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The evolution of plastic deformations in metals, governed by incompressible flow rules, has been tradition-
ally solved using the exponential mapping. However, the accurate calculation of the exponential mapping 
and its tangents may result in computationally demanding schemes in some cases, while common low-order 
approximations may lead to poor behavior of the constitutive update because of violation of the incom-
pressibility condition. Here, we introduce the special-linear (SL) update for isochoric plasticity, a flow-rule 
integration scheme based on differential manifolds concepts. The proposed update exactly enforces the 
plastic incompressibility condition while being first-order accurate and consistent with the flow rule, thus 
bearing all the desirable properties of the now standard exponential mapping update. In contrast to the 
exponential-mapping update, we demonstrate that the SL update can drastically reduce the computing time, 
reaching one order of magnitude speed-ups in the calculation of the update tangents. We demonstrate the 
applicability of the update by way of simulation of single-crystal plasticity uniaxial loading tests. We anti-
cipate that the SL update will open the way to efficient constitutive updates for the solution of complex 
mul-tiscale material models, thus making it a very promising tool for large-scale simulations. 

KEY WORDS: plastic flow rule; crystal plasticity; variational constitutive updates; manifold submersion
mappings; applied differential geometry

1. INTRODUCTION

The numerical solution of elasto-viscoplastic problems for solids requires the time integration of
flow rules for the determination of the evolution of plastic deformations. In particular, for volume-
preserving processes such as plastic deformations in metals, it is desirable that the numerical scheme
for the time integration of the flow rule or flow-rule update satisfies the plastic incompressibility con-
dition exactly. Volume-preserving flow-rule updates based on the exponential mapping date back
to Weber and Anand [1], Eterovic and Bathe [2], Simo [3], and Cuitiño and Ortiz [4] for isotropic
plasticity and Miehe [5] and Anand and Kothari [6] for crystal plasticity. The evaluation of the expo-
nential mapping has been the subject of considerable research in the past, see [7] for a review. Some
common approaches include the Cayley-Hamilton recursion formula [5], the spectral decomposi-
tion and Taylor expansion [8], and more recently, Padé approximants [9]. First-order approximation
schemes can also be used in order to alleviate the computational expense attendant to the evaluation
of the exponential mapping [4,10,11]. However, such approximations are not volume-preserving in
general [12] and may thus introduce large errors in the stress update [11].
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In this work, we introduce a class of consistent volume-preserving flow-rule updates that are
entirely algebraic and thus eschew costly spectral analysis and transcendental function evaluations
such as inevitably required in the evaluation of the exponential mapping. To this end, we begin
by recognizing that the natural space of finite plastic deformations F p , namely, the special lin-
ear (SL) group SL.n/, is not a linear space but has the structure of a Lie group [13]. We recall
that Lie groups are smooth manifolds that have a continuous multiplicative operation defined on
them. In the case of plastic deformations, this operation is simply a matrix multiplication. The
corresponding Lie algebra may be identified with the linear space of traceless square matrices.
Within this framework, processes of plastic deformation F p.t/ may be regarded as a continu-
ous flow in SL.n/, and the objective of update schemes is to generate approximating discrete
flows F pn . Within this context, a flow-rule update is a rule for mapping a point .F pn ,Lp/ in the
tangent bundle of SL.n/ to a new point F pnC1 in SL.n/, where F pn is an initial plastic deforma-
tion at time tn, Lp is a plastic deformation rate, and F pnC1 is the updated plastic deformation at
time tnC1 D tnC�t .

Inspired on differential manifolds concepts, we treat the general form of the incompressible flow
rule as a manifold rate problem. Manifold rate problems arise in situations where the evolution of
a system is structure-preserving, and therefore, the corresponding integration schemes must also be
structure-preserving. The numerical solution of evolution problems governed by differential equa-
tions on manifolds has been predominantly studied in the context of Lagrangian mechanics, see
[14, 15] and references therein. For example, manifold projection methods have been employed for
volume-invariant Lagrangian systems [16]. However, to the best of our knowledge, the application
of such methods in the context of material modeling and plasticity has not been reported in the liter-
ature to date. In the case of incompressible plasticity, we identify the flow rule as a rate equation on
the SL manifold and propose an update that exactly preserves the volume of plastic deformations.
The computing time of the proposed update is contrasted with the exponential mapping, showing
considerable speed-ups in the computation of the update and its tangents.

This paper is organized as follows. Section 2 is concerned with the development of a constitu-
tive update. We start by introducing basic concepts of differential manifold theory and postulate the
general manifold rate problem. On the basis of the concepts of submersion and embedding map-
pings, we construct an update for the numerical solution of the manifold rate problem that preserves
certain structures exactly and that is consistent with the governing rate equations. Then, we intro-
duce the flow rule problem in the context of volume-preserving plasticity and show that it conforms
to a manifold rate problem to which we can apply the proposed update. The integration of the pro-
posed flow-rule update within the framework of variational constitutive updates. Section 3 addresses
the performance of the proposed SL update in comparison with the exponential mapping update.
Numerical simulations of the rate-dependent crystal plasticity model of Cuitiño and Ortiz [4] using
the proposed update showcase the applicability of the method. Section 4 ends with a discussion on
the obtained results and future perspectives.

2. THE SPECIAL LINEAR UPDATE

The present work draws from the field of differential manifolds to construct numerical updates that
preserve certain underlying structure, such as volume invariance in the case of isochoric plasticity.

2.1. Differential manifolds concepts

We begin by briefly reviewing some definitions and concepts from differential manifolds theory
that are relevant to this work. The interested reader is referred to [17] for a complete account on
differential manifolds theory. Let M be a set of points of interest. The local description of general
manifolds is provided by charts. A chart on a setM is a pair .U ,'/ where U �M and ' W U !Rn

are bijections. Thus, charts are local parameterizations of the set U , and '.m/ are the coordinates
of the point m 2 U � M . We further note that the dimension of image.'/ defines the dimen-
sion of the manifold. An atlas of class C k , k > 0 on a set M consists in a collection of charts
A D ¹.Ui ,'i /, i 2 I º covering all points in the set M such that any two overlapping charts are
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compatible, that is, for .Ui ,'i / and .Uj ,'j / such that Ui \Uj ¤ ;, and the overlap map 'j ı '�1i
is of class C k . Thus, a C k-differentiable manifold is a set M together with an atlas A.

Locally, an n-dimensional manifold looks like Rn, and for purposes that will be evident later, we
are interested in characterizing the tangent structure at every point in a manifold. Let M be a C 1

n-dimensional manifold, and let x 2 M be a point of interest. A C 1-curve on M through x is a
C 1-map � W .a, b/!M such that x D �.c/ for c 2 .a, b/. The representative of the curve in a chart
.U ,'/ containing x is the curve �' D ' ı � in Rn. Then, two curves �1 and �2 are tangent to M
at x if

�1.c/D �2.c/D x and
d

dt
.' ı �1/.t/

ˇ̌̌
ˇtDc D d

dt
.' ı �2/.t/

ˇ̌̌
ˇ
tDc

D v, (1)

where v is the tangent vector associated to the equivalence class of curves implicitly defined by (1).
It can be shown that these definitions do not depend on the chart of choice [17]. Thus, we define
the tangent space to M at x as the set of all tangent vectors v 2 Rn and denote it by TxM . It can
also be shown that TxM is in fact a linear space. The set TM WD ¹.x,u/, x 2M , u 2 TxM º is the
tangent bundle. It can be shown that if M is a C k-manifold of dimension n; then, TM is in fact a
C k-manifold of dimension 2n [17]. A vector field is a mapping u WM ! TM that assigns a vector
u.x/ to a point x 2M .

Consider now the map f W M ! N of a manifold M to a manifold N . Then, f is a C k-map
if its representation in local coordinates on M , and N is a C k mapping in the classical way. The
derivative of a differentiable map is defined as the linear map Txf W TxM ! Tf .x/N such that
for v 2 TxM

Txf � vD
d

dt
f .�.t//

ˇ̌̌
ˇ
tDc

, (2)

where the curve � satisfies (1).
A subset S � M modeled on Rn is a submanifold of M if there exists an atlas A of M such

that, for all .U ,'/ 2 A such that U \ S ¤ ; we have that '.U \ S/ D '.U / \ Rm for some
m � dim.M/. Certain mappings can be used to construct submanifolds. A mapping f W M ! N

is a C k-diffeomorphism if it is bijective and f and f �1 are both C k . An immersion is a mapping
f WM !N such that Txf is everywhere injective or, equivalently, if Txf has constant rank equal
to the dimension of M . An embedding is an immersion that is diffeomorphic to its image, with the
consequence that f .M/ is a submanifold of N . A C k mapping g WM !N is a submersion if Txg
is everywhere surjective or, equivalently, if Txg has constant rank equal to the dimension of n.

2.2. Manifold updates and the manifold rate problem

A situation that arises in practice concerns the need to update a point x on a manifold M along a
vector u 2 TxM . Specifically, by a linear update, we understand a mapping updx W TxM ! M

such that the following consistency conditions hold

updx.0/D x (3a)

T0updx D id, (3b)

where id is the identity operator. In Euclidean space En, consistency conditions (3) imply that a
linear update is necessarily of the form

updx.u/D xC u , (4)

as expected. For a general manifold, conditions (3) require that updates have the structure (4) locally.
In particular, the zeroth-order consistency condition (3a) simply states that updates must reduce to
the identity for the zero tangent vector. An alternative expression for the first-order consistency
condition (3b) is
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d

dt
updx.�.t//

ˇ̌̌
ˇ
tD0

D u (5)

which must hold for all curves � such that �.0/D x with tangent vector u at x.
A particularly important type of update may be formulated in the case of manifolds embedded

in Euclidean space by using the embedding mapping to reduce the update to the form (4). Thus, if
f WM !En is an embedding into the Euclidean space and g WEn!M is a submersion such that

.g ı f /.x/D x 8x 2M (6)

then, a simple update is given by

updx.u/D g.f .x/C Txf � u/ . (7)

We readily verify that for this class of updates, consistency conditions hold, namely

updx.0/D g.f .x//D x (8a)

T0updx D Tf .x/g � Txf D id over TxM , (8b)

where the chain rule has been used in (8b).
We now illustrate the use of updates in the context of explicit calculations for the solution of

differential equations on manifolds. We begin by considering the manifold rate problem

Px.t/D u.x.t//, (9a)

x.0/D x0, (9b)

where x0 2M is a point on the manifold, x.t/ is a curve, the integral curve, over the manifold M ,
and u 2 TM is a vector field. Suppose that an approximation to the solution xk is known at time
tk , k 2 N and that we wish to determine the next approximation xkC1 to the state of the system at
time tkC1 D tk C h. A simple scheme for marching forward in time is the forward-Euler scheme

uk D u.xk/ (10a)

xkC1 D updxk .huk/ (10b)

where updxk W TxkM !M is an update over the manifold M . In this simple scheme, (10a) evalu-
ates the rate uk at time tk , and then, it is left to the update to march forward from xk at the rate uk
over the interval of time h. We verify that, by virtue of the consistency conditions (3)

d

dh
xkC1

ˇ̌̌
ˇ
hD0

D T0updx.uk/D uk , (11)

and the scheme (10) is indeed consistent with the rate problem defined by (9). Moreover, the scheme
is first-order accurate, see Appendix A. In the particular case of embedded manifolds and the update
(7), (10b) becomes

xkC1 D g.f .xk/C hTxk f � uk/. (12)

In this case, the time-stepping scheme reduces to embed xk into En, applying the forward-Euler
scheme in En, and finally projecting back to the manifold.

2.3. Flow rules in volume-preserving metal plasticity

In phenomenological rate-dependent plasticity theory, the time-evolution of plastic deformations
and internal variables is governed by rate equations. For present purposes, it suffices to consider the
kinematics of plastic deformation. The interested reader is referred to [18, 19] for a comprehensive
review of plasticity theories.

We start by considering a Lagrangian finite-kinematics framework, where the body in the unde-
formed configuration occupies a domain B 2 R3. The deformation mapping ' W B � Œ0, tf �! R3
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maps point in the undeformed configuration into the current or deformed configuration. The defor-
mation gradient F WD r0' measures variations of ' in the vicinity of a point X 2 B , describing
local rotation and stretch. In large-deformation plasticity, it is customary to assume a multiplicative
decomposition [20, 21] of the form

F D F eF p , (13)

where F e and F p are the elastic and plastic deformation gradients, respectively. Following an
internal variable formalism [22, 23], the local state of a solid is determined by the deformation
gradient F , the plastic deformation gradient F p , and a set of internal variables � 2 RN . Due to
the phenomenological nature of plasticity theories, the physical meaning of the internal variables �
depends on the particular material under consideration. It is then classical to postulate the existence
of a Helmholtz free energy potential or state function A.F ,F p , �/. Assuming that work-hardening
and lattice distortion are uncoupled phenomena, the free energy then takes the form

A.F ,F p , �/DW e.F e/CW p.F p , �/DW e.FF p�1/CW p.F p , �/ (14)

where W e is the elastic deformation energy and W p is the plastic stored energy that determines the
plastic hardening of the material. In local equilibrium state, the first Piola-Kirchhoff stress tensor is
obtained from the free energy density as

P D
@A

@F
, (15)

which clearly depends on the material local state represented by .F ,F p , �/. The thermodynamic
forces conjugate to the internal variables or driving forces derive from the free energy and take
the form

Y D�
@A

@�
. (16)

The time-evolution of internal variables may then be assumed to depend only on the conjugate
driving force, resulting in kinetic equations of the general form

P� D f .Y / (17)

where PŒı�D @Œı�
@t

denotes partial differentiation with respect to time. In order to automatically fulfill
the second principle of thermodynamics (non-negative dissipation), it is customary to rewrite the
earlier kinetic equations through the use of a convex dissipation potential  �.Y /, such that

P� D
@ �

@Y
. (18)

A conjugate dissipation potential  . P�/ can be built by a Legendre transform, with

 . P�/D sup
Y

�
Y � P� � �.Y /

�
. (19)

Kinetic equations can then be written under the alternative form

Y D
@ 

@ P�
or

@A

@�
C
@ 

@ P�
D 0. (20)

In addition, the time evolution of the plastic deformation gradient is defined by a flow rule of the
general form [24]

Lp D PF
p
F p
�1
D P�M , (21)
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where M is a tensor imposing constraints on the instantaneous direction of plastic deformation,
which depends on the particular plasticity model chosen. Examples are provided in [24]. Consid-
ering the flow rule as a constraint between the plastic deformation gradient F p and the internal
variables �, driving forces Y defined by (16) can be expressed as

Y DMTF p
T
�
@W p

@�
(22)

where the stress tensor T , conjugate to F p , is defined by

T D�
@A

@F p
D F e

T
P �

@W p

@F p
. (23)

In this equation, the last term represents a backstress tensor, denoting the presence of kinematic
hardening.

Working at the scale of single crystals, the flow rule is based on direct observations of the defor-
mation patterns found in crystalline materials, where plastic deformation occurs along well-defined
sets of crystallographic planes, defined by their normals m˛ , and slip directions s˛ , ˛ D 1, : : : ,N ,
taking the form

M D
®
s1˝m1, : : : , sN ˝mN

¯
. (24)

It bears emphasis that, in this case as well as for macroscopic models of plasticity (Tresca and
von Mises) considered in [24], it results from these kinematic assumptions on the direction of plastic
velocity gradient that plastic deformations are volume-preserving. Indeed,

@

@t
det.F p/D det.F p/trace. PF

p
F p�1/D det.F p/trace. P�M /D 0 (25)

where the last equality results from the traceless character of the tensor M . We further note that
the zero-trace condition is independent of the internal state �. Assuming no plastic deformation is
present initially in the solid we have

F pjtD0 D I , (26)

which together with (25) implies that detF p.X , t / D 1, that is, F p.X , t / belongs to the
special linear group, which is denoted by SL.3/. Recall that the general linear group GL.3/ WD®
F 2R3�3, detF ¤ 0

¯
is a smooth manifold, see [17]. It follows that SL.3/ is a submanifold of

GL.3/, and therefore a manifold itself. We thus conclude that the ordinary differential equation (21)
together with the initial condition (26) define a rate problem on SL.3/.

2.4. Variational constitutive updates

The numerical integration of elasto-viscoplastic constitutive relations can be performed by recourse
to variational constitutive updates, see [24] for a full account of the theory. In this section, we recall
the relevant definitions and results, and show how the proposed SL update can be incorporated into
the variational constitutive update framework.

The determination of the plastic internal variables .F p , �/ requires the time integration of the
kinetic equations and flow rule. For such purposes, consider the discretization of the evolution prob-
lem into a finite number of time intervals Œtn, tnC1�, n 2 N. Then, the time integration of (18) is
equivalent to solving the minimization problem

Wn.F nC1/D min
�nC1

²
A.F nC1,F pnC1, �nC1/�AnC�t

�
�nC1 � �n

�t

�³
(27)

where An is the free energy density evaluated at t D tn and considered constant for all purposes
and Wn.F nC1/ is known as the incremental energy density for time step n. The minimization
problem that defines the incremental energy density in (27) can be shown to be equivalent to the
time integration of the kinetic equations using an implicit backward-Euler scheme. In writing (27),
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one implicitly assumes that the relation between F pnC1 and �nC1, which is constrained by (21), is
known. In accordance to (25) and (26), this relation should also ensure that detF pnC1 D 1. Volume-
preserving flow-rule updates based on the exponential mapping have been used extensively for this
purpose [1–6, 24]

F
p
nC1 D exp

�
.�nC1 � �n/M

�
F pn . (28)

As mentioned before, practical computation of this exponential mapping is typically costly and
potentially suffers from a lack of robustness [7, 8].

We now show how to apply the concept of manifold updates to the integration of the incompress-
ible plastic flow rule. We consider the mapping g WGL.3/! SL.3/ defined by

g.F /D .detF /�
1
3 F (29)

and note that g is a submersion mapping, see Appendix B. Moreover, consider the inclusion map
f W SL.3/ ,!GL.3/, which is also an embedding [17]. Thus, we define the SL update by consider-
ing the general manifold update defined in (7) using the submersion and embedding mappings just
defined for this case. Consider the time interval Œtn, tnC1� with time step�t D tnC1�tn, and assume
F pn and �n are known from previous calculations. We approximate the internal variable rate by the
finite difference scheme

P� �
�nC1 � �n

�t
. (30)

Then, for a given value of �nC1, the SL update reads

F
p
nC1.�nC1/D updFpn

�
.�nC1 � �n/M F pn

�
, (31)

which, in view of (12) and (29) takes the form

F
p
nC1.�nC1/D

�
det

®
F pn C .�nC1 � �n/MF pn

¯�� 13 �F pn C .�nC1 � �n/MF pn
�

, (32)

where we have used the fact that TFpn f D I for all F pn 2 SL.3/ because f is an inclusion map.
We note that, from the definition of manifold updates, it follows that the SL update exactly

preserves the incompressibility condition while being consistent with the governing differential
equation.

For the case of incompressible materials conforming to flow rules of the form (21), where P�M is
a traceless tensor, the SL update proposed in (31) thus delivers a volume-preserving relation, in fact,
a function, between F pnC1 and �nC1, which can be used in the solution of (27). The minimization
problem in (27) is most effectively solved using gradient descent methods, typically in the form
of a Newton-Raphson scheme. To this end, the first and second tangents of (31) are needed. The
expression for such tangents has been included in Appendix B.

2.5. Consistency

In this section, we demonstrate the consistency of variational constitutive update (27) when using
the SL update (31). To this end, let us write the Euler-Lagrange equation expressing stationarity
with respect to �nC1:

@A

@F p
�
F ,F pnC1, �nC1

�
W
@F

p
nC1

@�nC1
C
@A

@�

�
F ,F pnC1, �nC1

�
C
@ 

@ P�

�
�nC1 � �n

�t

�
D 0. (33)

Using (14) and (23), this stationarity equation can be rewritten as

� T nC1 W
@F

p
nC1

@�nC1
C
@W p

@�

�
F
p
nC1, �nC1

�
C
@ 

@ P�

�
�nC1 � �n

�t

�
D 0. (34)
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Solving this nonlinear equation for �nC1 (with (31)) yields updated values of internal variables. The
incremental plastic update (31) can alternatively be expressed as

F
p
nC1 D g

�
OF
p

nC1

	
where OF

p

nC1 D f
�
F pn

�
C .�nC1 � �n/ TF pn f �MF pn . (35)

Variations of the plastic deformation gradient with respect to internal variables then writes

@F
p
nC1

@�nC1
D T OF p

nC1
g � TF pn f �MF pn (36)

where we have used the chain rule. Noting that

lim
�nC1!�n

OF
p

nC1 D f
�
F pn

�
(37)

we can thus write

lim
�nC1!�n

@F
p
nC1

@�nC1
D Tf .F pn /g � TF

p
n
f �MF pn DMF pn (38)

where we have used (6). Then, for vanishing increment size, stationarity equation (34) tends to

� Y nC
@ 

@ P�

�
P�n
�
D 0 (39)

which is consistent with the continuous kinetic equations (20).
We end this section by noting that the first Piola-Kirchhoff stress is then obtained as

PnC1 D
@Wn

@F nC1
. (40)

This result is easily obtained by considering the stationarity condition (33), as shown in [24]. The
consistent tangents are also of critical importance in implicit approaches (e.g. quasistatic problems).
They are readily obtained by

K�
@PnC1

@F nC1
D

@2A

@F @F

�
F nC1,F pnC1.�nC1/, �nC1

�

�
@2Jn

@F @�
.F nC1, �nC1/ �



@2Jn

@�@�

��1
.F nC1, �nC1/ �

@2Jn

@�@F
.F nC1, �nC1/

(41)

where the function Jn.F , �/ is defined as

Jn.F , �/D A.F ,F pnC1.�/, �/�AnC�t

�
� � �n
�t

�
. (42)

Note that in these expressions, we make use of the SL update (31).

3. NUMERICAL SIMULATIONS

To assess the performance and advantages of the SL update over the exponential mapping update,
we have carried out numerical exercises to determine the computing time of each method. In all
computations of the exponential mapping and its first and second linearizations, we have considered
its spectral expansion form, see [8]. To account for the most favorable scenario for the exponential
mapping, we have considered randomly generated symmetric traceless matrices, which result in real
eigenvalues, thus reducing the computation effort needed in the evaluation of the exponential map-
ping compared to the case of non-symmetric matrices, see [7]. We have verified that the computation
time of the SL update is roughly insensitive to degree of symmetry of the matrix. Figure 1 shows the
histogram for the computing-time ratio of the exponential mapping to the SL update, from where
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Figure 1. Computing-time ratio of the exponential mapping to the super linear mapping.

Figure 2. Computing-time ratio of the first linearization of the exponential mapping to the first linearization
of the super linear mapping.

we observe that the SL update is, in average, 7.4 times faster than the exponential mapping. We
note that the standard deviation in this ratio is relatively small, and therefore, the SL update shows
a marked and relatively uniform speedup over the exponential mapping update. Because the first
and second linearizations of both mappings are fundamental to the computation of algorithmically
consistent tangents and in turn in the solution of Newton-Raphson iterations, we have also assessed
the performance of the first and second linearizations of both mappings. Figures 2 and 3 show the
computing-time ratio of the SL update to the exponential mapping for the first and second lin-
earizations, respectively. Remarkably, the SL update results in computing times that are, in average,
13.23 and 34.83 times faster than the first and second linearizations of the exponential mapping
update, respectively.

To showcase the applicability of the proposed update in the solution of the time integration of
constitutive relations of metals, the single crystal plasticity model of Cuitiño and Ortiz [4] has
been implemented into the framework of variational constitutive updates using the SL update intro-
duced in (31). In this case, the plastic deformation mapping and internal variables are constrained
through the crystallographic flow rule defined by (21) using a kinematic tensor of the form (24).
For crystal-plasticity formulations, the internal variables are physically motivated by the slip strain
�˛ associated to the ˛- slip system of the crystal, traditionally denoting the array of such internal
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Figure 3. Computing-time ratio of the second linearization of the exponential mapping to the second
linearization of the super linear mapping.

variables by � D ¹�1, : : : , �N º. In the following examples, we have considered copper single crys-
tals with face-centered cubic set of slip systems, see, for example, [4]. The elastic energy density
W e follows a cubic-Hookean model,

W e.F e/D
1

2
"e WCcubic W "

e , (43)

where "e D 1
2

log.F eTF e/ is the Hencky strain tensor and Ccubic is the elasticity tensor with cubic
symmetry defined by elastic constants C11,C12, and C44. The dislocation-based hardening model
of Cuitiño and Ortiz has been approximated using a quadratic expression suitable for variational
constitutive updates [24], leading to a plastic stored energy density of the form

W p.�nC1/DW
p
n C

NX
˛

0
@g˛n��˛ C 1

2
��˛

NX
ˇ

h˛ˇn ��
ˇ ,

1
A (44)

where ��˛ D �˛nC1 � �
˛
n and the diagonal hardening matrix takes the form

h˛˛ D h˛c

�
g˛

�˛c

�3 ´
cosh

"�
�˛c
g˛

�2#
� 1

μ
, (45)

where

h˛c D
�˛c
�˛c

, �˛c D ˛�b
p
�n˛ , �˛c D

b	˛

2
p
n˛

(46)

are the characteristic plastic modulus, critical resolved shear stress, and critical slip strain for the
slip system ˛, respectively, and

n˛ D

NX
ˇ

a˛ˇ	ˇ (47)

represents the density of obstacles due to forest dislocations, where the matrix a˛ˇ si defined by the
constants a0, a1, a2, and a3, as addressed in [25]. The dislocation density is related to the slip strain
by the expression

	˛ D 	sat



1�

�
1�

	0

	sat

�
exp.�˛=�sat/

�
. (48)
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Table I. Material parameters for copper single crystal.

Parameter Value Unit

C11 168.4 GPa
C12 121.4 GPa
C44 75.4 GPa
P�0 1.0 s�1

m 100
�0 2.0 MPa
	0 1.0� 1010 m�2

	sat 1.0� 1013 m�2

�sat 0.5%
g˛ 2.0 MPa
a0 8.0� 10�4

a1 5.7 a0
a2 10.2 a0
a3 16.6 a0
˛ 0.3
b 2.56� 10�10 m
� 75.4 GPa

Figure 4. Single-crystal uniaxial tension test: a comparison of simulations and experiments for different
loading orientations.

The power-law rate-dependent behavior is incorporated into the single crystal model by the
consideration of a convex l.s.c. power-law dissipation potential [24], namely,

D

8<
:

NP
˛D1

m�0 P�0
mC1

�
P�˛

P�0

	mC1
m

P�˛ > 0

C1 P�˛ < 0

(49)

The proposed SL update has been used in the simulation of copper single crystal response to quasi-
static axial loading applied in the highly symmetrical orientations Œ111� and Œ001�. All constants
have been obtained from the literature [4], see Table I for a summary of the model constants and
their values. Simulations considered one material point, where the zero lateral-force condition is
enforced by Newton-Raphson iterations involving the SL update tangents. Figure 4 shows the stress-
strain curves from simulations and experimental results [26]. In these cases, the performance of the
SL update has been compared to a truncated Taylor series expansion of the exponential mapping [8].
For the increment size considered here (simulations with 125 and 230 steps for a total axial strain
of 16% have been used for benchmarking), between four and eight terms in the series expansion
suffice to reach machine precision. Despite the advantageous conditions for this approximate expo-
nential mapping, linked to the use of relatively small increments to handle the complex hardening
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behavior, the overall speedup offered by the SL update with respect to the exponential update is still
of a factor of about 3.

We end this section by noting that the proposed update has been successfully employed not
only in the solution of material point simulations but also in the simulation of medium-scale finite-
element models for the strengthening and hardening size effect in micropillars [27] using multiscale
strain-gradient plasticity formulations [28].

4. DISCUSSION

Inspired on differential manifold concepts, we have introduced the SL update: an update for the
numerical integration of generalized isochoric flow rules that exactly preserves the plastic incom-
pressibility condition while being consistent with the governing differential equation. By way of
numerical examples, we have demonstrated that the SL update results in computing times that are
several times smaller than the exponential mapping update evaluated using spectral expansion. The
reduction in computing time is further improved for the case of the first and second linearizations, in
which the SL update takes an order of magnitude less than the exponential mapping. These dramatic
speedups make the SL update an excellent and efficient candidate for large-scale simulations where
the constitutive update and its tangents are needed.

The exponential mapping update has been the gold standard in finite-deformation incompressible
plasticity simulations for the last 20 years. It is worth remarking that the popularity of the expo-
nential mapping relies on two main features, namely, its ability to preserve the incompressibility
condition and its consistency with the flow rule. The latter condition is necessary for guaranteeing
the convergence of the update. It should be noted that such properties of the exponential mapping
rely heavily on the precision of its calculation, whether it be by means of Taylor truncated series
or spectral expansion, are therefore is subject to constant monitoring of the error. The SL update
presents the advantage that the incompressibility condition will be always exactly satisfied, up to
machine precision, and will not depend on error tolerances.

It bears emphasis that the exponential mapping, though extensively employed in incompressible
plasticity, is not the exact solution to the flow rule (21), with the solely exception of the case where
the slip rate is constant for all systems. For all other cases, it can be shown that the exponential
mapping is only first-order accurate, see Appendix A. In the general case of manifold updates, it
can be shown that by construction they are, at least, first-order accurate, see Appendix A. In partic-
ular, the proposed SL update is first-order accurate. Therefore, from the standpoint of accuracy, the
exponential mapping update does not necessarily result in better approximations than the proposed
SL update.

We end by noting that the particular choice of the embedding and submersion mappings adopted
in this work leads to an expression of the SL update, (32), that may be found in Hairer et al.
[16, Chapter IV, Example 4.6] in the context of projection methods for the numerical solution of
volume-invariant Lagrangian dynamics. Hairer and co-workers [16] point out that projection meth-
ods, when applied to the time integration of dynamical systems, may break intrinsic symmetries
even when the approximation scheme preserves the volume constraint. However, it should be noted
that such issues mainly concern the long-time behavior of the dynamical system. We plan to further
study such issues in the future for the proposed flow-rule update.

APPENDIX A: ACCURACY ANALYSIS OF MANIFOLD UPDATES AND THE
EXPONENTIAL MAPPING

Consider the manifold rate problem given by (9). Let Œtk , tkC1� 2 R be the interval of interest, and
let �t D tkC1 � tk . By construction, a manifold update updxk W TxkM ! M satisfies the consis-
tency conditions (8), and thus, (11) holds for any embedding f and submersion g mappings chosen.
Let x.t/ be the solution to the manifold rate problem (9). Then, the local truncation error �kC1 is
defined from the expression

x.tk C�t/D x.tk/C updx.tk/.u.x.tk///C�t �kC1.�t
p/ , (A.1)
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where p is the order of accuracy of the update. Using (11), a Taylor expansion of the manifold
update around tk takes the form,

updxk .�tuk/D xk C�tuk CO
�
�t2

�
.

The Taylor expansion of the integral curve reads

x.tk C�t/D x.tk/C�t Px.tk/CO
�
�t2

�
D x.tk/C�t u.x.tk//CO

�
�t2

�
D x.tk/C updx.tk/.�t u.x.tk///CO

�
�t2

�
.

Then, it follows that the local truncation error isO.�t/, and thus, the class of manifold updates pre-
sented in this work is at least first-order accurate, that is, p D 1. A more detailed analysis considering
the particular embedding and submersion mappings may lead to a higher order of accuracy.

We now consider the specific case of the isochoric flow rule,

PF p D P�MF p (A.2)

where F p.t/ 2 SL.3/. The exponential mapping update traditionally used for the numerical
integration of (A.2) takes the form

F
p

kC1
D exp

�
P�M�t

�
F
p

k
, (A.3)

which can be expanded in an absolutely convergent Taylor series as

F
p

kC1
D F

p

k
C P�MF

p

k
�t C

1

2

�
P�M

�2
F
p

k
�t2CO

�
�t3

�
(A.4)

Direct differentiation with respect to time of (A.2) allow us to write

RF p D
®
R�M C . P�M /2

¯
F p . (A.5)

In view of (A.2) and (A.5), we can write the Taylor expansion of F p.t/ about tk as

F p.tkC�t/D F
p.tk/C

®
P�MF p

¯ ˇ̌̌ˇtk �t C 1

2

®�
R�M C . P�M /2

�
F p

¯ˇ̌̌ˇ
tk

�t2CO.�t3/ . (A.6)

From (A.4) into (A.6), we conclude that �kC1.�t/ D
1
2

®
R�MF p

¯ ˇ̌
tk �t , and therefore, the

exponential mapping is first-order accurate.

APPENDIX B: SPECIAL-LINEAR SUBMERSION MAPPING AND ITS TANGENTS

LetGL.3/D
®
F 2R3�3j detF¤ 0

¯
be the general linear group and SL.3/D

®
F 2R3�3j detFD1

¯
be the SL group, such that SL.3/�GL.3/. Consider the mapping g WGL.3/! SL.3/ defined by

g.F /D .detF /�
1
3F (B.1)

or in component notation

giJ .F /D .detF /�
1
3FiJ (B.2)

Moreover, recall the identities

@ detF

@FiJ
D adj.F /iJ D det.F /F �1J i

@F �1J i
@FkL

D�F �1Jk F
�1
Li

13



Then, the components of the first tangent TF g take the form

.TF g/iJkL �
@giJ .F /

@FkL
D .detF /�

1
3

²
ıikıJL �

1

3
F �1LkFiJ

³
D .detF /�

1
3 ıikıJL �

1

3
F �1Lk giJ .F /,

(B.3)

and the second tangent components are given by

�
T 2F g

�
iJkLpQ

�
@2giJ .F /

@FpQ@FkL
D�

1

3

²
.detF /�

1
3F �1QpıikıJL �F

�1
LpF

�1
Qk giJ .F /CF

�1
Lk

@giJ .F /

@FpQ

³

D�
1

3
.detF /�

1
3

²
F �1QpıikıJLCF

�1
Lk ıipıJQ �

�
F �1LpF

�1
Qk C

1

3
F �1LkF

�1
Qp

�
FiJ

³
.

(B.4)

We now show that the mapping (B.1) is a submersion. The manifolds GL.3/ and SL.3/ are
particular cases of Lie groups, and therefore, an entire atlas can be constructed using any local
chart. It follows that all manifolds operations on arbitrary points can be referred to operations on the
identity element (matrix) I 2 GL.3/ using left and right translations, see [17]. Thus, it suffices to
show that the map g is a submersion at the identity element. We identify the tangent spaces at the
identity gl.3/D TIGL.3/D ¹U 2 R3�3º and sl.3/D TISL.3/D ¹V 2 R3�3 W traceV D 0º, also
known as the Lie algebras of the Lie groups GL.3/ and SL.3/, respectively. We further note that
sl.3/� gl.3/. Then, for any V 2 sl.3/, choose U D V , and note that

TIg �U D U �
1

3
trace.U /I

D V .

Thus, TF g is onto TFSL.3/ 8F 2GL.3/, and therefore, g is a submersion.
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