection of active slip systems in single crystals. This robustness is effectively tested in cases in 
which the crystal is loaded in uniaxial tension in a direction which is close to a high-symmetry axis. Under these 
conditions, the determination of the pattern of slip activity is a nontrivial proposition, as the outcome depends 
very sensitively on small misalignments of the loading direction. 

5.1. Isotropic mises solid 

We begin by considering the case of an isotropic Mises solid subjected to uniaxial cyclic loading. The elastic 
energy density has the form ( 4.29) with 

f(J° ) = � ( ,\ + 2; )oog(Je))2 (5.1) 

while the plastic energy density has the form (2.8), corresponding to power-law hardening. In order to speed-up 
the calculations , the deviatoric part of the logarithmic strain ( 4.3 1) is approximated to first order. The rate 
sensitivity of the solid is governed by a dual potential of the power-law form (2.50). The material parameters 
employed in the calculations are collected in Table I. 

A uniaxial cyclic loading test is simulated using a single 8-node brick element loaded along its z-axis. One 
symmetric tension-compression cycle is applied to the element up to a maximum extension of 25% at a nominal 
strain rate of :±: 100% Is. The convergence of the numerical solutions with decreasing time step is illustrated in
Fig. 1. The reference solution, labeled as exact in the plots, is obtained in I 000 steps and is ostensibly
indistinguishable from the exact solution. Fig. I (a-d) display the computed forces, axial Cauchy stress,

Table I 
Material parameters for isotropic Mises solid 

n m 

1 25 GPa 84 GPa 250 MPa 2 2 
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equivalent plastic strain, and cross-section reduction, respectively. The strong convergence of the numerical 
solution and the excellent accuracy obtained with relatively large steps is evident from these figures. 

Convergence plots are shown in Fig . 2(a) and (b) for a range of hardening and rate-sensitivity exponents, 
respectively. Error are measured in terms of the axial Cauchy stress at the end of the cycle. The values of the 
hardening exponent considered in the calculations range from linear hardening, n = I ,  to negligible hardening or
ideal plasticity, n = ! 06. Likewise, the rate-sensitivity exponent is allowed to vary from m = I, or linear
rate-sensitivity to nearly rate-insensitive or inviscid behavior, m = !06. It is noteworthy that the updates remain
well conditioned even for exceedingly large values of the exponents m and n. Variations of the parameters Q0 
and Q0 simply result in a re-normalization of the strain and strain rate, respectively. In all cases, the computed
rate of convergence is linear and the errors are remarkably insensitive to variations in the material parameters. In 
particular, the accuracy of the solution appears to be essentially independent of the hardening exponent n, Fig.
2(a), and is only moderately dependent on the rate-sensitivity exponent m, Fig . 2(b). 

The numerical tests just described, and other similar tests, attest to the strong convergence of the method. 
Unfortunately, analytical tools suited to the assessment of the convergence properties of finite-deformation 
constitutive updates are not as yet in existence. The situation is compounded by the fact, pointed out by Ball [4], 
that the strain energy density of a finitely deforming solid W must necessarily be non-convex. This effectively 
precludes the application of the conventional tools of convex analysis to the analysis of general constitutive 
updates. 

5.2. Single crystal 

Our next test concerns the performance of the variational updates in the context of multi-surface plasticity. In 
particular, we consider a copper single crystal subjected to uniaxial tension. For simplicity, the elastic energy 
density is taken to be of the form: 

l
W e =  2 E e : <fi :Ee (5.2 ) 

where Ee = (Ce - 1) 12 is the elastic Green-Lagrange strain tensor, and cg is an anisotropic (cubic) elasticity
tensor parameterized by the three independent moduli C1 1 ,  C 1 2  and C44 . For metallic single crystals, the
particular form of the elastic strain energy is often of little consequence as the elastic strains are in most cases 
small. An exception is furnished by shock-loaded crystals, in which case the appropriate choice of equation of 
state is of critical importance. 

A simple example of a latent-hardening model possessing the requisite potential structure has been given in 
Section 2, Eq. (2 .42), for purposes of illustration. Unfortunately, few of the commonly used models of 
single-crystal hardening, which for the most part are based on the direct formulation of a hardening matrix, 
derive from a potential. In order to be able to bring these models into conformity with the variational framework 
envisioned here, we simply treat the hardening matrix explicitly by sampling it at the beginning of the time step. 
Provided that the hardening matrix is symmetric, this is tantamount to a step-by-step quadratic approximation 
for the stored energy wr, namely,

wr( ) _ wr + °" ( "( ,, _ " ) + __!__ ( a _ ")°" I af3 13 _ 13 )% + 1 - II L;: g,, Y11 + l Y,, 2 Y11 + I  Y,, � l,, (Y,, + 1 Y,, )  (5.3 ) 

where g � is the critical resolved shear stress for system a at the beginning of the step. In the calculations
reported here, the hardening matrix h "13 is taken to be diagonal and of the form [ 17]:

(5.4) 

where 
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a 
a 7c he =� ,  Y, 

a b /-; Tc ""' aµ 'J 1Tn , (5.5) 

define a characteristic plastic modulus, critical resolved shear stress and slip strain for slip system a, 
respectively. In addition, p " is the corresponding dislocation density, and

(5.6) 

is the point-obstacle density due to forest dislocations, respectively. The coefficients a"13 in (5.6) describe the 
interactions between the different systems. For f.c.c. crystals, these interactions have been classified by Franciosi 
and Zaoui [22] in four categories in accordance with their streng1th, with corresponding coefficients a0, a "  a2,  a3 
(a0 � a1 � a2 � a3) .  Finally, dislocation multiplication may simply be modeled through a relation of the form:

p " = Psa1[ 1 - (  1 -..&) exp - y" /xa,]Psat 
(5.7) 

where p0 is the initial dislocation density, Psa• is the saturation density and %ac is a characteristic slip strain for
saturation. As in the preceding example, the rate sensitivity is governed by a dual potential of the form (2.50). 
The material parameters used in calculations are collected in Table 2. 

The orientation of the crystal relative to the loading direction is of major importance, as it determines the 
resolved shear stresses on the different slip systems. We begin by considering the case of a tensile axis oriented 
in the [001] direction. As a consequence of the high symmetry of this orientation-and despite the apparent 
simplicity of the problem-the determination of the active slip-system set becomes numerically challenging. 
Data from an actual SQP iteration are shown in Table 3. As may be seen, only two SQP steps are required for 
convergence, and most of the work is accomplished in the first iteration, which comprises ten CG sub-iterations. 
These sub-iterations are mostly required for the determination of the active systems. As expected from the 
resolved shear stress distribution, the slip activity consists of eight equally active systems out of a maximum 
twenty-four available slip systems (accounting for positive and negative slip directions), Fig. 3(a). In all figures, 
we have adopted Schmid and Boas' nomenclature [62] to designate the slip systems of a f.c.c. crystal. Due to 
the multi-slip character of the deformation, the attendant stress-strain curve is predominantly parabolic, Fig. 4. 

The response of the [001 ]  crystal is very sensitive to small misalignments of the loading axis. This sensitivity 
is illustrated in Fig. 3(b), which shows the slip activity resulting from a 1 % misalignment. As may be seen, the 
slip activity involves fewer active systems than in the case of a perfect [001] orientation and, owing to the 

Table 2 
Material parameters for a copper single crystal 

c" c, , c"" 

1 68.4 GPa 1 2 1 .4 GPa 75.4 GPa 

ao a , a, 

l .Oe - 4 5 .7a0 I 0.2ao 

Table 3 
SQP algorithm for single crystal plasticity 
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0 
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Fig. 3. Slip strain curves of active systems for loading along [00 1 ]. (a) Perfect alignment; (b) with alignment defect. 

attendant reduction in latent hardening, the stress levels are correspondingly lower, Fig. 4 .  This sensitivity to the 
orientation of the crystal, which in itself is a manifestation of the latent hardening, may render the optimization 
problem very ill-conditioned. It should be noted, however, that this poor conditioning reflects an intrinsic 
attribute of the material behavior, and is not in any way introduced by the update. 

The critical importance of latent hardening in shaping the response of single crystals is clearly illustrated by 
our next example, which concerns a crystal loaded in the [ 1 1 2] direction. When the loading axis is perfectly 
aligned, the systems which are activated are principally A3 and D I ,  which are equally active, and to a lesser 
extent A6 and D6, which are also equi-active, Fig. 5(a). However, when a small misalignment is introduced, a 
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25 

symmetry breaking occurs and the act1v1tles of the systems in each pair of nominally equi-active systems 
becomes different. For instance, the particular defect introduced in our calculations causes the D I  system to be
more loaded than the A3 system. In consequence, D 1 yields first and, by virtue of latent hardening, greatly 
hardens the remaining systems. The onset of slip on A3 is thus delayed. This stage of the stress-strain curve is
characterized by single slip, or easy glide, and, therefore, corresponds to the experimentally observed stage I of 
hardening of f.c.c. crystals. Eventually A3 is activated, Fig. S(b), and this activity rapidly hardens the system 
D 1, which manifests itself as an upturn in the stress-strain curve, Fig. 6. This upturn is in keeping with the
experimentally observed stage II of hardening of f.c.c. crystals. As in the [00 1] crystal, the ability of the update 
to effectively discern these fine nuances of the slip activity is noteworthy. 
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Fig. 6. Global axial stress-strain curves for loading along [ 1 1 2] .  

23



6. Summary and conclusions

We have presented a class of constitutive updates for general viscoplastic solids including such aspects of 
material behavior as finite elastic and plastic deformations, non-Newtonian viscosity, rate-sensitivity and 
arbitrary flow and hardening rules. The constitutive framework adopted here is based on a conventional 
internal-variable formulation of continuum thermodynamics [33,34], augmented by the consideration of 
non-Newtonian viscosity and such non-holonomic internal constraints as are required to describe the plastic flow 
rule. 

The cornerstone of the variational updates proposed here is a time-discretized variational statement of the 
constitutive relations. We have shown that the minimization of a quasi-thermodynamic function which combines 
the free energy of the solid, the conjugate inelastic potential for the kinetic equations and the viscous potential, 
jointly returns the updated value of the internal variables and the effective plastic flow direction, or flow rule, 
over the time step. In addition, we have shown that the minimum of the quasi-thermodynamic function thus 
obtained acts as a potential for the stress-strain relations, thus ensuring the variational character of the update. 
This in turn confers the incremental boundary value problem a variational structure which may be exploited in 
order to derive error estimates and mesh-adaption strategies (58]. 

The core of the variational updates is, therefore, a nonlinear optimization problem for the updated internal 
variables and such kinematic parameters as determine the plastic flow direction. In the case of multi-surface 
plasticity the determination of the active constraints, or, equivalently, the active systems, becomes the central 
concern. We have evaluated two alternative approaches, namely, (quasi-)Newton methods and sequential 
quadratic programming (SQP). In both cases, the ability of the updates to resolve the complex patterns of slip 
activity which may arise in single crystals in consequence of latent hardening is particularly noteworthy. 

The convergence properties of the variational updates have been investigated by way of numerical testing. In 
all cases considered, the updates exhibit good accuracy at large time steps and strong linear convergence. In 
particular, the accuracy of the update is relatively insensitive to parameters such as the hardening and 
rate-sensitivity exponents. 
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