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Abstract

Nano-science and nano-technology as well as the fine modelling of the structure and mechanics

of materials from the nanometric to the micrometric scales use descriptions ranging from the

quantum to the statistical mechanics. This paper revisits the modelling at these scales and points

out the main challenges related to the numerical solution of such models that some times are

discrete but involves an extremely large number of particles (as it is the case of molecular dynamics

simulations or coarse-grained molecular dynamics) and other times are continuous but they are

defined in highly multidimensional spaces leading to the well known curse of dimensionality issues.

The curse of dimensionality concerned by some of these deterministic models will be emphasized

and their numerical implications will be addressed in the second part of this work.
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1 Introduction

1.1 Motivation

The fine description of the mechanics and structure of materials at the micro, nano and sub-nanometric

scales introduces some specific challenges related to the impressive number of degrees of freedom

required or the highly dimensional spaces in which those models are defined. Despite the fact that

spectacular progresses have been accomplished in the context of computational mechanics in the last

decade, the treatment of those models, as we describe in the present work, needs further developments.

The brut force approach cannot be considered as a possibility for treating this kind of models. Thus,

some specialists as the Nobel Prize R.G. Laughlin, affirmed that no computer existing, or that will

ever exist, can break the barriers found in quantum mechanics because it is a catastrophe of dimension

[?].

We can understand the catastrophe of dimension by assuming a model defined in a hyper-cube in

a space of dimension D, Ω =]−L,L[D. Now, if we define a grid to discretize the model, as it is usually

performed in the vast majority of numerical methods (finite differences, finite elements, finite volumes,

spectral methods etc.), consisting of N nodes on each direction, the total number of nodes will be ND.

If we assume that for example N ≈ 10 (an extremely coarse description) and D ≈ 80 (much lower

than the usual dimensions required in quantum or statistical mechanics), the number of nodes involved

in the discrete model reaches the astronomical value of 1080 that represents the presumed number of

elementary particles in the universe!. We shall come back to the analysis of these systems later.

Thus, progresses on this field need further developments on the physical modelling as well as the

introduction of new ideas and methods in the context of computational physics. In this work we are

exploring different modelling scales, starting from the finest one, the quantum mechanics, to derive

molecular dynamics, Brownian dynamics and finally kinetic theory models. The main particularities

of such models and the main numerical difficulties associated with their solution will be emphasized.

This work does not pretend to introduce advances in computational physics, but only revisit the

main ideas of models defined in the finest scales. Most part of the models are well established and

well known in the context of both the computational physics and the computational mechanics com-

munity, and consequently all of them will be summarized in the first section that represents a broad

introduction.

In the second part of this work we address the curse of dimensionality problematic that some of
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these models involve, pointing out the advantages that separated representations could represent for

the numerical solution of such models. Finally, some examples will be considered to illustrate the

potentiality of such approaches, but also to emphasize the remaining challenges, others than their

highly multidimensional character.

1.2 From quantum mechanics to statistical mechanics: a walk on the fron-

tier of the simulable world

1.2.1 The finest description: the quantum approach

The quantum state of a given electronic distribution could be determined by solving the Schrödinger

equation. This equation has been for longtime considered as one of the finest descriptions of the world.

However, before focusing on the challenges of its numerical solution, we would like to recall that this

equation is not relativistic and then it fails when it is applied to describe heavy atoms. Moreover,

the Pauli’s principle constraint was introduced in the Schrödinger formalism in an ”ad hoc” way and

constitutes, as we illustrate in the last section of this work, the main difficulty in its solution.

Some simplificative hypotheses are usually introduced, as for example the Born-Oppenheimer that

states that the nuclei can be in first approximation assumed as classical point-like particles, that the

state of electrons only depends on the nuclei positions and that the electronic ground state corresponds

to the one that minimizes the electronic energy for a nuclear configuration. This equation defines a

multidimentionnal problem whose dimension increases linearly with the number of the electrons in the

system.

Thus, the knowledge of a quantum system reduces to the determination of the wavefunction

Ψ (x1,x2, · · · ,xN , t; X1, · · · ,XM ) (that establishes that the electronic wavefunction depends para-

metrically on the nuclei positions) whose evolution is governed by the Schrödinger equation:

i~
∂Ψ

∂t
= − ~2

2me

e=N∑
e=1

∇2
eΨ +

e=N−1∑
e=1

e′=N∑
e′=e+1

Vee′Ψ +

e=N∑
e=1

n=M∑
n=1

VenΨ (1)

where N is the number of electrons and M the number of nuclei, the last ones assumed located and

fixed at positions Xj . Each electron is defined in the whole physical space xj ∈ R3, i =
√
−1, ~

represents the Planck’s constant divided by 2π and me is the electron mass.

The differential operator ∇2
e is defined in the conformation space of each particle, i.e.: ∇2

e ≡

∂2
/
∂x2

e+∂
2
/
∂y2

e+∂2
/
∂z2
e . The Coulomb’s potentials accounting for the electron-electron and electron-
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nuclei interactions write:

Vee′ =
(qe)

2

‖xe − xe′‖
(2)

Ven = − qnqe
‖xe −Xn‖

(3)

The electron charge is represented by qe and the nuclei charge by qn = |qe| ×Z (where Z is the atomic

number).

The time independent Schrödinger equation (from which one could determine the ground state, per-

form quantum static computations or accomplishing separated representations of the time-dependent

solution) writes:

− ~2

2me

e=N∑
e=1

∇2
eΨ +

e=N−1∑
e=1

e′=N∑
e′=e+1

Vee′Ψ +

e=N∑
e=1

n=M∑
n=1

VenΨ = E Ψ (4)

where the ground state corresponds to the eigenfunction Ψ0 associated with the most negative eigen-

value E0.

Several techniques have been proposed for solving this equation. Some of them lie in the direct

solution of the (time-independent or time-dependent) Schrödinger equation. Due to the curse of di-

mensionality its solution was only possible for very reduced populations of electrons.

Other solution strategies are based on the Hartree-Fock (HF) approach and its derived approaches

(post-Hartree-Fock methods). The main assumption of this approach lies in the approximation of

the joint electronic wavefunction (related to the N electrons) as a product of N 3D-functions (the

molecular orbitals) verifying the antisymmetry restriction derived from the Pauli’s principle. Thus,

the original HF approach consists of writing the joint wavefunction from a single Slater’s determinant.

The Schödinger equation allows computing the N molecular orbitals after solving the resulting strongly

non-linear problem. This technique has been extensively used in quantum chemistry to analyze the

structure and behavior of molecules involving a moderate number of electrons. Of course, the HF

assumption represents sometimes a too crude approximation which invalidate the derived results.

To circumvent this crude approximation different multi-determinant approaches have been pro-

posed. Interested readers can refer the excellent overview of Cancès et al. [?] as well as the different

chapters of the handbook on computational chemistry [?]. The simplest possibility consists in writ-

ing the solution as a linear combination of some Slater determinants built by combining n molecular

orbitals, with n > N . These molecular orbitals are assumed known (e.g. the orbitals related to the

hydrogen atom) and the weights are searched to minimize the electronic energy. When the molecu-
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lar orbitals are built from the Hartree-Fock solution (by employing the ground state and some excited

eigenfunctions) the technique is known as Configuration Interaction method (CI). A more sophisticated

technique consists in writing this many-determinants approximation of the solution by using a number

of molecular orbitals n (with n > N) assumed unknown. Thus, the minimization of the electronic

energy leads to compute simultaneously the molecular orbitals as well as the associated coefficients

of this many-determinants expansion. Obviously, each one of these unknown molecular orbitals are

expressed in an appropriate functional basis (e.g. gaussian functions, ...). This strategy is known as

Multi-Configuration Self-Consistent Field (MCSCF).

All the just mentioned strategies (and others like the coupled cluster or the Moller-Plesset per-

turbation methods) belong to the family of the wavefunction based methods. In any case all these

methods can be only used to solve quantum systems composed of a moderate number of electrons.

As we confirm later the main difficulty is not in the dimensionality of the space, but in the use of

the Slater determinants (needed to account for the Pauli’s principle) whose complexity scales on the

factorial of the number of electrons, i.e. in N !.

The second family of approximation methods, widely used in quantum systems composed of hun-

dreds, thousands and even millions of electrons, are based on the density functional theory (DFT).

These models, more than looking for the expression of the wavefunction (with the associated multi-

dimensional issue) look for the electronic distribution ρ(x) itself. The main difficulties of this approach

are related to the expressions of both the kinetic energy of electrons and the inter-electronic repulsion

energy. The second term is usually modelled from the electrostatic self-interaction energy of a charge

distribution ρ(x). On the other hand the kinetic energy term is also evaluated in an approximate man-

ner (from the electronic distribution itself in the Thomas-Fermi and related orbital-free DFT models

or from a system of N non-interacting electrons –Kohn-Sham models–). Obviously, due to the just

referred approximations introduced in the kinetic and inter-electronic interaction energies, a correction

term is needed, the so-called exchange-correlation-residual-kinetic energy. However, no exact expres-

sion of this correction term exists and then different approximate expressions have been proposed and

used. Thus, the validity and accuracy of the computed results will depend on the accuracy of the

exchange-correlation term that must be fitted for each system.

The models related to the Thomas-Fermi, less accurate in the practice because the too phenomeno-

logical expression of the kinetic energy coming from the reference system of an uniform non-interacting

electron gas, allows to consider large multi-electronic systems. In a recent work, Gavini et al. [?] per-
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formed multi-million atom simulations by employing the Thomas-Fermi-Weizsacker family of orbital-

free kinetic energy functionals. On the other hand, the Kohn-Sham based models are a priori more

accurate, but they need the computation of the N eigenfunctions related to the N lowest eigenvalues

of a non-physical atom composed of N non-interacting electrons.

Transient solutions are very common in the context of quantum gas dynamics (physics of plasma)

but are more infrequent in material science when the structure and properties of molecules or crystals

are concerned. For this reason, in what follows, we are focusing on the solution of the time-independent

Schrödinger equation which leads to the solution of the associated multidimensional eigenproblem,

whose eigenfunction related to the most negative eigenvalue constitutes the ground state of the system.

Quantum chemistry calculations performed in the Born-Oppenheimer setting consist either (i) in

solving the geometry optimization problem, that is, to compute the equilibrium molecular configura-

tion (nuclei distribution) that minimizes the energy of the system, finding the most stable molecular

configuration that determines numerous properties like for instance infrared spectrum or elastic con-

stants; or (ii) in performing an ”ab initio” molecular dynamics simulation, that is, to simulate the time

evolution of the molecular structure according to the Newton law of classical mechanics. Molecular

dynamics simulations allow to compute various transport properties (thermal conductivity, viscosity,

...) as well as some others non-equilibrium properties.

For more details on the mathematical aspects of these models the interested reader can refer to [?],

[?] and [?] and the references therein.

1.2.2 From ”ab initio” to molecular dynamics

Depending on the choice of the method, on the accuracy required, and on the computer facility avail-

able, the ab initio methods allow today for the simulations of systems up to ten, one hundred or some

million atoms. In time dependent simulations, they are only convenient for small-time simulations,

say not more than a picosecond. However, some times larger systems are concerned, and for this

purpose one must focus on faster approaches, obviously less accurate. Two possibilities exist: the

semi-empirical and the empirical approaches. The semi-empirical approaches speed up the ab initio

methods by profiting of the information coming from experiments or previous simulations. Empirical

methods go on by considering explicitly only the nuclei, by introducing ”empirical” potentials leading

to the forces acting on the nuclei. Thus, in the stationary setting only the stable configuration is

searched, and for this a geometrical optimization (to computed the nuclei equilibrium distribution) is
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addressed leading to the so-called molecular mechanics. The transient setting results in the classical

molecular dynamics but now the computation is speed up of many orders of magnitude with respect

to the molecular dynamics where the potentials are computed at the ab initio level.

Thus, if we assume a population of M nuclei (of mass mn) and a two-body potential (many-body

potentials are also available), now the Newton’s law writes for a generic nuclei n:

mn
d2Xn

dt2
=

∑
k=1,k 6=n

Fnk , ∀n ∈ [1, · · · ,M ] (5)

where Fnk denotes the force acting on nucleus n originated by the presence of nucleus k. Obviously

these forces can be computed from the gradient of the assumed inter-particles potentials.

Accurate algorithms for integrating these equations exist. The simplectic Verlet’s scheme is one of

the most used. Molecular dynamics simulations are confronted, despite its conceptual simplicity, with

diverse difficulties of different nature:

• The first and most important comes, as previously indicated, from the impossibility of using

an ”exact” interaction potential derived from quantum mechanics. This situation is particularly

delicate when we are dealing with some irregular nuclei distributions as the ones encountered

in the neighborhood of defaults in crystals (dislocations, crack tips, etc.), interfaces between

different materials or in zones where different kinds of nuclei coexist.

• The second one comes from the units involved in this kind of simulations: the nuclei displacements

are in the nanometric scale, the energies are of the order of the electron-volts, the time steps are

of the order of 10−15s. Thus, because of the limits in the computers precision, a change of units

is required, which can be easily performed.

• In molecular dynamics the behavior of atoms and molecules is described in the framework of

classical mechanics. Thus, the particles energy variations are continuous. The applicability of

MD depends on the validity of this fundamental hypothesis. When we consider crystals at low

temperature the quantum effects (implying discontinuous energy variations) are preponderant,

and in consequence the matter properties at these temperatures cannot be determined by MD

simulations. The use of MD is restricted to temperatures higher than the Debye’s temperature

(for example the Debye’s temperature for the Fe α ≈ 460K). This analysis is in contrast to

the vast majority of MD simulations carried out nowadays. In fact, higher is the temperature

(kinetic energy) and higher results the velocity of particles, requiring shorter time steps in order
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to ensure the stability of the integration scheme. For this reason, nowadays most of the MD

simulations in solid mechanics are carried out at zero degrees Kelvin or at very low temperatures

but, as just pointed out, at these temperatures the validity of the computed MD solutions are

polluted by the non negligible quantum effects.

• The prescription of boundary conditions is another delicate task. If the analysis is restricted to

systems with free boundary conditions, then the MD simulation can be carried out without any

particular treatment. On the other case we must consider a system large enough to ensure that

in the analyzed region the impact of the free surfaces can be neglected. Other possibility lies in

the prescription of periodic boundary conditions, where an atom leaving the system for example

through the right boundary is re-injected in the domain through the left boundary. Moreover,

the particles located in the neighborhood of a boundary are influenced by the ones located in the

neighborhood of the opposite boundary. The imposition of other boundary conditions is more

delicate from both the numerical and the conceptual points of view. For example, what is the

meaning of prescribing a displacement on a boundary? Each situation requires a deep analysis

in order to define the best (the most physical) way to prescribe the boundary conditions.

• There are other difficulties related to the transient analysis. We consider a thermal system in

equilibrium, i.e. a system in which the velocities follows the Maxwell-Boltzmann distribution.

Now, we proceed to heat the system. One possibility lies in increasing suddenly the kinetic

energy of each particle. Obviously, even if the resulting velocities define a Maxwell-Boltzmann’s

distribution, the system remains off equilibrium because the partition between kinetic and po-

tential energies is not the appropriate one. For this reason we must proceed to relax the system

that evolves from this initial (non-physical) state to the equilibrium one. Other (more physical)

possibility lies in the incorporation of a large enough ambient region around the analyzed system,

whose particles are initially in equilibrium at the highest temperature. Now, both regions (the

system and the ambient) interact, and the system initiates its heating process that reaches its

equilibrium some time latter. The final state of both evolutions is the same, but the time required

to reach it depends on the technique used to induce the heating. The first transient is purely

numerical whereas the second one is more physical allowing the identification of some transport

coefficients (for example the thermal conductivity).

• Finally the CPU time continues to be the main limitation of MD simulations. The strongest
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handicap is related to the necessity of considering at each time step and for each particle the

influence of all the others particles. Thus, the integration method seems to scale with the square of

the number of particles. Even if some computing time savings can be introduced in the neighbors

search, the extremely small time steps and the extremely large number of particles required to

describe real scenarios, limit considerably the range of applicability of this kind of simulations,

that has been accepted to be nowadays -in 2008- of the order of a cubic micrometer, even when

the systems are considered at very low, and then non-physical, temperatures (close to zero degrees

Kelvin). We can notice that, despite the impressive advances in the computational availabilities,

the high performance computing and the use of massive parallel computing platforms, the state of

the art does not allow the treatment of macroscopic systems encountered in practical applications

of physics, chemistry and engineering.

The above mentioned difficulties to perform fully molecular dynamics (MD) simulations motivated

the proposal of hybrid techniques that apply MD in the regions where the unknown field varies in a

non-uniform way (molecular dynamics model) and a standard finite element approximation in those

regions where the unknown field variation can be considered as uniform (continuous model). The

main questions concerned by these bridging strategies concern: (i) the kinematics representations in

both models; (ii) the transfer conditions on the MD and continuous models interface and (iii) the

macroscopic constitutive equation employed in the continuous model.

Different alternatives exist, and the construction of such bridges is nowadays one of the most active

topics in computational mechanics. The spurious reflection of the high frequency parts of the waves is

one of the main issues. We would like only to mention three ”families” of bridging techniques, giving

some key references in which the interested reader could find other extremely valuable references: (i)

the quasi-continuum method proposed by Tadmor and Ortiz [?]; (ii) the multi-scale method proposed

by Wagner and Liu [?] and (iii) the methods based on the ”Arlequin”approach [?] like the one proposed

by Belytschko in [?].

1.2.3 Coarse grained modelling: Brownian dynamics

Some times one is interested in analyzing the behavior of a system composed by a series of microscopic

entities (particles assumed with a null extension) dispersed into another fluid (the solvent). The

kinematic of such particles depends, of course, on their interactions with the solvent particles. A

real molecular dynamics simulation is definitively forbidden (the nowadays MD simulation feasibilities
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rarely exceeds the number of particles contained within a cube of one micron of side).

One possibility to reduce the size of the discrete models lies in considering only the particles of

interest. The other particles (the ones that constitute the solvent) are not considered explicitly and

only their averaged effects are retained in the modelling.

Thus, the motion equation of a particle whose position is described by xi, is governed by the

Langevin’s equation:

m
d2xi
dt2

= ξ

(
dxi
dt
− vf (xi)

)
+ Fexti (t); ∀i (6)

where m denotes the particle mass, xi the position of particle i, ξ the friction coefficient, vf (xi) the

fluid velocity at position xi and Fexti (t) all the other forces acting on the particle i (coming from a

external potential or from the solvent particles bombardment). We can notice that even if this model

doesn’t incorporate explicitly the solvent particles population, theirs effects are taken into account

from the drift term ξ
(
dxi
dt − vf (xi)

)
as well as by the impact forces.

In the last expression the drift term is quite standard, however the external forces acting on each

particle deserve some additional comment. In what follows and without any detriment of generality

we assume that there is not other forces than the one coming from the solvent particles bombardment

and that the solvent is macroscopically at rest, i.e. vf = 0. The random nature of the interaction

force is modelled from a statistical distribution function that becomes fully defined as soon as its mean

value and its standard deviation are fixed. In that concerns the mean, one expect a null value if the

microscopic dynamics is isotropic. Concerning the standard deviation one must proceed within the

statistical mechanics framework. In what follows we summarize the main ideas for the derivation of

the standard deviation expression.

If we define B∆t

B∆t =

∫ ∆t

0

F ext(t)

m
dt =

k=p∑
k=1

F ext(tk)

m
δt (7)

where we assume that in ∆t the particle is subjected to p impacts from the solvent particles, with

p >> 1. These impacts are modelled by a constant force F ext(tk) that applies for a time δt (∆t = pδt).

By invoking the central limit theorem we conclude that B∆t follows a gaussian distribution N (0, q∆t)

because the number of impacts scales linearly with ∆t.

Now, to compute q, one could integrate the Langevin’s equation to obtain the equilibrium velocity
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distribution W :

W

(
dx

dt
, t→∞

)
=

√
ξ

mπq
e
ξ( dxdt )

2

mq (8)

that must coincide with the Maxwell-Boltzmann one (canonical ensemble), from which we deduce the

expression of q:

q =
2ξkbT

m2
(9)

where kb is the Boltzmann constant and T the absolute temperature.

Thus, the Langevin’s equation is fully defined, by writing:

B∆t =

∫ ∆t

0

F ext(t)

m
dt = N

(
0, 2

ξkbT

m2
∆t

)
(10)

expression that runs also in presence of other forces like the ones coming from a gradient of a potential

or when vf 6= 0.

Thus, one could track the movement of each particle xi by considering a standard drift term and

a random force whose distribution is perfectly known. This stochastic approach has been traditionally

also used for solving deterministic models as the advection-diffusion one, because one could compute

some moments of the resulting distribution by tracking a moderate population of particles instead to

discretize the deterministic counterpart of the advection-diffusion model by using one of the standard

mesh-based discretization techniques that could involve in the case of 3D models an excessive number

of degrees of freedom.

To illustrate this procedure we consider the simplest form of the advection-diffusion equation:

∂C

∂t
+ v · ∇C = D∆C (11)

where C = C(x, t) is the concentration field and D is the so called diffusion coefficient.

Obviously, this simple parabolic equation could be solved by using any standard technique (finite

differences, finite elements, spectral methods, finite volumes, the method of particles, ...), but in what

follows we are solving it using a stochastic approach. For this purpose we assume the initial condition

represented by N -Dirac masses:
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C(x, t = 0) ≈ C0(x) =

i=N∑
i=1

ci δ(x− xi(t = 0)) (12)

Here, we are not discussing the choice of the coefficients ci and the locations xi. Several possibil-

ities exist to perform a choice trying to represent, as precisely as possible, the initial concentration

distribution. Most of them proceed by regularizing the Dirac distribution and then enforcing the min-

imization of ‖C(x, t = 0) − C0(x)‖. From now on, ci and xi(t = 0) are assumed known. Moreover,

as the considered advection-diffusion equation does not contain source terms, the weights ci remain

unchanged during the evolution of the pseudo-particles positions xi(t).

Now, the simplest explicit integration algorithm proceeds by updating the particle position consid-

ering both the deterministic and the random contributions:

xn+1
i = xni + v(xni )∆t+N (0, 2D∆t)u, ∀i (13)

where xn+1
i ≡ xi(t = (n+ 1)×∆t) and u is a unit random vector.

Now the distribution moments can be easily computed, and the concentration field could be recon-

structed by employing some appropriate smoothing.

It is usual to find this kind of advection-diffusion equations in many branches of science and en-

gineering. In particular they are encountered when one models macromolecular materials within the

statistical mechanics framework, as we describe later. Despite its intrinsic simplicity, some times they

arise defined in highly dimensional spaces including the physical and the conformation coordinates. To

avoid the curse of dimensionality drawback characteristic of mesh-based techniques, different authors

proposed the used of stochastic techniques exploiting the equivalence between the so-called Fokker-

Planck equation and the Ito’s stochastic equation [?], similar to the just described equivalence between

models (??) and (??). Thus, if one is only interested in computing some moments of the resulting

distribution function a moderate population of particles is enough to describe accurately the evolution

of such moments. The size of the pseudo-particles population that must be considered for computing

accurately the different moments of the solution scales linearly with the dimension of the space, how-

ever, if one want to reconstruct the distribution itself an impressive number of particles is required

which don’t scale anymore linearly with the dimension of the space.

In general the technique just presented, is conceptually very simple and then easy to implement in

a computer or in a parallel computing platform. Explicit integration schemes are usually employed,
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needing for a careful choice and control of the time step.

It is nowadays widely recognized that the main drawbacks of stochastic techniques are: (i) the

control of the statistical noise that makes difficult the use of the stochastic approach to perform

inverse parameter identification or optimization, because the poor accuracy in the sensitivity analysis;

(ii) the difficulty to reconstruct the model solution itself even in moderate multidimensional models;

and (iii) the necessity to solve always the transient model, even if one is only interested in the steady

state.

Moreover, in complex flows simulation using for example a finite element solver for the flow kine-

matics computation, one must ensure that all the elements contains a number of particles, at least

enough to allow computing the virial stress (the usual micro-macro bridge). Different possibilities ex-

ist, but all of them have a non negligible impact on the solution. Thus, if new particles are added (and

probably others removed) the size of the model is changing, tracking procedures are time consuming,

and the initialization of the just introduced particles induces a noticeable numerical diffusion.

One could think that the aforementioned difficulties could be circumvented by employing a La-

grangian description of the flow combined with a Lagrangian description of the microstructure evo-

lution (stochastic approach), however usual mesh-based strategies fails because the high distortion of

the meshes during the flow. A first tentative of coupling a meshless Lagrangian description of the

flow kinematics (using the natural element method widely described in [?] [?]) and a Lagrangian mi-

crostructure description have been recently performed in [?]. This technique could be extended for

coupling a Lagrangian flow description with a stochastic description of the microstructure evolution.

In any case the difficulties just mentioned will persist.

To reduce the computational cost of numerical simulations different model reduction techniques

have been recently proposed [?]. However, the coupling of such techniques (based on the proper

orthogonal decomposition -also known as Karhunen-Loève decomposition-) with a Lagrangian descrip-

tion of the microstructure evolution remains nowadays an open problem. However, sometimes the

stochastic model can be written in an Eulerian form (Brownian Configuration Fields) and in that case,

as illustrated in [?], the model reduction runs opening some interesting perspectives.

1.2.4 Coming back to continuous descriptions: kinetic theory models

The next level of description concerns the statistical mechanics where the knowledge of individuals

is substituted by a kind of averaged knowledge described by a probability distribution function that
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depends on some conformational coordinates depending on the considered model. In what follows we

are addressing some models involving more or less large conformational spaces.

The Vlasov-Poisson-Boltzmann equation. Firstly, we consider the dynamics of N electrically

charged particles of masse m. When N becomes too large, direct molecular dynamics simulations

result prohibitive from the computing time viewpoint. Thus, more than describing the system from

the position and velocities of all the particles, one could introduce the function f(t,x,v) given the

number of particles that at time t, are located within an elementary volume dx = (dx, dy, dz)T placed

at position x and having velocities within the volume defined by dv = (du, dv, dw)T around v. Now,

the density balance writes:

∂f

∂t
+ v · ∇xf + a(x, t) · ∇vf = S(t,x,v) (14)

where ∇x and ∇v represent the gradient operator in the physical and velocity spaces respectively. We

assumed that the acceleration a = dv
dt does not depend on the velocity (by this reason it is is not

affected by the velocity-gradient ∇v. The source term S(t,x,v) represents the so called collision term

and can be derived from an appropriate physical analysis.

We don’t need any physics to model the velocity field v because now the velocity field is a real

coordinate, like the spatial ones. On the contrary, we need to define the acceleration field a(x, t). For

this purpose we consider the Newton’s law a = F
m , and compute the force acting on the particles by

taking into account the nature of the system, that in the case here addressed consists of a population of

charged particles interacting by means of the Coulomb’s potential. The electrostatic potential U(x, t)

can be computed by solving the associated Poisson’s problem:

∆U(x, t) = −4πkQ(x, t) (15)

where k is the Coulomb’s law constant and Q(x, t) is the electrical charge inside the volume dx around

x that can be computed from:

Q(x, t) = q

∫
R3

f(x,v, t)dv (16)

with q the particle charge. The force acting on a particle can be finally computed by using:
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F(x, t) = −q ∇xU(x, t) (17)

Remarks:

1. When the particles are not charged the steady state solution of Eq. (??) leads to the Maxwell-

Boltzmann distribution when the appropriate choice of the collision term representing the parti-

cles collisions is made.

2. When the interaction potential does not comply the Coulomb’s law, model (??)-(??) cannot be

employed. In this case we must compute the force by using:

F(x, t) =

∫
R3

F(x, t; x′) f̃(x′, t)dx′ (18)

where

f̃(x, t) =

∫
R3

f(x,v, t)dv (19)

and F(x, t; x′) represents the force at position x originated by a particle located at position x′.

In any case this analysis fails when (i) the inter-particle potential leads to a non-definite integral

(??); and (ii) in the case of dense systems where the movements of particles is correlated.

3. When the acceleration does not depend on the velocity (as was assumed in Eq. (??)) and the

collision terms vanishes, an equivalence between the conservation equation and the Liouville’s

theorem in the phase space can be established.

4. In general the establishment of collision terms is quite difficult. To circumvent this difficulty

and assuming that the equilibrium distribution is known feq(x,v, t), one could approximate the

collision term by

S(t,x,v) =
feq(x,v, t)− f(x,v, t)

τ
(20)

where τ represents a relaxation time. This approximation leads to the so called BFK models.

5. Equation (??), also known as the Vlasov-Poisson-Boltzmann equation, is widely used to model

quantum plasmas. One could imagine the extension of this formalism (within the BBGKY hier-

archy) to a variety of physical models: colloids, ferrofluids, coarse grained molecular dynamics,
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crystallization, demixing, etc. The associated kinetic theory descriptions constitute the Vlasov-

Fokker-Planck models.

6. The kinetic theory formalism allows transforming a discrete model into its continuous counter-

part. However, in general, the continuous descriptions involve highly multidimensional spaces

and their evolutions are governed by hyperbolic non-linear partial differential equations. To solve

these kind of models appropriate stabilized solvers, able to proceed in highly multidimensional

spaces, are needed.

In the previous paragraphs we introduced some ideas related to kinetic theory models of systems

composed of particles. We are introducing in the next paragraphs some models describing the micro-

scopic modelling of polymeric liquids.

Kinetic theory description of polymeric liquids. For the sake of simplicity we are focusing in

polymer solutions (the entangled systems related to the polymer melts can be also described in the

kinetic theory framework [?] [?]). We are addressing the Bead-Spring-Chain (BSC) model of polymer

solutions. The BSC chain consists of S + 1 beads connected by S springs. The bead serves as an

interaction point with the solvent and the spring contains the local stiffness information depending

on local stretching (see [?] for more details). From now on we are also assuming a fully developed

homogeneous flow. Thus, the microstructural state does not depend on the space coordinates.

The dynamics of the chain is governed by viscous drag, Brownian and connector forces. If we

denote by ṙk the velocity of bead k and by q̇k the velocity of the spring connector qk, we have

q̇k = ṙk+1 − ṙk ∀k = 1, ..., S (21)

The dynamics of each bead can be written as:

−ζ(ṙk − v0 −∇v · rk)︸ ︷︷ ︸
V iscous drag

− kbT
∂ln(ψ)

rk︸ ︷︷ ︸
Brownian effects

+ Fck − Fck−1︸ ︷︷ ︸
Interaction Forces

= 0, (22)

where ζ is the drag coefficient, v is the velocity field, v0 is an average velocity, kb is the Boltzmann

constant, T is the absolute temperature and ψ is the distribution function ψ(r1, · · · , rS+1, t). From
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equations (??) and (??) we obtain:

q̇k = ∇v · qk −
1

ζ

S∑
l=1

Akl ·
(
kbT

∂ln(ψ)

∂ql
+ Fcl

)
, (23)

where Akl are the components of the Rouse matrix (see [?] for more details).

In the Rouse model the connector force Fc is a linear function of the connector vector, but we could

use Finitely Extensible Non-Linear Elastic (FENE) springs, with a dimensionless connector force given

by:

Fc(qk) =
1

1− q2
k/b

qk, (24)

where
√
b is the maximum dimensionless length of each spring connector of the chain.

Introducing Eq. (??) in the equation governing the evolution of the distribution function, and

considering homogeneous flows,

∂ψ(q1, ...,qS , t)

∂t
= −

S∑
k=1

(
∂

∂qk
(q̇kψ(q1, ...,qS , t))

)
, (25)

we obtain

∂ψ

∂t
= −

S∑
k=1

(
∂

∂qk

(
(∇v · qk −

1

ζ

S∑
l=1

Akl · Fcl ) ψ

))
+

+
kbT

ζ

S∑
k=1

S∑
l=1

Akl
∂2ψ

∂qk∂ql
. (26)

The micro-macro bridging is performed by computing the virial stress, that within the rheology

community is known as the Kramer’s rule. The main difficulty in using this description is the highly

multidimensional problem defined by Eq. (??) that needs for specific advanced solvers as the ones that

we proposed in some of our former works and that we revisit in the next section.

Kinetic theory description of rod-like suspensions in complex flows. In the case of a dilute

suspension of rod-like particles (short fibers, nanofibers, functionalized carbon nanotubes or even rod-

like molecules), the configuration distribution function (also known as orientation distribution function)

gives the probability of finding the particle in a given direction. Obviously, this function depends on

the physical coordinates (space and time) as well as on the configuration coordinates, that taking into

account the rigid character of the particles, are defined on the surface of the unit sphere. Thus, we can

write ψ(x, t,p), where x defines the position of the rod center of mass, t the time and p the unit vector
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defining the rod orientation. The evolution of the distribution function is given by the Fokker-Planck

equation

dψ

dt
= − ∂

∂p
(ψṗ) +

∂

∂p

(
Dr

∂ψ

∂p

)
(27)

where d/dt represents the material derivative, Dr is a diffusion coefficient and ṗ is the particle rotation

velocity. The orientation distribution function must verify the normality condition:

∫
S(0,1)

ψ(p)dp = 1 (28)

where S(0, 1) denotes the surface of the unit sphere.

For ellipsoidal particles and when the suspension is dilute enough, the rotation velocity can be

obtained from the Jeffery’s equation

ṗ = Ω · p + k D · p − k(pT ·D · p) p (29)

where Ω and D are the vorticity and the strain rate tensors respectively, associated with the fluid flow

undisturbed by the presence of the suspended particles, and k is a scalar which depends on the particle

aspect ratio λ (ratio of its length and diameter)

k =
λ2 − 1

λ2 + 1
(30)

that for rod-like particles can be assumed k ≈ 1. In complex flows simulations the solution of the

Fokker-Planck equation involves some numerical difficulties related to: (i) its multidimensional char-

acter, i.e. ψ(x, t,p) : Ω ⊂ R3 × R+ × S(0, 1) → R+; (ii) the geometrical complexity of the physical

domain Ω ; (iii) its purely advective character in the physical space; and (iv) the advection effects in the

conformation space. Both last behaviors need appropriate numerical stabilizations (e.g. upwinding)

of discrete models.

2 Advanced solvers for multi-dimensional models

The solution of models like the one just addressed in Eq. (??) needs new advanced numerical strategies,

because the standard ones suffer the curse of dimensionality. Some strategies have been recently

proposed for solving models defined in multi-dimensional spaces. The sparse grid techniques are one
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of the most popular [?], but as we described in the first section, separated representations were also

used for solving the models encountered in quantum mechanics (Hartree-Fock and post-Hartree-Fock

techniques).

The sparse grids [?] are restricted (as argued in [?]) for treating models involving up to twenty

dimensions. On the other hand, separated representations like the one considered in the multi-

configuration-self-consistent-fields (MCSCF) [?] [?], fix the number of products (anti-symmetrized)

and also assumes that those products are constructed by combining a certain number of unknown

one-dimensional functions.

In the next section we are describing another alternative and efficient technique recently proposed

and based on the use of separated representations within a variational framework.

2.1 Circumventing curse of dimensionality by using separated representa-

tions

Recently we proposed a new strategy able to solve highly multi-dimensional models circumventing the

curse of dimensionality. This technique was successfully applied for treating some multi-dimensional

models encountered in the kinetic theory description of complex fluids [?] [?]. It allows defining the

optimal number of products containing the optimal one-dimensional functions. In what follows we are

summarizing the main ideas that the aforementioned technique involves. For the sake of simplicity, we

are illustrating the solution procedure by solving the Poisson problem defined in a space of dimension

D:

4T = −f(x1, x2, ..., xD), (31)

where T is a scalar function of x1, x2, ..., xD . Problem (??) is defined in the domain Ω =]− L,+L[D

with vanishing boundary conditions.

The problem solution can be written in the form:

T (x1, x2, ..., xD) =

∞∑
j=1

αj

D∏
k=1

Fkj(xk), (32)

where Fkj is the jth approximation function, with unit norm and that depends only on the kth coor-

dinate.
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It is well known that the solution of numerous problems can be accurately approximated using a

finite (sometimes very reduced) number of approximation functions, i.e.:

T (x1, x2, ..., xD) ≈
Q∑
j=1

αj

D∏
k=1

Fkj(xk). (33)

The previous expression implies the same number of approximation functions in each dimension, but

each one of these functions could be expressed in a discrete form using different number of parameters

(nodes of the one-dimensional meshes).

Now, an appropriate numerical procedure is needed for computing the coefficients αj as well as

the Q × D one-dimensional approximation functions. The proposed numerical scheme consists of an

iteration procedure that solves at each iteration n the following three steps:

Step 1: Projection of the solution in a discrete basis

If we assume the functions Fkj , ∀j ∈ [1, ..., n]; ∀k ∈ [1, ..., D] known (verifying the boundary con-

ditions), the coefficients αj can be computed by introducing the approximation of T into the Galerkin

variational formulation associated with Eq. (??):

∫
Ω

∇T ∗ · ∇TdΩ =

∫
Ω

T ∗f dΩ. (34)

Introducing the approximation of T and T ∗:

T (x1, x2, ..., xD) =

n∑
j=1

αj

D∏
k=1

Fkj(xk), (35)

T ∗(x1, x2, ..., xD) =

n∑
j=1

α∗j

D∏
k=1

Fkj(xk), (36)

into Eq. (??), we have

∫
Ω

∇

 n∑
j=1

α∗j

D∏
k=1

Fkj(xk)

 · ∇
 n∑
j=1

αj

D∏
k=1

Fkj(xk)

 dΩ =
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=

∫
Ω

 n∑
j=1

α∗j

D∏
k=1

Fkj(xk)

 f dΩ. (37)

Now, we assume that f(x1, · · · , xD) can be written in the form

f(x1, · · · , xD) =

m∑
h=1

D∏
k=1

fkh(xk). (38)

Eq. (??) involves integrals of products of D functions each one defined in a different dimension.

Let
∏D
k=1 gk(xk) be one of these functions to be integrated. The integral over Ω can be performed

by integrating each function in its definition interval and then multiplying the D computed integrals

according to:

∫
Ω

D∏
k=1

gk(xk) dΩ =

D∏
k=1

∫ L

−L
gk(xk)dxk, (39)

which makes possible the numerical integration in highly dimensional spaces.

Now, due to the arbitrariness of the coefficients α∗j , Eq. (??) allows to compute the approximation

coefficients αj , solving the resulting linear system of size n× n. This problem is linear and moreover

rarely exceeds the order of tens of degrees of freedom in standard elliptic models. Thus, even if the

resulting coefficient matrix is densely populated, the time required for its solution is negligible with

respect to the one required for performing the approximation basis enrichment (step 3).

Step 2: Checking convergence

From the solution of T at iteration n given by Eq. (??) we compute the residual Re related to

Eq. (??):

Re =

√∫
Ω

(4T + f(x1, · · · , xD))
2

‖T‖
. (40)

The integral in Eq. (??) can be written as the product of one-dimensional integrals by performing

a separated representation of the square of the residual.

If Re < ε (epsilon is a small enough parameter) the iteration process stops, yielding the solution

T (x1, · · · , xD) given by Eq. (??). Otherwise, the iteration procedure continues.

Step 3: Enrichment of the approximation basis
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From the coefficients αj just computed the approximation basis can be enriched by adding the new

function
∏D
k=1 Fk(n+1)(xk). For this purpose we solve the Galerkin variational formulation related to

Eq. (??):

∫
Ω

∇T ∗ · ∇TdΩ =

∫
Ω

T ∗f dΩ, (41)

using the approximation of T given by

T (x1, x2, ..., xD) =

n∑
j=1

αj

D∏
k=1

Fkj(xk) +

D∏
k=1

Rk(xk). (42)

and the associated weighting functions

T ∗(x1, x2, ..., xD) =

= R∗1(x1)R2(x2) · · ·RD(xD) + · · ·+R1(x1)R2(x2) · · ·R∗D(xD) (43)

leading to a non-linear variational problem, whose solution are the D functions Rk(xk), k = 1, · · · , D.

After convergence of the non-linear solver, functions Fk(n+1)(xk) are finally obtained by normalizing

the functions R1, R2, ..., RD.

The discretization needs an appropriate discrete approximation of functions Rk(xk) and Fkj(xk).

Each one of these functions is approximated using a 1D finite element description. If we assume than pk

nodes are used to construct the interpolation of functions Rk(xk) and Fkj(xk) in the interval [−L,L],

then the size of the resulting discrete non-linear problem is
∑k=D
k=1 pk. The price to pay for avoiding a

whole mesh in the multidimensional domain is the solution of a non-linear problem whose size scales

linearly with the dimension of the space. However, even in high dimension the size of the non-linear

problems remains moderate and no particular difficulties have been found in its solution.

Concerning the computation time, even when the non-linear solver converges quickly, this step

consumes the main part of the global computing time. Different non-linear solvers have been analyzed:

fixed-point, Newton or one based on an alternating directions scheme [?] [?] [?].

Some preliminary convergence analysis, one of them presented in the next section, reveal that as

expected, when one uses piecewise linear one-dimensional finite elements to approximate all the one-

dimensional functions involved by the separated representation, the convergence rate (in the L2-norm)
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is second order. At the same time one could modify the one-dimensional approximations to enhance

the approximation consistency and then the convergence rates by using spectral approximations or

use wavelet approximation basis to take advantage of its multi-resolution properties, specially useful

to define adaptive multi-scale strategies. Other possibility to enhance the convergence rate could be

the use of moving least squares –MLS– based approximations (widely used in the context of meshless

methods [?] [?]). We are summarizing the main ideas related to this approach in the next section.

2.2 Consistency enhancement by using MLS-based one-dimensional ap-

proximations

A first possibility to enhance the approximation consistency lies in the use of higher degree piecewise

polynomials (quadratic or cubic). A potentially better strategy could consist in using one-dimensional

approximation bases involving orthogonal polynomials, as usually encountered in spectral techniques

making use of Chebyshev, Fourier or Legendre polynomials. However, the use of these kind of bases

induce the apparition of fully populated matrices. Moreover, sometimes, there is some ”a priori”

knowledge about the solution, that one would like to introduce in the approximation basis. One

possibility to perform this enrichment lies in the use of the partition of unity paradigm [?], like in

the extended finite element method (X-FEM) [?], however this strategy needs for the introduction of

additional degrees of freedom related to the enrichment functions. The use of partition of unity for

enhancing the approximation of the electronic density in the context of the density functional theory

of quantum mechanics was employed in [?].

A nice compromise between all the previous techniques lies in the definition of C∞ polynomial

approximation, of any degree and with compact support, within the context of the reproducing kernel

particle method –RKPM– [?]. Moreover, this framework allows us introducing any enrichment function

in the reproduction conditions without the introduction of additional degrees of freedom. In what

follows we are describing the construction of such enriched approximation, focusing in a simple one-

dimensional model.

Let Ω be a 1D domain where the problem is defined. The points within this domain will be noted

by x or s.

2.2.1 Reproduction conditions

The approximation uh(x) of u(x) is built from the convolution integral
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uh(x) =

∫
Ω

w(x− s, h)u(s)ds (44)

where w(x − s, h) is the kernel function and h a parameter defining the size of the approximation

support.

The main idea in the enriched RKPM method [?] is to enforce the reproduction of a generic function

that we can write in the form of a polynomial plus another function noted by ue(x):

uh(x) = a0 + a1x+ . . .+ anx
n + an+1u

e(x) (45)

In the following paragraphs we analyze the required properties of the kernel function w(x − s, h)

for reproducing a function expressed by Eq. (??).

From Eq. (??), the reproduction of a constant function a0 writes

∫
Ω

w(x− s, h)a0ds = a0 (46)

which implies

∫
Ω

w(x− s, h)ds = 1 (47)

which constitutes the partition of unity.

Now, the required condition to reproduce a linear function ua(x) = a0 + a1x is

∫
Ω

w(x− s, h)(a0 + a1s)ds = a0 + a1x (48)

By using the partition of unity (??), Eq. (??) can be rewritten as


∫

Ω
w(x− s, h) ds = 1∫

Ω
w(x− s, h)s ds = x

(49)

which implies the linear consistency of the approximation. Repeating this reasoning, we can write the

n-order consistency as
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

∫
Ω
w(x− s, h) ds = 1∫

Ω
w(x− s, h)s ds = x

...∫
Ω
w(x− s, h)sn ds = xn

(50)

and consequently, the reproduction of the function given by (??) implies

∫
Ω

w(x− s, h)(a0 + a1s+ . . .+ ans
n + an+1u

e(s)) ds =

= a0 + a1x+ . . .+ anx
n + an+1u

e(x) (51)

from which it results



∫
Ω
w(x− s, h) ds = 1∫

Ω
w(x− s, h)s ds = x

...∫
Ω
w(x− s, h)sn ds = xn∫

Ω
w(x− s, h)ue(s) ds = ue(x)

(52)

In the original procedure proposed by Liu et al. [?] only n-order consistency was imposed, but

it can not be directly used to enforce the reproduction condition associated with the non-polynomial

function ue(x).

2.2.2 The moment matrix

We denote by ur(x) the approximation function verifying the conditions (??). Usually a cubic spline is

considered as kernel function, and consequently the conditions given by Eq. (??) are not satisfied. Liu

et al. [?] proposed the introduction of a correction function C(x, x− s) for satisfying the reproduction

conditions. In our case we consider the more general form C(x, s, x−s) whose pertinence was discussed

in some of our former works [?] [?]. Thus ur(x) will be expressed by

ur(x) =

∫
Ω

C(x, s, x− s)w(x− s, h)u(s) ds (53)
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where C(x, s, x− s) is assumed to have the following form

C(x, s, x− s) = HT (x, s, x− s)b(x) (54)

where HT (x, s, x − s) represents the vector containing the functions considered in the approximation

basis, and b(x) is a vector containing unknown functions that will be determined for satisfying the

reproduction conditions. Thus, Eq. (??) can be rewritten as



∫
Ω

HT (x, s, x− s)b(x)w(x− s, h) ds = 1∫
Ω

HT (x, s, x− s)b(x)w(x− s, h)s ds = x

...∫
Ω

HT (x, s, x− s)b(x)w(x− s, h)sn ds = xn∫
Ω

HT (x, s, x− s)b(x)w(x− s, h)ue(s) ds = ue(x)

(55)

In fact, the reproduction conditions must be enforced in a discrete form. For this purpose we

consider N points (also refereed as nodes) which allow to compute the discrete form of Eq. (??), i.e.



∑N
i=1 HT (x, xi, x− xi)b(x)w(x− xi, h)∆xi = 1∑N
i=1 HT (x, xi, x− xi)b(x)w(x− xi, h)xi∆xi = x

...∑N
i=1 HT (x, xi, x− xi)b(x)w(x− xi, h)xni ∆xi = xn∑N
i=1 HT (x, xi, x− xi)b(x)w(x− xi, h)ue(xi)∆xi = ue(x)

(56)

that in a matrix form results

[
N∑
i=1

R(xi)H
T (x, xi, x− xi)w(x− xi, h)∆xi

]
b(x) = R(x) (57)

where R(x) is the reproduction vector

RT (x) = [1, x, . . . , xn, ue(x)] (58)

Eq. (??) allows computing the vector b(x),

b(x) = M(x)−1R(x) (59)
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where the moment matrix M(x) is defined by

M(x) =

N∑
i=1

R(xi)H
T (x, xi, x− xi)w(x− xi, h)∆xi (60)

This moment matrix differs from the usual moment matrix proposed in [?], and in our case it

becomes non symmetric.

2.2.3 Discrete form of the approximation function

The discrete form ur(x) of uh(x) derives from Eqs. (??), (??) and (??)

ur(x) ∼=
N∑
i=1

HT (x, xi, x− xi)M(x)−1R(x)w(x− xi, h)u(xi)∆xi =

=

N∑
i=1

ψi(x)ui (61)

where ψi is the enriched RKP approximation shape function

ψi(x) = HT (x, xi, x− xi)M(x)−1R(x)w(x− xi, h)∆xi (62)

As in the classical RKPM we consider ∆xi = 1. Different quadrature rules exist and they have

been tested without a significant incidence on the reproducing condition accuracy.

In principle this procedure allows: (i) defining C∞ approximations of any order of consistency;

(ii) the associated shape functions have a compact support avoiding fully populated linear systems;

and (iii) the approximation can be enriched by considering any knowledge about the solution through

the use of the enrichment function ue(x). The analysis of the just described approximation is being

performed and preliminary results will be shortly reported.

3 Numerical examples

In this section we are illustrating the application of separated representations to the solution of different

models defined in highly multidimensional spaces suffering of the so-called curse of dimensionality.

In [?] [?] we described the application of separated representations to the solution of highly mul-

tidimensional models arising from kinetic theory modelling of molecular systems. It was noticed that
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the separated representation avoided the curse of dimensionality. In this section we explore the appli-

cability of this technique for addressing more complex systems.

Firstly we address a problem whose exact solution is known ir order to quantify the capabilities

of the discetization technique. Then, the solution of a rod-like suspension flow (whose model was

introduced in section ??) will be considered. Finally, we come back to the numerical treatment of the

Schrödinger equation (introduced in section ??), where the main challenge related to its solution will

be pointed out.

3.1 A multidimensional Poisson problem

We consider the problem

∆T (x) = −f(x); x ∈ Ω =]0, π[D (63)

where T (x) : RD → R. The components of x will be denoted by (x1, x2, · · · , xD). In what follows we

set D = 100, i.e. the resulting model is defined in a space of hundred dimensions.

If the source term f(x) in Eq. (??) takes the form:

f(x1, · · · , xD) =

k=D∑
k=1

(1 + k)(sin(xk))k−1
(
(sin(xk))2 − k(cos(xk))2

) l=D∏
l=1;l 6=k

(sin(xl))
l+1

 (64)

then, the exact solution of Eq. (??) writes:

T exact(x1, · · · , xD) =

k=D∏
k=1

(sin(xk))k+1 (65)

The numerical solution was searched by assuming the separated representation

Th(x1, x2, ..., xD) ≈
k=n∑
j=1

αj

k=D∏
k=1

Fkj(xk), (66)

The one-dimensional functions Fkj where approximated using 1D linear finite elements. Different nodal

spacings were considered: h = π
5 , h = π

10 , h = π
20 , h = π

40 , h = π
80 and h = π

160 . Thus, when the finest

mesh was considered, the number of nodes in each direction was pk = 161, that for D = 100 would

have implied, in the context of mesh-based techniques, the use of much more than 10200 nodes.
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Figure 1: Convergence analysis of the separated representation technique for a multidimensional Pois-
son problem

In all the cases the solution was reached after a single iteration, i.e. n = 1, and associated error

was computed according to

E = ‖T exact(x)− Th(x)‖2 (67)

Figure ?? illustrates the evolution of the error (E) as a function of the nodal spacing (h) proving

the expected second order rate of convergence.

3.2 Kinetic theory description of rod-like aggregating suspensions

In this section we come back to the suspension model summarized in section ??. For increasing the

model complexity we are assuming that the rods can flocculate creating large aggregates that due to the

shear induced by the flow, are continuously broken. Thus, aggregation and disaggregation mechanisms
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coexist and two populations can be identified: the one related to free rods (pendant population) and

the one associated with the aggregated rods (active population). Figure ?? depicts both populations

and the flow induced aggregation/disaggregation.

Fibres-eps-converted-to.pdf

Figure 2: Flow induced aggregation/disaggregation

The kinetic theory description of such systems contains two coupled Fokker-Planck equations given

the orientation distribution of rods belonging to each one of these populations, Ψ(x, t,p) and Φ(x, t,p)

for the active and pendant respectively:

dΨ

dt
= − ∂

∂p
(ṗΨ) +Dr1

∂2Ψ

∂p2
− VdΨ + VcΦ (68)

dΦ

dt
= − ∂

∂p
(ṗΦ) +Dr2

∂2Φ

∂p2
+ VdΨ− VcΦ (69)

where Vd and Vc represent the velocity of destruction and construction of the active population respec-

tively.

The normality condition writes
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∫
S(0,1)

(Ψ (x, t,p) + Φ (x, t,p)) dp = 1, ∀x,∀t (70)

We consider that the flow takes place in a converging channel. The steady state flow kinematics

(assumed undisturbed by the presence of the suspended particles) was computed by solving the Stokes

equations.

As we are interested in computing the steady state solution, and because the advection character

of the Fokker-Planck equations in the spatial coordinates (x), we decided to integrate both coupled

Fokker-Planck equations along some particular flow streamlines. The separated representation of both

orientation distribution functions writes:

 Ψst(s,p)

Φst(s,p)

 =

n∑
j=1

 αstj E
st
j (p)F stj (s)

βstj G
st
j (p)Hst

j (s)

 (71)

where s denotes de curvilinear coordinate defining the streamlines, and the index ”st” refers to the

particular streamline along which the integration is performed.

Figure ?? depicts the resulting orientation distributions of both populations at some points on some

flow streamlines. In this figure the orientation distribution is directly depicted on the unit surface, and

the color indicate the intensity of the orientation in each direction.

3.3 On the separated representation of the Schrödinger equation

Finally we are considering a challenging problem, the one associated with the solution of the Schrödinger

equation introduced in section ??.

In this case to circumvent the curse of dimensionality that this model involves we could try to

perform, as in the previous examples, a separated representation of the wavefunction Ψ.

In what follows we consider a system composed of N electrons and a single nucleus with atomic

number Z = N . In this case one could assume the time-independent wavefunction approximation:

Ψ(x1, · · · ,xN ; X) ≈
j=n∑
j=1

αj φ
1
j (x1) · φ2

j (x2) · · · · · φNj (xN ) (72)

where X denotes the nucleus position.

However, the Pauli’s exclusion principle that applies for fermions (electrons belong to the fermions

family) implies the antisymmetry of the wavefunction. To ensure the antisymmetry one could proceed
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Figure 3: Orientation distribution of active and pendant populations in a contraction flow
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by introducing the Slater’s determinants:

Dj =

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1
j (x1) φ2

j (x1) · · · φNj (x1)

φ1
j (x2) φ2

j (x2) · · · φNj (x2)

...
...

. . .
...

φ1
j (xN ) φ2

j (xN ) · · · φNj (xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
(73)

that introduced in the separated representation

Ψ(x1, · · · ,xN ; X) ≈
j=n∑
j=1

αj Dj (74)

ensures the antisymmetry of the resulting wavefunction.

However, the last representation hides two difficulties. The first one related to the multidimensional

character of the model (we must recall that the wavefunction is defined in a space of dimension 3×N)

and the second one related to the complexity in evaluating the Slater determinants that scales in N !.

In order to isolate each difficulty, we are considering an ”imaginary world” in which the electrons are

not subjected to the Pauli’s exclusion principle. In this case the separated representation (??) works

and it could be used to solve the Schrödinger equation.

For the sake of simplicity, in what follows, we assume that each electron ”lives” in a 1D dimensional

space, i.e. Ψ(x1, · · · , xN ;X), where xk ∈ R, ∀k.

Now, we consider different systems containing the more and more electrons: N = 1, 2, 3, 4, 5, 10, 20, 50.

In the last case the Schrödinger equation is defined in a space of dimension D = 50.

For each system, the time independent Schrödinger equation (??) is solved using the separated

representation (??), and the ground state eigenvalue Ψ0 and its associated energy E0 computed.

Now, the ground state electronic distribution ρ0(x) could be obtained by calculating the ground state

distribution of each electron e, ρ0
e:

ρ0
e(x) =

∫
RN−1

|Ψ0(x1, · · · , xe−1, xe+1, · · ·xN )|2 dx1 · · · dxe−1dxe+1 · · · dxN (75)

and adding all the electrons contributions

ρ0(x) =

e=N∑
e=1

ρ0
e (76)

Figure ?? depicts the ground-state electronic distribution for N = 1, N = 2, N = 3, N = 5
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Figure 4: Ground state electronic density for systems composed of 1, 2, 3, 5 and 10 electrons -the
Pauli’s principle has not been applied-

and N = 10. Obviously the electronic distribution is concentrated around the nucleus position and

increases as the number of electrons increases. In that figure, to ensure a good quality in the curves

resolution we do not include the electronic distributions of the systems composed of 20 and 50 electrons.

It is easy to verify that because the Pauli’s exclusion principle does not apply, ρ0(N) = Nρ0(1),

where ρ0(N) and ρ0(1) denote the ground state densities of systems composed of N and 1 electrons

respectively. Thus, we can conclude that all the electrons are occupying the same orbital, a kind of

s-orbital (that in 3D systems would be spherical).

Figure ?? depicts for these ”imaginary” systems the evolution of the ground state energy (the most

negative eigenvalue related to the solution of Eq. (??)) as a function of the number of electrons involved

in the system.

From this analysis we conclude that separated representation allow to circumvent the curse of

dimensionality related to quantum mechanics systems, making possible the treatment of multidimen-

sional models. However, the previous analysis concerns ”non real” systems, because electrons are

fermions, and for fermions the Pauli’s principle applies.
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Figure 5: Evolution of the ground state energies with the number of electrons involved in the system
-the Pauli’s principle has not been applied-
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Even if separated representations could be applied for solving bosonic quantum systems (the Pauli’s

principle does not applies for bosons) in material science such systems have a limited interest. For this

reason we must come back to the ”real world” of electronic systems.

In the present case, the separated representation to be considered is the one making use of the Slater

determinants (??). All the practical details concerning the discretization of the Schrödinger equation

by using a wavefunction separated representation wihtin the Slater’s determinants formalism can be

found in [?]. In this case, as the complexity scales with the factorial of the number of electrons involved

in the quantum system, at present, in our knowledge, only small systems can be solved (containing up

to ten electrons).

Figure ?? depicts the ground state electronic distribution of systems composed of 1 until 5 electrons

and a single nucleus with atomic number Z = 3. It also shows the differences between each two

successive configurations. We can notice that the first two electrons are located in a s-type orbital

(both electrons have different spin which makes it possible). For more than two electrons we appreciate

the appearance of p-type orbitals. These p-type orbitals can be identified by subtracting the electronic

density functions related to both kind of populations (up to two electrons and more than two electrons).

Figure ?? compares the evolution of the ground state energy with the number of electrons N

involved in the quantum system composed on a single nucleus with Z = N , when the Pauli’s principle

is or not taken into account. For comparison purposes, when the Pauli’s exclusion principle was

activated, the spin coordinate was removed, because like this each electron is enforced to occupy a

different orbital (as was the case when the Pauli’s principle was not taken into account). We can

notice that its consideration increases the value of the ground state energy.

From the previous analysis we can affirm that the remaining unsolved difficulty related to the

solution of the Schrödinger equation lies in the antisymmetry restriction that the Pauli’s principle

addresses for fermions, and that as previously argued, its complexity scales as N !, which becomes

extremely large even for systems composed of a moderate number of electrons.

4 Conclusions

In this paper we reviseited different physical descriptions at different scales involved in material sci-

ence. At the lowest scale, quantum mechanics involves high-dimensional models whose solution, when

fermions are considered, must be anti-symmetric. We have pointed out that in fact, more than the

multidimensional character of quantum mechanics models, the real challenge is the antisymmetry con-
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Figure 6: Ground state electronic density for systems composed of 1, 2, 3, 4 and 5 electrons -the Pauli’s
principle applies-
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Figure 7: Evolution of the ground state energy when the Pauli’s principle is activated

straint.

Coarser modelling involves molecular dynamics or Brownian dynamics but despite its conceptual

simplicity its use is not exempted of computational and conceptual difficulties. The next level is the

one that corresponds to statistical mechanics descriptions leading to continuous models described by

non-linear and coupled multidimensional partial differential equations. Some of these models have

been successfully solved in some of our former works by using the adaptive separated representation

revisited in the present work. This technique seems a promising alternative for addressing highly-

multidimensional models, but as argued in the previous section, its use in quantum mechanics systems

composed of fermions is limited, at present, by the antisymmetry restriction.
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