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1. Introduction

Industrial simulations involve increasingly complex physics,
generally related to various characteristic length-scales. The fol-
lowing two main approaches have been developed to generate lo-
cally refined meshes with fewer degrees of freedom (DoF) instead
of adopting a uniformly refined mesh matching the finest
singularity:

� The methods of the first kind, which are known as ‘‘adaptive
methods’’, consist in locally enriching recursively an initial
mesh of the domain. As a consequence, the initial mesh has
not to be fitted to the singularities. There exist four main adap-
tive refinement methods: the r-adaptive technique (e.g. [1,2]),
the h-adaptive technique (e.g. [3–7]), the p-adaptive technique
(e.g. [8–10]) and the s-adaptive technique (e.g. [11,12]). The aim
of the first three approaches is to reduce the discretisation error
by making local changes in either the position of the nodes (in
the case of the r-adaptive method) or the number of DoF (in that
of the h-adaptive method) or the degree of the polynomial basis
functions (in that of the p-adaptive method). The main advan-
tage of these latter adaptive methods is that the problem is
eventually solved on a single optimum mesh. These methods
are the most performed these days, especially in combined
versions giving the advantages of two or more methods, such
as the hr-adaptive process [13,14] or the hp-adaptive process
presented in [15–17], which is widely used in the fields of
thermo-hydraulics [18,19], combustion [20], neutronics
[21,22] and solid mechanics [23,24], for example.
However, some extra work on the solver is usually required
(non-conforming meshes, preconditioning, etc.), and the result-
ing number of DoF in the problem may still be prohibitive in
industrial contexts.
The s-adaptive method, which is slightly different from the
other approaches, consists in overlaying the initial mesh with
additional finer local meshes. A composite problem is then
defined, accounting for the behaviour of each mesh and the
interface coupling between the connected levels. The resulting
number of DoF quickly becomes huge, which explains why this
method is less widespread than the others of its kind. However,
a version called the Arlequin method (e.g. [25,26]), in which
domains with different behaviours (for example, 1-D and 2-D
models or continuum and atomic models) are combined, has
recently become quite popular in the field of solid mechanics.
� The methods of the second kind, which are called local multi-

grid (or multi-level) methods (e.g. [27–29]), can be seen as s-
adaptive methods where the problems defined on each grid
are solved separately. A multi-grid process [30] based on pro-
longation and restriction operators enables the solutions
obtained at each level to be connected to each other. Unlike
the standard multi-grid approach, the local multi-grid
procedure starts with a coarse overall grid (which is generally



Fig. 1. Illustration of the hourglass shape deformation process: before (left) and
during (right) irradiation.
non-data-fitted) covering the whole domain and then works
recursively on fine local nested sub-grids. Each mesh is gener-
ally chosen structured regular (even Cartesian if it is possible).
Several local multi-grid methods have been developed, which
differ in terms of the restriction operator used to correct the
next coarser solution: the Local Defect Correction (LDC) method
[31], the Flux Interface Correction (FIC) method [32] and the
Fast Adaptive Composite (FAC) method [33].
The most obvious advantage of the local multi-grid approach
over the standard multi-grid one is the gain in terms of CPU
time and memory space when processing local singularity prob-
lems. However, as with the standard multi-grid approach, an
iterative process has to be performed in order to obtain a con-
verged solution at each level. The accuracy of the solution is
therefore strongly dependent on the precision of the projection
operators.

The performances of all these refinement methods depend
strictly on the possibility of accurately detecting the zone of inter-
est, i.e. the zone where the maximum discretisation error is pres-
ent. To automate the refinement process, these methods are
therefore often combined with a posteriori error estimators (e.g.
[7,3,16,22,34,35]).

One category of error estimators, in which comparisons are
made between two different grid refinements (e.g. [36,37,35]),
are based on the principle that the discretisation error converges
with the mesh step. These tools can be applied to physical situa-
tions of all kind.

Most of the a posteriori error estimators which are specifically
dedicated to solid mechanics problems (e.g. [38–40]) are based
on the fact that the classical finite element (FE) solution does not
locally satisfy the static admissibility equation. The greater part
of these estimators has been developed and proved in the context
of linear behaviours. However, they can usually be extended to
nonlinear behaviours (e.g. [34,41]), but are often unsuitable for
dealing with the most complex situations (plasticity, large defor-
mations, contact, friction, etc.). Further details about these estima-
tors can be found in [42].

In this paper, the test cases studied were based on industrial
problems including local singularities with different characteristic
length-scales (see Section 2.1). The main constraint of this work
was to develop a refinement strategy that can be easily imple-
mented in any existing industrial software. In this context, we
decided to perform a method relevant in a ‘‘black-box’’ solver con-
text. Neither the local h-refinement method nor the p-refinement
or the s-refinement strategies meet this criterion. In addition, we
decided to use local multi-grid methods so that the memory space
required for each resolution would not constitute an obstacle. This
also enabled us to benefit from the excellent solver performances
obtained on structured regular meshes. Among the existing local
multi-level methods, the LDC method [31] was selected for this
study because it seemed to be the most suitable method for deal-
ing with solid mechanics problems involving local singularities.

Although the local multi-grid concept has been widely applied
in the fields of thermodynamics and thermal hydraulics (e.g.
[43–46]), only a few recent studies have focused on this approach
in the context of solid mechanics [35,47]. The method presented
here is fairly similar to that described in [35] but we proposed to
use an existing convergence proved local multi-grid method
[27,48,49], whereas Biotteau et al. adapted the Full Multi-Grid
method [50] to deal with local refinement problems. The iterative
processes used therefore differ in terms of the prolongation opera-
tors as well as the resolution steps.

This paper is organised as follows. In Section 2, the industrial
test case studied and the problems involved are presented. The lo-
cal defect correction (LDC) multi-level method is then presented in
2

Section 3. Section 4 describes some strategies used to obtain accu-
rate results with the LDC method. The accuracy, mesh convergence
and automatic refinement procedures are focused on by perform-
ing 2-D and 3-D simulations. Lastly, Section 5 focuses on the per-
formances of the LDC method with a view to applying it in
industrial contexts, especially by making some comparisons with
the existing global h-refinement method.
2. Context of the study

2.1. The industrial test case

The pellet-cladding interaction (PCI) [51] occurs during irradia-
tion in pressurised water reactors, which constitute the majority of
French nuclear reactors. The fuel consists in these reactors of cylin-
drical uranium dioxide (UO2) pellets 8.2 mm in diameter and
13.5 mm high, which are piled up in a zircaloy cladding. During
irradiation, the following two processes lead to the occurrence of
PCI:

� The fuel pellets quickly crack during the first power increase
(see Fig. 3, left). In addition, the fuel pellets swell and the clad-
ding creeps due to the external pressure, which results in the
occurrence of contacts between the pellets and the cladding.
The pellet cracking process therefore results in discontinuous
contacts.
� The deforming effects of the high temperature gradient on the

pellets give them an hourglass shape (cf. Fig. 1). Contacts
between the fuel and the pellets therefore occur first in front
of the inter-pellet plane. High stress concentrations then
develop all around the inter-pellet plane.

The localised stress concentrations combined with the discon-
tinuous contacts with the pellets can lead to the failure of the clad-
ding. It is therefore of great importance to be able to model PCI
accurately because the integrity of the cladding, which is the first
confinement barrier for the irradiated fuel, is at stake. Considerable
research and development efforts are being made on this topic
worldwide in order to understand the mechanisms possibly lead-
ing to PCI failure, as well as to design PCI resistant rods. It is diffi-
cult to perform complete 3-D simulations because too many DoF
would be required to be able to model the local processes accu-
rately. The strategy often used at present consists in using a struc-
tured conforming mesh locally refined around the PCI zone. The



local refinement includes locally highly stretched elements, which
results in ill-conditioned systems, with which it is difficult to reach
convergence. As described in the Introduction, the LDC method
seems to make it possible to circumvent these difficulties and ob-
tain more accurate solutions in a reasonably short CPU time.

In order to test the performances of the LDC method, a simpli-
fied PCI model is used in this study. The geometry is the same as
the classical PCI simulation one. Pellet and cladding mechanical
behaviours are simplified. We focus here on the response of the
cladding, which is assumed to be linear elastic (Young’s modulus:
1011 Pa and Poisson’s ratio: 0.3) (see problem (1)). We are therefore
dealing with a linear problem in displacement. The contact with
the pellet is simulated in the form of a discontinuous pressure im-
posed on the internal radius of the cladding.

The two characteristic mechanisms responsible for PCI are first
modelled separately in two distinct two-dimensional studies (Sec-
tions 4.2 and 4.3). They are then approached together in a three-
dimensional study (Section 4.4).

2.2. Mechanical formulation of the problem

Let us take a linear elastic domain X with the boundary C and
the outgoing normal n. Prescribed displacements u0 and forces F
are imposed on a subset CU of the boundary and on the remaining
part CF , respectively, where CU [ CF ¼ C and CU \ CF ¼ ;.

The problem to be solved can therefore be written as follows:

ðPÞ :

�divðrÞ ¼ f in X ðaÞ
r ¼ C : eðuÞ in X ðbÞ
eðuÞ ¼ 1

2 ðgradðuÞ þ gradTðuÞÞ ðcÞ
u ¼ u0 on CU ðdÞ
r � n ¼ F on CF ðeÞ

8>>>>>><
>>>>>>:

ð1Þ

where

r is the stress field
f is the source term
e is the strain field
u is the displacement field

8>>><
>>>:

C is the stiffness tensor, which has standard properties of sym-
metry and positivity. Using the Einstein notations, it can be ex-
pressed as:

Cijkl ¼ Cjikl ¼ Cklij

9c > 0; Cijkleijekl > ckek2

Moreover, the operators : and � are defined as:

ðC : eÞij ¼ Cijklekl

ðr � nÞi ¼ rijnj

With these hypotheses, a unique solution u 2 H1(X) of ðPÞ exists.

2.3. The hourglass shape deformation process: the 2-D (r,z) test case

The first test case studied is axisymmetric and results from the
hourglass shape deformation process. The first advantage of this
test case is that the geometry under consideration is very simple,
as the computational domain is rectangular. Regular structured
uniform meshes perfectly matching the real geometry can there-
fore be used on this case.

The contact with the pellet induced by the hourglass shape
deformation is modelled by a peak in the pressure of 600 lm
around the inter-pellet plane. In view of the symmetrical condi-
tions, only one half of the pellet is simulated (see Fig. 2).
3

As there is no analytical solution to this problem, a reference
solution obtained with a uniform mesh matching the internal pres-
sure gap, with a space step of 2 � 10�3 mm (2 lm) in each direction
(’2 millions of DoF), was used to test the accuracy of the method.

2.4. The pellet cracking process: the 2-D (r,h) test case

The second test case focuses on the pellet cracking process and
respects the plane strain hypothesis. As the geometry is curved, the
meshes will be regular and structured but not uniform, only ‘‘quasi
uniform’’. The aim of this study is to test the LDC method on a less
classical case. In particular, the impact of the approximation of the
geometry will be examined.

The cracking process is simulated in the form of a pressure dis-
continuity on the internal radius of the cladding, in front of the
start of the crack simulated here at 8 lm. The pellet cracking is as-
sumed to develop in a regular way (see [52]). Under symmetrical
conditions, only 1/16 of the cladding needs to be modelled (see
Fig. 3).

There exists an analytical solution to the problem set by this
test case [53]. However, since this solution takes the form of a Fou-
rier decomposition, too many terms are required to be able to
reach a sufficiently accurate solution. As in the previous case, a ref-
erence solution obtained on a really fine mesh (’2 million DoF)
with a space step of 1 � 10�3 mm in each direction adapted to the
singularity, is therefore used instead of the analytical solution in
the verification process.

2.5. The three-dimensional test case

The two previous two-dimensional test cases were combined
here, giving a three-dimensional geometry. The aims of this further
study are multiple: to check the accuracy of the LDC method on a
three-dimensional case, to confirm whether the method is able to
deal with several crossed singularities with different characteristic
length-scales and to assess the performances of the local refine-
ment strategy on a more realistic configuration.

A restrictive factor here will be the accuracy of the reference
solution: the most accurate solution we have obtained so far in-
volved a really non-uniform structured mesh with a space step
ranging from 2 to 50 lm (’2 millions of DoF), adapted to both
singularities.
3. A local multi-grid algorithm

3.1. General principles underlying local multi-grid methods

Local multi-grid methods (e.g. [28,31–33]) are based on an in-
verse multi-grid process [30]. A coarse overall grid is first drawn
up on the whole domain, and finer local sub-grids are set only on
areas where greater precision is required. An example of hierarchi-
cal nested grids is shown in Fig. 4. Local sub-grids of this kind can
be defined recursively until the required accuracy or local mesh
step has been reached.

As with the standard multi-grid method, prolongation and
restriction operators are defined to link up several levels of compu-
tation. The coarsest solution is then corrected thanks to an iterative
process. The prolongation operator is used to transport information
from a coarse grid to the next finer one. It differs from the multi-
grid prolongation operator (which transports an error) and consists
here in defining boundary conditions on the fine grid from the next
coarser solution.

The restriction operator transports information from a fine grid
to the next coarser one by adding a new source term based on the
restricted fine solution. Unlike the multi-grid restriction operator,



Fig. 2. Definition of the 2-D axisymmetric test case.

Fig. 3. Definition of the 2-D plane strain test case.

Level 0

Level 1

Level 2

Fig. 4. Example of hierarchical nested meshes used with a local multi-grid method.
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the local multi-grid restriction operator does not need to be the
transpose of the prolongation operator. Several local multi-grid
methods have been developed, which differ in terms of the restric-
tion operator.

In the Local Defect Correction (LDC) method [31], the restriction
step consists in correcting the coarse problem via a defect calcu-
lated on the interior nodes of the superimposed part of the grid
from the next finer solution. This defect is the same as in the stan-
dard multi-grid method. This method requires a sufficiently large
refinement zone. It has been applied successfully in physical con-
texts of several kinds (e.g. [43,46,54,55]), and its theoretical con-
vergence has been studied in [27,48,49]. It can be used with
various discretisation methods, such as Finite Difference
[31,48,49], Finite Volume [28,56] and Finite Element [31,57]
methods.

The Fast Adaptive Composite (FAC) method [33] consists in
solving an intermediate problem on the composite grid at the
restriction step. This method has been mainly applied to linear
problems [58,59]. Its main advantage is that the correction affects
both the fine and the coarse solutions simultaneously. In addition,
it can be easily distributed on parallel architecture [58], but it gives
a slower convergence in terms of number of iterations. Its main
drawback is that the problem to be solved is a composite one.



The Flux Interface Correction (FIC) method [32] is based on flux
conservation between the sub-grids. It was designed for being used
with conservative discretisation methods such as the Finite Vol-
ume method [45,60].

In the local multi-grid methods mentioned above, the problems
arising on all the grids are treated sequentially until the solution
has converged on the coarsest grid. This iterative process is con-
ventionally described by a ^-cycle, as in Fig. 5.

Another local multi-grid approach based on the widely used
Full Multi-Grid (FMG) [50] process has been recently introduced
[35,47] (see Fig. 6). The restriction operator is the same as in the
LDC method, but the prolongation operator is both the standard
FMG one and the standard local multi-grid one (boundary
conditions).

This method can be defined as a recursive two-grid algorithm. It
is attractive if the resolution on the fine sub-grids is liable to be
time-consuming. When the sub-grids are localised (i.e., there are
only a few DoF), a fairly accurate solution can be obtained cheaply.
In this case, the benefits of the progressive smoothing process are
not so obvious.

3.2. The local defect correction method

Let us consider the problem ðPÞ defined on an open-bounded
domain X of boundary @X:

ðPÞ :
LðuÞ ¼ f in X

appropriate B:C: on @X

�
ð2Þ

with:

L : the operatorðwhich is generally nonlinearÞ
u : the solution
f : the right-hand side

8><
>:
The boundary conditions on @X can be of any kind (Neumann,
Dirichlet, etc.) as long as the problem is well posed.

A set of nested domains Xl, 0 6 l 6 l⁄ of boundary @Xl with
X0 ¼ X and Xl � Xl � 1 is then defined. The problem ðPÞ is re-
stricted to each local domain Xl:

ðPjXl
Þ :

LjXl
ðuÞ ¼ fjXl

in Xl

appropriate B:C: on @Xl

�
ð3Þ

B.C. on @Xl will be defined latter.
Each domain is discretised by a grid Gl with boundary Cl and

discretisation step hl < hl�1. The nodal discrete problem associated
to the problem ðPjXl

Þ can be written without any loss of generality:
Fig. 5. Representation of a local
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ðPlÞ : LlðulÞ ¼ fl þ gl in Gl ð4Þ

with:

Ll : the discrete operator associated with LjXl
on Gl

ul : the vector of the nodal unknowns
fl : the vector associated to the discretisation of the right-hand member f jXl

gl : the vector associated to the discretisation of the B:C: on Cl

8>>><
>>>:
The LDC method will work iteratively on the problem ðPlÞ by mod-
ifying the right-hand member (fl and gl). So the problem to be solved
at each step (prolongation, restriction) in the kth (k P 1) ^-cycle
writes:

ðPk
l Þ : Llðuk

l Þ ¼ f k
l þ gk

l in Gl ð5Þ

f k
l and gk

l will be defined in the following sections. The B.C. (gk
l ) re-

mains unchanged between restriction and prolongation step at iter-
ation k. However, as the part of the right-hand side noted f k

l will be
updated during the restriction step, for k P 1, we will note the dif-
ference in what follows between the right-hand side during the pro-
longation step f k

l;p and the restriction step f k
l;r .

For the sake of simplicity, all the figures below will be plotted
with hierarchical meshes. However, since the equations are generic
ones, they can be used with non-hierarchical meshes (see [61] for
example).

3.2.1. Initialisation
In what follows, we will define the initial first part of the right-

hand member (see Eq. (5)) on the grid Gl, which is denoted by f 0
l , as

the discretisation of the original second-hand member fjXl
on Gl.

We also set f 1
l;p ¼ f 0

l .
The initial coarse solution u0

0 is obtained by solving ðP0Þ which
is the discrete nodal problem associated with ðPÞ, defined on G0.

The following prolongation and restriction steps will then be re-
peated with k ranging from 1 to k⁄ (see Fig. 5).

3.2.2. Prolongation step: boundary conditions
The boundary conditions on the grids Gl, 0 < l 6 l⁄ with l⁄ > 0 are

defined as follows (see the example in Fig. 7):

� On Cl \ @X the boundary conditions of the original problem (P)
are imposed.
� On Cl n ðCl \ @XÞ Dirichlet boundary conditions are set. The

Dirichlet values are obtained by applying the prolongation
operator Pl

l�1 to the next coarser solution uk
l�1:
multi-gr
uk
ClnðCl\@XÞ ¼ ðP

l
l�1ðuk

l�1ÞÞjClnðCl\@XÞ
id process: ^-cycle.



Fig. 6. Diagram of a local FMG process.

boundary conditions
Original problem

Projection of next
coarser solution

Gl−1

Gl

Ω

Fig. 7. Example of boundary conditions on Gl (l – 0) for hierarchical meshes.

Fig. 8. Example of restriction zone Al (on the left) and correction zone Ål (on the
right), in the case of a 5-point stencil operator and for hierarchical meshes.
In order to solve ðPk
l Þ, one has to also define f k

l;p. As this is not the
key point in the prolongation step and as the original algorithm is
written for two grids, there is some disagreement in the literature
about the choice of the right-hand side (RHS) f k

l;p for 1 6 l 6 l⁄, for
l⁄ > 1 and k > 1. There exist two main possible choices, depending
on how the intermediate level is approached:

f k
l;p ¼ f k�1

l;r or f k
l;p ¼ f 0

l

As the finest grid problem is solved in prolongation steps only, both
choices give f k

l� ;p ¼ f 0
l� which is consistent with the two-grid method.

The impact of the choice of f k
l;p at the prolongation step in the case of

intermediate solving levels (l⁄ > 1) will be studied in Section 4.2.

3.2.3. Restriction step: defect correction
The restriction step consists in correcting the coarse problem

via a defect calculated from the next finer solution. The boundary
conditions defined on the prolongation step for the same level
are kept when solving the new problem ðPk

l Þ.
Two sets of nodes of Gl have to be defined [31] (see Fig. 8). The

set Al contains the nodes of Gl which are strictly included in Xl. This
set is used to restrict the next finer solution uk

lþ1. The set Ål consists
of the interior nodes of Al [ (Cl \ @X) in the sense of the discretisa-
tion scheme: a node x in Al [ (Cl \ @X) is interior if LlðulÞðxÞ in-
volves only terms ul(y) such as y is in Al [ (Cl \ @X) [31]. The set
Ål defines the zone where the RHS f k

l will be modified.
First, the solution obtained on the fine grid Gl+1 is restricted to

the nodes of Al:

~uk
l ðxÞ ¼ ðR

l
lþ1uk

lþ1ÞðxÞ 8x 2 Al

where Rl
lþ1 is an interpolation operator from the fine grid Gl+1 to the

coarse grid Gl.
6

The local coarse defect associated with this solution is then
computed on the nodes of Ål:

rk
l ðuÞðxÞ ¼ ðLlð~uk

l Þ � f 0
l � gk

l ÞðxÞ 8x 2 Ål

Lastly, the coarse solution uk
l is corrected by solving the coarse

problem ðPk
l Þ with the modified RHS:

f k
l;r ¼ f 0

l þ vÅl
rk

l ðuÞ ð6Þ

where vÅl
is the characteristic function of Ål.

As the correction affects only the nodes in the subset Ål, the LDC
method needs the correction zone Al to be large enough to be effi-
cient [31].

The coarsest solution is then used in the next prolongation step
(see Fig. 5): ukþ1

0 ¼ uk
0.

Comment: Eq. (6) is based on the assumption that the defect in
the fine problem r̂k

lþ1 is negligible in comparison with rk
l , which

means that the fine resolution is sufficiently accurate (see [28]
for example):

kr̂k
lþ1k ¼ kLlþ1ðuk

lþ1Þ � f k
lþ1 � gk

lþ1k � krk
l k ð7Þ
3.2.4. Convergence
As said in Introduction, the algorithm is proved to converge to

the solution of the continuous problem [31]. Moreover, the LDC
method keeps the order of convergence of the mesh but makes
the error decrease [31], until the pollution error (which may be
due here to the discretisation error in the non-refined part) is
reached [62]. In order to obtain the optimum order of mesh con-
vergence with respect to the local finest mesh, by extension of
the results of Ferket [48], the order of the interpolation operators
has to be at least the expected order of mesh convergence.



4. Methodology to apply the LDC method to an industrial solid
mechanics test case

4.1. Numerical considerations

4.1.1. Discretisation
The numerical resolution is performed using the standard Q1 FE

method [63].
The industrial FE software CAST3M [64] developed by the CEA

(French Atomic Energy Commission) is used.

4.1.2. Generation of sub-grids
We decided to use hierarchical meshes, which simplify the

mesh generation and the choice of prolongation and restriction
operators.

The mesh size hl of the grid Gl is defined depending on the size
hl�1 of the previous grid Gl�1 by:

hl ¼
hl�1

rðlÞ

where

� r(l) is the refinement ratio between the grids Gl�1 and Gl. The
same ratio is used in each direction.
� l is the level of the grid Gl.

If the refinement ratio is chose to be constant for all the grids
(r(l) = r "l), we can express the mesh size of the grid Gl according
to the initial mesh size h0 by:

hl ¼
h0

rl

In what follows, we have taken the same refinement ratio r for all
the grids, typically 2 or 4.

4.1.3. Interpolation operators
A linear interpolation (obtained from the coarse basis functions)

is performed in the prolongation step, while the canonical restric-
tion procedure (hierarchical meshes) is used in the restriction step.
This choice of operators is in agreement with the expected first or-
der accuracy of the method.

4.1.4. Solver
In order to fulfil hypothesis (7), a quasi-exact resolution has to

be performed on the sub-grids. As each level has a limited number
of DoF, a direct solver is used to solve the problems (Pk

l ). The
advantage of this method is that the inverse of the stiffness tensor
can be kept during the next ^-cycle resolutions. As the ^-cycles dif-
fer only in their RHS (see Section 3), the time consumption re-
quired by a LDC resolution will mostly correspond to the CPU
time required to perform the first prolongation step resolutions.

4.1.5. Errors
In order to assess the accuracy of the various versions of the

method, several error calculations were computed. The discretisa-
tion error was then defined as the difference between the analyti-
cal solution ~u of ðPÞ and the solution uh of the discrete problem
ðPk�

0 Þ defined on G0.
In a real-life industrial context, the exact position of the singu-

larity is unknown a priori. To be consistent with this hypothesis,
the position of the singularity will be taken to be mesh dependent.
This position will be chosen in a conservative way for the sake of
safety. The discretisation error can therefore be divided into two
terms: a modelling error and a numerical scheme error. The
numerical scheme error takes the approximation of the geometry
7

into account. Taking ud to denote the solution of the continuous
problem with a singularity differing by d from the real one, the dis-
cretisation error can be written:

k~u� uhk 6 k~u� udk|fflfflfflfflffl{zfflfflfflfflffl}
modelling error

þ kud � uhk|fflfflfflfflfflffl{zfflfflfflfflfflffl}
numerical scheme error

ð8Þ

In the case of a non-polyhedral open-bounded domain, even with
an approximated geometry, the numerical scheme error has been
proved to be still in O(h2) [65] for the L2 norm with the standard
conforming Q1 FE method. It has been established in [66] that the
modelling error is of the first order with respect to d. In practice,
since d may vary as h, the mesh convergence of the discretisation
error is then in O(dh). Using a local multi-grid process, it is proposed
here to reduce the discretisation error by adding local meshes with
increasingly fine space steps up to the finest local mesh size hfine.
The LDC method can be expected to converge as Oðdhfine

Þ [48], until
stagnated to the pollution error, see Section 3.2.4. In our case, the
pollution error may be due to either the discretisation error in the
non-refined part or the coarse approximation of the geometry (hier-
archical meshes).

Two error norms will be examined: the L2 norm and the L1

norm (or maximum norm). These two norms are complementary
as the L2 error norm gives information about the response of the
whole structure whereas the L1 error norm provides more local-
ised information. The discrete L2 norm on an approximate domain
Xh can be written as follows:

kuhk
2
L2ðXhÞ

¼
X

K�Xh

kuhk
2
L2ðKÞ

!

where K is an element of the triangularisation of Xh. kuhk
2
L2ðKÞ was

performed here using a numerical integration procedure, which is
exact on Q1(K) (R(u) � 0 if u 2 Q1):

kuhk
2
L2ðKÞ ¼

Z
K
u2

hdx ¼
XnK

i¼1

measðKÞ
nK

u2
hðxiÞ þ Rðu2

hÞ

The subscript i denotes a vertex of the element K and nk stands for
the number of vertices in K.

The relative discrete L2 error norm is the ratio of the absolute
discrete L2 error norm to the discrete L2 norm of the reference solu-
tion ~u:

kehkL2ðXhÞ
¼
k~u� uhkL2ðXhÞ

k~ukL2ðXhÞ

The relative discrete L1 error norm is defined as follows:

kehkL1ðXhÞ ¼
maxXh

j ~u� uh j
maxXh

j ~u j

In addition, as we are interested in fine local values, we also com-
pute composite error norms. On an initial coarse mesh, these com-
posite error norms can be used to take the approximate solutions
obtained on fine local nodes into account. In this case, the relative
error norms are summed recursively, working from the finest grid
to the coarsest one. For example, for the L2 error norm, we have:

kehk2
L2 ;comp ¼

X0

i¼l�
kehk2

L2ðXh;inXh;l�þ1Þ

We will use the notation kehkL2 ;comp (respectively kehkL1 ;comp) to
write the composite relative L2 error norm (respectively the com-
posite relative L1 error norm).

In practice, as announced in Section 2.1, the reference solution
adopted for this study was the discrete solution ~uh of ðPÞ obtained
with a classical Q1 FE resolution on a very fine mesh ~G0.



Comment: In the case of curved boundaries which can be dis-
cretised differently on Gl and ~G0, all the nodes of Gl have to be in-
cluded in ~G0 in order to interpolate ~uh on Gl thanks to the shape
functions of ~G0. For this purpose, the nodes of Gl which are exterior
to ~G0 has then orthogonally projected on ~G0.

4.1.6. Convergence of the ^-cycles
The convergence of the ^-cycles have been tested by comparing

two successive coarse solutions:

kuk
0 � uk�1

0 kL2ðG0Þ

kuk
0kL2ðG0Þ

6 1:10�5
4.2. Prolongation operator at the intermediate level

As seen in Section 3, the LDC algorithm is classically written for
two grids. It can be easily extended to multiple grids, by generating
sub-problems recursively.

However, some indecision occurs when one has to define the
RHS of the problem (Pk

l ) at prolongation steps on the intermediate
levels (0 < l < l⁄). This level can be regarded as either a fine level for
the next coarser one or a coarse level from which a finer grid is
defined.

It is usually assumed that each intermediate level is a local
coarse level from which a new two-grid algorithm is generated.
The RHS of the previous restriction step is therefore used at the
next prolongation step: f k

l;p ¼ f k�1
l;r (see [49] for example).
Fig. 9. The 2-D axisymme
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Another point of view consists in drawing up an overall picture
of the multi-grid cycle (cf. Fig. 5). At the prolongation step, the
intermediate levels therefore play the role of fine grids, while at
the restriction step they serve as coarse grids. The RHS f k

l;p can
therefore be set at f 0

l during the prolongation step.
These two possibilities are tested on the two-dimensional axi-

symmetric test case presented in Section 2.3.
In this section, the refinement ratio r is set at 2. An example of

nested sub-grids is presented in Fig. 9(b), where the initial coarse
mesh step is h0 = hi = 327 lm. Remember that the pressure gap is
located 600 lm from the bottom of the cladding and that it is
not set a priori on a discretisation point. Sub-grids are generated
a priori, based on the relative error in the displacement obtained
from the reference solution (see Fig. 9(a)). The meshes are localised
around the singularity in the whole thickness of the cladding.

As was to be expected, the finest grid amounts to only a very
small part of the initial domain. Since the hierarchical meshes
are taken here to be structured and uniform (Cartesian meshes),
fast solvers can be used on each mesh.

Fig. 10 gives the relative discrete L2 error norm with respect to
the distance between the real singularity and its approximation on
the initial coarse mesh, and with respect to the number of sub-
grids. The ‘‘fine like’’ prolongation operator refers to the choice
f k
l;p ¼ f 0

l whereas the ‘‘coarse like’’ prolongation operator refers to
the choice f k

l;p ¼ f k�1
l;r .

The first conclusion to be drawn here is that, as was to be ex-
pected, the mesh convergence of the overall structured uniform
tric test case – h0 = hi.



Fig. 10. Influence of the prolongation operator on the intermediate levels – Relative
L2 error norm – The 2-D (r,z) test case.

Fig. 11. Influence of the prolongation operator on the intermediate level - Relative
L2 composite error norm – The 2-D (r,z) test case.
meshes is of the first order with respect to the distance from
singularity.

The second conclusion is that with both approaches to the pro-
longation operator, the order of convergence with respect to the lo-
cal finest distance to the singularity is maintained until stagnation
occurs: the same error level is obtained with a local refinement as
with an overall mono-grid with a discretisation step equal to the
finest local one. The LDC method therefore converges as Oðdhfine

Þ,
where dhfine

corresponds to the local distance from the singularity.
These two approaches yield equivalent results before reaching

the pollution error due here to the approximation error in the
non-refined part. The ‘‘fine like’’ prolongation operator seems to
be a little more accurate. However, both hypotheses take the same
number of ^-cycles to converge, which means that they both re-
quire a similar CPU time.

The relative maximum error norms are given in Table 1.
We can observe that the optimum convergence in Oðdhfine

Þ is also
reached before slowing down to deal with fine error levels
(<1 � 10�3). For example, the same error was obtained with
h0 = hi/4 and l⁄ = 0 as with h0 = hi/2 and l⁄ = 1 or h0 = hiand l⁄ = 2.
The behaviour of the norms L2 and L1was found to be similar. Here
again, the ‘‘fine like’’ prolongation operator gives a slightly more
accurate solution at the finest error levels.

In order to also compare the solution obtained on the sub-grids
using these two approaches, the composite error norms were then
examined. The relative composite L2 error norms are plotted in
Fig. 11 and the relative composite L1 error norms are given in
Table 2.
Table 1
Comparison between ‘‘fine like’’ (‘f’) and ‘‘coarse like’’ (‘c’) prolongation operators – The 2

Relative maximum error norm depending on the prolongation operator

h0 l⁄

0 1 2

hi 1.14 � 10�1 5.83 � 10�2 ‘
‘

hi/2 5.77 � 10�2 2.72 � 10�2 ‘
‘

hi/4 2.62 � 10�2 9.71 � 10�3 ‘
‘

hi/8 9.65 � 10�3 9.42 � 10�4

hi/16 7.97 � 10�4
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Contrary to the previous results, these results show the
existence of a considerable difference between the effects of the
two types of prolongation operator. When the ‘‘coarse like’’
prolongation operator was used, the convergence remained in
Oðdhfine

Þ with both norms except for the finest error level. These
results are consistent with those obtained by Anthonissen et al.
[55]. The accuracy achieved with this operator is therefore
homogeneous from the finest to the coarsest grid. On the other
hand, an early stagnation appears with the ‘‘fine like’’ prolonga-
tion operator. The coarser the initial mesh is, the earlier the
stagnation appears in the refinement process. In this case, the re-
sults obtained therefore differed considerably from the expected
ones.

In conclusion, both prolongation operators accurately correct
the initial coarse solution (right efforts transmission) but only
the ‘‘coarse like’’ operator gives accurate solutions on fine local
grids.

As we are interested in local values, the ‘‘coarse like’’ (f k
l;p ¼ f k�1

l;r )
prolongation operator will therefore be consistently used in what
follows.

4.3. A posteriori error estimation

This section focuses on how to automate the detection of areas
of interest, which was useful for two reasons. First, in the previous
section the pollution error was assumed to be due to the discreti-
sation error in the non-refined part. It was therefore proposed to
determine optimum refined zones in order to reach the required
-D (r,z) test case – Relative maximum error norm.

3 4

f’: 2.69 � 10�2 ‘f’: 9.57 � 10�3 ‘f’: 1.73 � 10�3

c’: 2.78 � 10�2 ‘c’: 1.13 � 10�2 ‘c’: 2.73 � 10�3

f’: 1.05 � 10�2 ‘f’: 1.82 � 10�3

c’: 1.07 � 10�2 ‘c’: 2.18 � 10�3

f’: 1.17 � 10�3

c’: 1.22 � 10�3



Table 2
Comparison between ‘‘fine like’’ (‘f’) and ‘‘coarse like’’ (‘c’) prolongation operators – The 2-D (r,z) test case – Relative maximum composite error norm.

Relative composite maximum error norm depending on the prolongation operator

h0 l⁄

0 1 2 3 4

hi 1.14 � 10�1 5.83 � 10�2 ‘f’: 4.16 � 10�2 ‘f’: 3.83 � 10�2 ‘f’: 3.67 � 10�2

‘c’: 2.78 � 10�2 ‘c’: 1.15 � 10�2 ‘c’: 2.79 � 10�3

hi/2 5.77 � 10�2 2.72 � 10�2 ‘f’: 1.65 � 10�2 ‘f’: 1.12 � 10�2

‘c’: 1.10 � 10�2 ‘c’: 2.23 � 10�3

hi/4 2.62 � 10�2 9.94 � 10�3 ‘f’: 1.44 � 10�3

‘c’: 1.24 � 10�3

hi/8 9.65 � 10�3 9.62 � 10�4

hi/16 7.97 � 10�4

Fig. 12. Local error estimated using the ZZ a posteriori error estimator – The 2-D
axisymmetric test case.
precision (i.e., to obtain mono-grid errors with the same finest
mesh step). Secondly, since we wanted to be able to move singular-
ities, automatically adjusting refinement zones were required.

We decided to use the Zienkiewicz and Zhu (ZZ) a posteriori
error estimator [40]. This is the most commonly used a posteriori
error estimator (see for example [34,67–70]), and its super-conver-
gent patch recovery version [71,72] gives excellent performances
in terms of its accuracy versus time consumption. In addition, it
is easy to use and is already available in some industrial codes,
as Code_Aster [73] or CAST3M [64]. This estimator has been proved
theoretically to be valid for dealing with linear one-dimensional
problems [72].

4.3.1. Presentation of Zienkiewicz and Zhua posteriori error estimator
The ZZ a posteriori error estimator [40,71,72] consists in con-

structing a stress solution r�h which is smoother than the FE one
rh. The local estimator gE,h on an element E is defined as:

gE;h ¼ kðr�hÞE � ðrhÞEk ð9Þ

The value in the element is obtained from the node values. With the
FE stress rh, the values at the discretisation nodes are obtained by
interpolating the values from the Gaussian points. To obtain the
estimated stress r�h, two methods have been proposed by Zie-
nkiewicz and Zhu:

� The simplest and cheapest one [40] consists in averaging the
value of the FE stress rh on the elements surrounding the node.
However, this method is not very efficient in the case of very
coarse grids and high-order polynomial bases.
� The second one, which is called the ‘‘super convergent patch

recovery’’ method [71,72], is based on the use of patches, which
are a combination of several elements. In each patch, a high-
order polynomial function is defined, which minimises the root
mean square gap with respect to rh at so-called ‘‘super conver-
gent’’ points (Gaussian points in one dimensional problems).
The average value of each patch contribution is then calculated
in order to obtain r�h. This method is a little bit more time-con-
suming but yields better approximations.

In order to generate LDC grids automatically in the maximum
error zones, we decided to apply the ZZ a posteriori error estimator
recursively during the first prolongation step to obtain each next
finer grid. At each level l, we therefore refine the elements L in
the grid Gl at which the local ZZ error e satisfies:

eL > a max
K�Gl

eK �min
K�Gl

eK

� �
ð10Þ

where

0 6 a 6 1; a a given constant
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We define the minimum number of elements required to build a
new local sub-grid (typically 2D where D is the spacial dimension).
Given the definition of Ål and Al in Section 3.2.3, we also decided to
enlarge the refinement zone in order to keep all the elements de-
tected in the restriction zone Ål.

The smaller a is, the larger the number of elements to be refined
will be. In what follows, we will look for the optimum value of a,
that is to say the largest value of a (i.e., the smallest number of ele-
ments) giving the predicted error level.

With this strategy, fewer refinement levels are required than
with a two-refinement comparison error indicator [47,74] where
the level l is finally obtained thanks to the level l � 2.

4.3.2. The two-dimensional axisymmetric test case
The local error field calculated using the ZZ estimator is plotted

in Fig. 12 in the case of an initial coarse mesh of uniform cells with
the mesh step hi = 327 lm.
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Fig. 14. Composite L2 error norm, depending on the a criterion used on the
refinement process – The 2-D (r,z) test case.
Upon applying the detection formula, we noted that the auto-
matically detected areas (Fig. 13, left) are not structured meshes,
contrary to the initial mesh. In order to keep the advantages of reg-
ular and structured meshes (such as the natural tensor formula-
tion, good convergence properties, etc.), we decided to add some
elements to each mesh to make them structured (Fig. 13, right)
[29,55]. In practice, the detected zone is automatically embedded
in a rectangle, then enlarged to ensure that all the detected ele-
ments will be in the correction zone Ål. If several zones are de-
tected, each of them is treated separately. This structuring
algorithm may be not optimum in terms of DoF if the areas de-
tected are really misshapen, which rarely occurs in the case of local
singularities.

Fig. 14 gives the composite L2 error of the LDC method with re-
spect to the refinement criterion a chosen for use with the ZZ auto-
matic detection method. The initial mesh step hi is the same as in
Section 4.2 (hi = 327 lm).

First we can see from this figure that the errors converge at the
expected values. In addition, there exists an optimum refinement
criterion a for each expected error, which is independent of the
number of sub-grids used and the initial mesh size. A single a
depending only on the prescribed accuracy will therefore be used
at all the refinement levels. However, no simple correlation be-
tween the optimum a and the expected error level was found to
exist.

It is worth noting that at some error levels, large values of a lead
to a smaller error in the local refinements than in the overall ones.
This pattern has been previously reported in the literature (see [28]
for example). However, these values will not be used here since
they do not yield the asymptotic error value.
Fig. 13. Example of an area detected (in red) and the changes made in order to
obtain a structured mesh (in green). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Using the optimum value of a obtained, the refinement zones
were larger than in the a priori study: see for example Figs. 15
and 9(b), featuring the same initial mesh. This finding confirms
that the stagnation previously observed resulted from a refinement
area not being sufficiently large to obtain the required accuracy.

The optimum meshes (see Fig. 15) obtained seem to suggest
that the effect of singularities is not very localised. However, if
we look more closely at Fig. 14, we can see that the asymptotic
convergence was very slow. In an industrial context, one could
possibly be less strict. For example, allowing an extra margin of
10% in the required accuracy would mean that up to 50% of the re-
fined elements could be saved.
Fig. 15. An example of nested meshes – A posteriori error estimation with a = 0.15 –
The 2-D axisymmetric test case (current mesh in black, zone to be refined in green)
– h0 = hi. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)



Table 3
Comparison between ‘‘fine like’’ (‘f’) and ‘‘coarse like’’ (‘c’) prolongation operators – The 2-D (r,z) test case with ZZ optimum refinement criterion a – Relative maximum composite
error norm.

Relative composite maximum error norm, depending on the prolongation operator

h0 l⁄

0 1 2 3 4

hi 1.14 � 10�1 5.78 � 10�2 ‘f’: 2.83 � 10�2 ‘f’: 1.10 � 10�2 ‘f’: 2.04 � 10�3

‘c’: 2.63 � 10�2 ‘c’: 9.66 � 10�3 ‘c’: 7.95 � 10�4

hi/2 5.77 � 10�2 2.62 � 10�2 ‘f’: 1.05 � 10�2 ‘f’: 2.04 � 10�3

‘c’: 9.67 � 10�3 ‘c’: 7.95 � 10�4

hi/4 2.62 � 10�2 9.67 � 10�3 ‘f’: 1.08 � 10�3

‘c’: 7.95 � 10�4

hi/8 9.65 � 10�3 8.03 � 10�4

hi/16 7.97 � 10�4
The mesh convergence obtained with the LDC method using an
optimum criterion is presented in Table 3. Here again, the two pro-
longation operators described in Section 4.2 are compared to make
sure that the previous conclusions are still valid in the case of opti-
mum refinement zones.

The composite maximum error norm began to stagnate with
the ‘‘fine like’’ prolongation operator, while the optimum accuracy
in Oðdhfine

Þ was obtained with the ‘‘coarse like’’ prolongation opera-
tor. A suitable choice of refinement zones therefore has beneficial
effects on both versions of the LDC method. However, the ‘‘fine
like’’ operator still does not completely correct the solution on
the fine levels. In conclusion, the ‘‘fine like’’ version seems to al-
ways stagnate sooner than the ‘‘coarse like’’ version from the com-
posite error norm point of view.
Fig. 16. Local error given by the ZZ a posteriori error estimator – The 2-D plane
strain test case.
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4.3.3. The two-dimensional plane strain test case
We then conducted a similar study on the 2-D plane strain test

case (see Section 2.4). The use of a hierarchical local method of
mesh generation means that the approximation of the curvature
is still the coarsest one.

In this case, the maximum error zone obtained using the ZZ a
posteriori error estimator was much more localised, even with a
coarse initial mesh (see Fig. 16). This localisation can be explained
by the fact that the structure was three times less stretched than in
the previous study.

As the zone with high errors is very restricted and as a mini-
mum number of elements detected is required to create a new le-
vel, the refinement criterion orders the number of sub-grids
generated, except with very fine meshes. The influence of the
refinement criterion on the L2 composite error norm is shown in
Fig. 17. Here the initial mesh step hi was 218 lm.

As previously, an optimum criterion can always be set, depend-
ing only on the required error level. However, the optimum values
obtained per error level differ from those obtained in the previous
test case (see Fig. 14). The optimum values of a therefore seem to
also depend on the effects of the singularity under study. Results of
the mesh convergence study on the maximum composite error
norm with optimum a are given in Table 4 in the case of both pro-
longation operators. An example of optimum nested sub-grids is
given in Fig. 18.

With the ‘‘coarse like’’ operator, the method still converges as
Oðdhfine

Þ, which is the expected order of convergence. This confirms
0.4 0.3 0.2 0.1 00.6 0.51 0.9 0.8 0.7
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LDC method applied to 2D plane strain model
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Fig. 17. Composite L2 error norm depending on the a criterion used in the
refinement process – The 2-D (r,h) test case.



that the geometrical discretisation error is negligible in compari-
son with the modelling error (see section 4.1).

As in the 2-D (r,z) test case, an early stagnation occurs with the
‘‘fine like’’ prolongation operator, especially with the initial coars-
est mesh (h0 = hi). The error on the composite LDC grid was greatly
deteriorated. For example, the error obtained in a simulation per-
formed with h0 = hi and l⁄ = 4 with the ‘‘fine like’’ operator was
40 times greater than with the ‘‘coarse like’’ operator which leads
to the expected error.

4.3.4. Conclusions
In conclusion, with both test cases, the refinement process was

successfully automated using the ZZ a posteriori error estimator.
The performances of the combined LDC and ZZ methods will be
studied in Section 5 in terms of the CPU time and the memory
space. As with all a posteriori error estimators, a criterion serving
as a threshold has to be set. As we have seen, this criterion contrib-
utes importantly to reaching the optimum convergence. Although
this study has shown that for each of the cases tested, the optimum
criterion depended only on the error level imposed, its value varies
with the test case under investigation. No simple correlations have
been found to exist so far between the optimum criterion and the
error level imposed with any of the singularities under consider-
ation. However, in both studies, a ZZ criterion of 0.25 seems to con-
stitute a good compromise between the accuracy and the number
of elements refined.
Table 4
Comparison between the results obtained with the ‘‘fine like’’ (‘f’) and ‘‘coarse like’’ (‘c’) pr
Relative maximum composite error norm

Relative composite maximum error norm depending on the prolongation operator

h0 l⁄

0 1 2

hi 1.75 � 10�1 8.67 � 10�2 ‘
‘

hi/2 8.61 � 10�2 3.94 � 10�2 ‘
‘

hi/4 3.93 � 10�2 1.52 � 10�2 ‘
‘

hi/8 1.52 � 10�2 2.68 � 10�3

hi/16 2.70 � 10�3

Fig. 18. Example of nested meshes – A posteriori error estimation with an optimum a =
green) – h0 = hi/2. (For interpretation of the references to color in this figure legend, the
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In what follows, the ZZ a posteriori error estimator will be used
consistently to generate the sub-grids automatically. Optimum or
compromise values of the refinement criterion a will alternatively
be set.

Moreover, this study confirmed that the ‘‘coarse like’’ prolonga-
tion operator is always more accurate that the ‘‘fine like’’ operator.
The prolongation operator used will always be the ‘‘coarse like’’
one.
4.4. Extension to the three-dimensional test case

As stated above (see Section 2.5), the two previous 2-D cases are
combined here in a three-dimensional geometry.

It is not easy to choose the optimum refinement criterion a a
priori. As we saw in Section 4.3, this parameter depends on the test
case under investigation. In addition, using the minimum value of
the two criteria obtained in the previous 2-D studies does not yield
the expected results: it is too large in the case of the largest errors
and too small in that of the smallest ones. A further convergence
study depending on the a criterion therefore needs to be per-
formed. As this sensitivity study is very costly, especially in the
3-D context, in view of the conclusions of Section 4.3, we decided
to conduct the mesh convergence study with a fixed criterion
a = 0.25, which seemed to be a good compromise for the two 2-D
studies.
olongation operators - The 2-D (r,h) test case with optimum refinement criterion a -

3 4

f’: 8.40 � 10�2 ‘f’: 8.29 � 10�2 ‘f’: 8.24 � 10�2

c’: 3.91 � 10�2 ‘c’: 1.47 � 10�2 ‘c’: 2.40 � 10�3

f’: 1.59 � 10�2 ‘f’: 4.15 � 10�3

c’: 1.53 � 10�2 ‘c’: 2.82 � 10�3

f’: 3.03 � 10�3

c’: 2.70 � 10�3

0.25 – The 2-D plane strain test case (current mesh in black, zone to be refined in
reader is referred to the web version of this article.)
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Fig. 19. Composite L2 error norm depending on the mesh – The 3-D test case.

Fig. 20. Example of optimum hierarchical meshes – ZZ a posteriori error estimator
with a = 0.25 – The 3-D test case – h0 = hi/2.

Table 5
The 3-D test case with refinement criterion a = 0.25 - Relative maximum composite
error norm

kehkL1 ;comp with a = 0.25

h0 l⁄

0 1 2 3 4

hi 1.15 � 10�1 5.75 � 10�2 2.61 � 10�2 9.99 � 10�3 2.12 � 10�3

hi/2 5.64 � 10�2 2.60 � 10�2 1.00 � 10�2 1.91 � 10�3

hi/4 2.57 � 10�2 9.93 � 10�3 1.80 � 10�3
The composite L2 error norm between the reference solution
and the LDC one is plotted in Fig. 19. In this case, d denotes the ini-
tial distance between the real position of the intersection between
the two singularities and its mesh approximation.

The first-order convergence required was reached in the case of
uniform mono-grid solutions. However, more accurate mono-grid
solutions could not be obtained due to the large number of DoF
involved.

The error improvement obtained using the local multi-grid
refinement strategy turned out to be still possible in the three-
dimensional context, since more accurate solutions could easily
be obtained. The LDC method applied to two crossed three-dimen-
sional singularities converges as Oðdhfine

Þ, since the errors obtained
in this case were quasi optimum. The results obtained here with a
non-user-dependent choice of a are really acceptable. They con-
firms the validity of the a priori choice of the value of a (0.25).

An example of refined meshes obtained with a = 0.25 is given in
Fig. 20. The ZZ a posteriori error estimator automatically detected
the crossed singularities, and the finest meshes were highly local-
ised around the two singularities. The meshes were obtained in al-
most the same way as in the 2-D cases. The 2-D detection
algorithm was applied on each horizontal layer. The different
structured layers are regrouped according to their relative size.
However, a more generic algorithm (such as a shape detection
method) could be also used. Actually, as the LDC is user-adjustable,
it can be combined with any detection algorithm.

As previously, the composite maximum relative error norm was
also studied, and the results are given in Table 5.

Here again, the composite L2 and the L1 error norms showed
the same behaviour, and convergence of the composite L1 error
norm was reached in Oðdhfine

Þ. This LDC approach combined with
the ZZ a posteriori error estimator seems to constitute a really
promising strategy, since for example, the maximum error norm
was decreased by as much as 100-fold by adding 3 local levels of
sub-grids to an initially uniform mesh with the space step h0 = hi.
5. Performances of the LDC method in an engineering context

5.1. Advantages of using of sub-grids

We have previously established that a similar level of accuracy
can be achieved with a uniform fine mono-grid mesh as with a glo-
bal coarse mesh and several local sub-grids, as long as the finest lo-
cal mesh size is the same in each case. To optimise the trade-off
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between the accuracy and the means (CPU time, memory space)
required, we studied the behaviour of the composite L2 error norm
in terms of the CPU time (see Fig. 21 for the 2-D (r,h) test case) as
well as in terms of the total number of nodes (see Fig. 22 for the
2-D (r,h) test case). In both studies, the refinement process was
performed with the optimum value of the refinement criterion a
obtained in section 4.3.

From these figures, it can be concluded that the greater the
accuracy required is, the more advantageous the use of an initial
coarse mesh with many suitable sub-grids will be, in terms of both
the CPU time and the memory space required. These results are
consistent with those obtained by Ramière [60] with the FIC
method.

Similar conclusions can be drawn as regards the 2-D (r,z) and
3-D test cases.
5.2. Refinement ratio study

The LDC method with a FE discretisation is classically applied
with a refinement ratio of 2 (e.g. [31,43,55,75]). In some studies
in which the LDC method was combined with a Finite Volume dis-
cretisation procedure, a refinement ratio of 3 was used (e.g. [46]) in
order to simplify the projections, but very few studies [28] have in-
volved comparisons between several refinement ratios on the
same test case. As there are no theoretical limitations to the choice
of refinement ratio, we decided to compare the performances of
the LDC method between a refinement ratio of 2 and 4. The results
for the 2-D (r,h) test case are presented in Table 6.

As predicted theoretically, similar error levels were obtained in
simulations performed with two successive refinements with a
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Fig. 21. Composite L2 error norm versus CPU time required for the simulation – The
2-D (r,h) test case.
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Fig. 22. Composite L2 error norm versus total number of nodes (the sum of each
level) – The 2-D (r,h) test case.
refinement ratio of 2 as with one refinement with a refinement ra-
tio of 4, even in the case of small errors. The convergence as Oðdhfine

Þ
was therefore conserved, whatever the refinement ratio tested. The
results obtained in this study let think that our LDC method com-
bined with the ZZ a posteriori error estimator seems to be generic
(varying the refinement ratio, varying the number of sub-grids,
etc.).

The second conclusion to be drawn here is that the use of a lar-
ger ratio reduces the number of sub-grids required but may induce
the use of larger grids and thus a larger number of nodes than
Table 6
Comparison between refinement ratios of 2 and 4 – The 2-D (r,h) test case – Optimum
refinement criterion.

l⁄ 
 r 2 
 2 1 
 4 4 
 2 2 
 4

Comparison between refinement ratios of 2 and 4 – h0 = hi/2
kehkL2 ;comp 1.01 � 10�2 1.02 � 10�2 1.78 � 10�3 1.79 � 10�3

Sub-grid nodes 242 441 484 882
CPU time 0.04 s 0.08 s 0.11 s 0.13 s

Comparison between refinement ratios of 2 and 4 – h0 = hi/16
kehkL2 ;comp 1.65 � 10�3 1.68 � 10�3 1.04 � 10�4 1.32 � 10�4

Sub-grid nodes 242 441 638 1134
CPU time 2.42 s 3.62 s 2.65 s 3.70 s
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necessary in some regions. In the present case, as the zones of
interest were increasingly localised, there were around twice as
many additional nodes with the ratio 4 than the ratio 2, for the
same error level. The refinement ratio of 4 was therefore not found
to be particularly attractive in terms of the total number of nodes
in the present study. In addition, this ratio also involved slightly
higher CPU time (up to 30% more) than a ratio of 2. However, as
the CPU times were very short, this conclusion will have to be con-
firmed in further studies on a more representative test case.

5.3. Comparison with the h-refinement method

The aim of this section is to compare the LDC method with the
standard approach applied until now to simulate the behaviour of
cladding material exposed to irradiation. The standard meshes
used for the PCI simulation were structured conforming mono-grid
meshes with linear quadrangular elements (for modelling reasons)
which werea priorirefined around the singularities (see figure 15.
p.1621 in [76], for example). The obtained meshes were rather like
those obtained with a global h-refinement method on quadrangu-
lar elements (see for example Fig. 23, left). The resulting meshes
may contain degenerated elements.

5.3.1. The two-dimensional plane strain test case
In view of the conclusions reached in Section 5.1, the LDC meth-

od seems to be efficient when a coarse initial mesh and a large
number of local sub-grids are used. Further comparisons were
made, taking an initial mesh size of h0 = hi/2, with 1 to 7 sub-grids
and a refinement ratio r = 2. As we adopted an engineering point of
view, the refinement criterion a = 0.25 was set for all accuracy lev-
els. This value gives a good compromise between the number of
elements to be refined and the error level reached (see the conclu-
sions of Section 4.3). The meshes presented in Fig. 23 are examples
of the meshes used in these comparisons. The composite L2 error
norm is plotted versus the CPU time in Fig. 24 in the case of both
approaches, and the total number of nodes are also indicated.

It can be concluded that the LDC solver is really efficient. With
levels of errors of about 1 � 10�2, the computational times are
approximately twice as long in the case of the LDC method, but
these times are nevertheless very short (	0.05 s). With smaller rel-
ative errors of less than 1 � 10�3, the CPU times required to reach
the resolution with the LDC mesh are less than 2 times shorter than
with the h-refinement mesh.

In addition, our method does not require any preliminary stud-
ies in order to obtain a suitable refined mesh for dealing with the
singularity problem. As the sub-grids are automatically generating
using the ZZ a posteriori error estimator, only the coarsest mesh
Fig. 23. Examples of meshes used in the comparative study: h-refined mesh (left)
and LDC composite mesh with 4 sub-grids and a ratio of 2 (right).
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Table 7
Comparisons between the LDC and h-refinement methods – The 3-D model.

Mesh kehkL1 ;comp CPU
time

Number of nodes

LDC, a = 0.25 h0 = hi,
l⁄ = 2

2.61 � 10�2 143 s Total: 42813
max/level: 34121

h-refinement hmax = hi 2.35 � 10�2 659 s 78819
size and a refinement criterion are necessary. The use of the LDC
method therefore makes it possible to omit the preprocessing step
(mesh determination), which can be of great importance from the
engineering point of view.

The LDC method is also attractive from the memory space sav-
ing point of view. Even if extra information (boundary conditions
on the levels, reversed stiffness matrices, right-hand side, etc.)
has to be stored, each local grid is much smaller in terms of DoF
than an equivalent overall refined grid. The total number of nodes
in all the sub-grids is far smaller than the number of nodes in the
currently used PCI locally refined mesh (there are half as many
nodes with an error level of about 1 � 10�3 and 4 times fewer nodes
with an error level of about 1 � 10�4 (see Fig. 24)).

To conclude, the performances of the LDC solver combined with
the ZZ a posteriori error estimator were found to be highly efficient.
Even on a simple test case which does not seem very suitable a pri-
ori for applying the LDC solver (2-D, linear elasticity, quick and
accurate solving on a mono-grid stretched mesh), the LDC tool
makes it possible to save CPU time and memory space at a given
accuracy level.
5.3.2. The three-dimensional test case
Comparisons were also made in the case of a three-dimensional

test between a similar a priori conforming refinement with qua-
drangular elements to that used in the 2-D case and the LDC solver
(see Table 7).

These results are again most encouraging. At a maximum error
level of about 2%, we obtained satisfactory results in terms of the
CPU time and the memory space: the LDC solver gives savings
amounting to 46% of the total number of nodes and 78% of the
CPU time. It is also worth noting that with the LDC method, the
number of nodes is the sum of all the nodes on all the grids. Hence,
even the most costly level corresponds to 34121 nodes, which is
only 43% of the nodes involved in the global h-refinement mesh.
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As the number of nodes is the main restrictive factor in the inver-
sion of the stiffness matrix, the LDC method will enables us to be
subsequently limited by a finer local mesh step than for the stan-
dard approach. In particular, this means that this method over-
comes one of the main limitations of industrial simulations.
These performances could be further improved by using a domain
decomposition method on patch elements [55].

Based on the performances obtained on the cases tested here,
the LDC method can be said to be much more satisfactory than
the global h-refinement method currently used in nuclear engi-
neering simulations of the PCI. The same prescribed error level is
obtained in shorter CPU times with less DoF, in 2-D as well as 3-
D simulations. These results suggest that it would be worth per-
forming further more detailed studies on the LDC solver.
6. Conclusions and prospects

The Local Defect Correction (LDC) multi-level method was
tested here in a linear structural mechanics context and found to
be of great potential interest. Some strategies are presented for
obtaining the best possible performances with this method in engi-
neering contexts. This efficient tool is based on the ‘‘black-box’’ sol-
ver concept and can be therefore easily applied with any existing
industrial software. In addition, by construction, the LDC method
can be combined with any a posteriori error estimator in order to
generate local sub-grids automatically. In this study, the widely
used classical Zienkiewicz and Zhu error estimator based on the
super convergent patch recovery approach was used for this pur-
pose. When applied to some non-commonplace test cases such
as 3-D crossed-singularity problems in particular, the results ob-
tained with the local multi-grid solver were as accurate as those
obtained with the standard global h-refinement method, but the
CPU time and memory space requirements were much lower.

These initial results suggest that the LDC solver may be also effi-
cient with more complex structural mechanics behaviour, such as
nonlinear path-dependent behaviour. This method has in fact al-
ready been successfully applied to ‘‘one-time-step’’ nonlinear
behaviour (see [77]) and give promising results.
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