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Environmental concern has resulted in a renewed interest in bio-based materials. Among
them, plant fibers are perceived as an environmentally friendly substitute to glass fibers
for the reinforcement of composites, particularly in automotive engineering. Due to
their wide availability, low cost, low density, high-specific mechanical properties, and
eco-friendly image, they are increasingly being employed as reinforcements in polymer
matrix composites. Indeed, their complex microstructure as a composite material makes
plant fiber a really interesting and challenging subject to study. Research subjects about
such fibers are abundant because there are always some issues to prevent their use
at large scale (poor adhesion, variability, low thermal resistance, hydrophilic behavior).
The choice of natural fibers rather than glass fibers as filler yields a change of the final
properties of the composite. One of the most relevant differences between the two kinds
of fiber is their response to humidity. Actually, glass fibers are considered as hydrophobic
whereas plant fibers have a pronounced hydrophilic behavior. Composite materials are
often submitted to variable climatic conditions during their lifetime, including unsteady
hygroscopic conditions. However, in humid conditions, strong hydrophilic behavior of such
reinforcing fibers leads to high level of moisture absorption in wet environments. This
results in the structural modification of the fibers and an evolution of their mechanical
properties together with the composites in which they are fitted in. Thereby, the
understanding of these moisture absorption mechanisms as well as the influence of water
on the final properties of these fibers and their composites is of great interest to get a
better control of such new biomaterials. This is the topic of this review paper.
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INTRODUCTION
Environmental concern has resulted in a renewed interest in bio-
based materials. Among them, plant fibers are perceived as an
environmentally friendly substitute to glass fibers for the rein-
forcement of composites, particularly in automotive engineering
(Wambua et al., 2003; Suddell and Evans, 2005; Summerscales
et al., 2010). Due to their wide availability, low cost, low den-
sity, high-specific mechanical properties, and eco-friendly image,
they are increasingly being employed as reinforcements in poly-
mer matrix composites (Bledzki and Gassan, 1999). In litera-
ture the term biocomposite is often used to define a polymeric
matrix reinforced by natural fibers. The increasing number of
publications during last 10 years including reviews, reflect the
growing importance of these new biocomposites (Bledzki and
Gassan, 1999; Mohanty et al., 2000; John and Thomas, 2008;
Satyanarayana et al., 2009; Summerscales et al., 2010; Faruk
et al., 2012). Indeed, their complex microstructure as a compos-
ite material makes plant fiber a really interesting and challenging
subject to study. Research subjects about such fibers are abun-
dant because there are always some issues to prevent their use
at large scale (poor adhesion, variability, low thermal resistance,
hydrophilic behavior). The choice of natural fibers rather than
glass fibers as filler yields a change of the final properties of
the composite. One of the most relevant differences between
the two kinds of fiber is their response to humidity. Actually,
glass fibers are considered as hydrophobic whereas plant fibers

have a pronounced hydrophilic behavior. Composite materials
are often submitted to variable climatic conditions during their
lifetime, including unsteady hygroscopic conditions. However,
in humid conditions, strong hydrophilic behavior of such rein-
forcing fibers leads to high level of moisture absorption in wet
environments (Célino et al., 2013). This results in the structural
modification of the fibers and an evolution of their mechanical
properties together with the composites in which they are fitted in
Dhakal et al. (2007); Symington et al. (2009); Placet et al. (2012b).
Thereby, the understanding of these moisture absorption mecha-
nisms as well as the influence of water on the final properties of
these fibers and their composites is of great interest to get a better
control of such new biomaterials. This is the topic of this review
paper.

ABOUT PLANT FIBERS
ORIGIN OF PLANT FIBERS
In nature, there is a wide range of natural fibers which can be
distinguished by their origin. Precisely, natural fibers are divided
into three categories including animal fibers, mineral fibers, and
plant fibers (Figure 1). In the present paper we will focus on this
last group. For details about the other kind of fibers, interesting
readers could refer to (Speil and Leineweber, 1969; Champness
et al., 1976; Blicblau et al., 1997; Fu et al., 2009). As can be seen
in Figure 1, plant fibers could also be classified according to their
location in the plant. For example, bast fibers as flax, hemp or
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jute (Mohanty and Misra, 1995; Summerscales et al., 2010) are
extracted from the stem of the plant whereas other fibers could be
extracted from seeds (cotton) (Chand et al., 1988), fruit (coconut,
pineapple), (Arib et al., 2004) or even the leaves of the plant (sisal)
(Mukherjee and Satyanarayana, 1984; Li et al., 2000). The origins
and properties of these different fibers have been described in a
detailed review paper by (Faruk et al., 2012). Vegetal fibers are
extracted from the plant using widely known and controlled pro-
cesses in the textile industry. Some authors studied the influence
of growth conditions and extraction processes on their properties
(Keller et al., 2001; Coroller et al., 2013; Martin et al., 2013). As
an example in Martin et al. (2013) works, moisture sorption and
mechanical properties of flax fibers were found to be dependent
upon the degree of retting.

CHEMICAL AND STRUCTURAL ORGANIZATION
Chemical composition
Plant fibers are mainly composed by sugar based polymers (cellu-
lose, hemicelluloses) combined with lignin and pectin. Additional
components, such as wax or oil could be found as well as struc-
tural water (De Rosa et al., 2010). Climatic conditions, age or
degradation process influence the chemical composition which
varies from plant to plant and within different part of a same
plant. In their literature review (Faruk et al., 2012) listed the
range of the average chemical constituent for a wide variety of
plant type.

FIGURE 1 | Classification of natural fibers [inspired by Baley (2004)].

Cellulose is the major constituent of such fibers. It is a lin-
ear polymer chain consisting of D-glucopyranose units joined
together by β-1,4-glycosidic linkages. Hydrogen bonds between
the different macromolecules give the assembly various interest-
ing physical properties, including the ability to form crystalline
structures. As a result, cellulose has a semi crystalline form:
there are both highly crystalline regions and amorphous regions.
Crystalline cellulose displays six different polymorphs with the
possibility of conversion from one form to another. The cellulose
I crystal form, or native cellulose, also comprises two allomorphs,
namely cellulose Iα and Iβ (Sugiyama et al., 1991). The ratio of
these allomorphs is found to vary from plant to plant. In bast
fibers as flax, jute or hemp, cellulose Iβ is found to be predomi-
nant (Sarko and Muggli, 1974; Nishiyama et al., 2002). Crystalline
regions are called crystallites. The threadlike entity which arises
from the linear association of these components is called the
microfibril; it forms the basic structural unit of the plant cell wall.
These microfibrils are composed by several thousands of cellu-
lose chains. Their diameter can be measured by X-ray diffraction.
It is in the nanometer range, between 5 and 30 nm, depending
on the authors and the type of fiber (Näslund et al., 1988; Fink
et al., 1990; Eichhorn et al., 2001; Astley and Donald, 2003). In the
longitudinal direction, the Young’s modulus of these microfibrils
is about 137 GPa (Sakurada et al., 1962). These features provide
their good mechanical properties to plant fibers. In most natural
fibers, the microfibrils orient themselves at an angle to the fiber
axis called the microfibril angle. This angle has a significant influ-
ence on the mechanical properties of the fiber. The lower it is,
better the properties are (Bourmaud et al., 2013). Cave developed
a technique to measure it by using X-ray diffraction (Cave, 1997).
It varies from plant to plant. Resources on cellulose can be found
at references (Eichhorn et al., 2001; Heinze and Fischer, 2005).

Structural organization
Plant fibers have a multi-scale structure and they can be used at
different scales for composite materials reinforcement (Figure 2).
Indeed, fibers could be conditioned as fabric yarn (Madsen and
Lilholt, 2003), bundle of fiber or even unit fibers (Baley, 2002;
Placet, 2009). A bundle of fibers (Figure 2B), is a gathering of sev-
eral elementary fibers, linked together by a ten micrometers wall
mainly composed of pectin and lignin. This wall is called mid-
dle lamella (Morvan et al., 2003). Plant fiber yarns consist of a
large number of relatively short plant fibers that are twisted with

FIGURE 2 | Multi-scale structure of the flax fiber [Célino et al. (2013, 2014a,b) inspired by Baley (2002) and Morvan et al. (2003)]. (A) Stem of a flax
plant, (B) bundle of flax fibres, (C) represntation of an elementary fibre, (D) the S2 layer of elementary fibres.
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an angle to the yarn axis in order to provide axial strength to
the yarn (Madsen et al., 2007). The unit fibers have a multi cell
wall structure (Figure 2C). The section is polygonal but usually
assumed as circular for the calculation of mechanical properties.
Basically, it is represented by a hollow polyhedron, decomposed
into several walls and layers. The external wall is called the pri-
mary wall. It presents a relatively small thickness compared to
the total thickness of the fiber. This wall is essentially composed
of pectin, low crystalline cellulose, hemicellulose and waxes in a
lower amount (Gorshkova et al., 2000; Zykwinska et al., 2008).
The secondary wall, which represents about 90% of the total
section, is divided into three layers. It is mainly composed of cel-
lulose microfibrils oriented parallel to each other and embedded
in an amorphous matrix composed of hemicellulose, pectin, and
lignin. The three layers are different from each other because of
their different thickness and structural organization (microfibril
angle, chemical composition). The thickest layer is the S2 layer.
It represents 70–80% of the secondary wall thickness. Thus, the
fiber properties are largely governed by the feature of this layer.

In first approximation, the unit fibers can be considered as
composite materials with an amorphous matrix of hemicellulose
and reinforced by cellulose microfibrils which are oriented in par-
allel and form a helix angle with the axis of the fiber. In the S2
layer, this angle is about 10◦ (Figure 2D). In the other layers, the
microfibrils are not oriented at the same angles as shown in the
schematic representation of Baley (2002). The hollowed part is
called the lumen. It gives the fibers a tubular structure.

PHYSICAL AND MECHANICAL PROPERTIES
As mentioned before, plant fibers have the properties to com-
pete with glass fibers as reinforcement for composite materials.
Because of their low density, they have good specific mechan-
ical properties, particularly concerning their stiffness. Table 1
presents the important mechanical properties of commonly used
fibers (Oksman et al., 2003; Satyanarayana and Wypych, 2007;
Bodros and Baley, 2008; Ochi, 2008; Summerscales et al., 2010;
Bourmaud, 2011; Faruk et al., 2012).

Table 1 | Mechanical properties of different fibers (Oksman et al.,

2003; Bodros and Baley, 2008; Ochi, 2008; Satyanarayana et al., 2009;

Summerscales et al., 2010; Bourmaud, 2011; Faruk et al., 2012).

Fiber Density Young’s Tensile Elongation

modulus (GPa) strength (MPa) at break (%)

Flax 1.54 27.5–85 345–2000 1–4

Ramie 1.5–1.56 27–128 400–1000 1.2–3.8

Hemp 1.47 17–70 368–800 1.6

Jute 1.44 10–30 393–773 1.5–1.8

Sisal 1.45–1.5 9–22 350–700 2–7

Coconut 1.15 4–6 131–175 15–40

Cotton 1.5–1.6 5.5–12.6 287–597 7–8

Nettle 1.51 24.5–87 560–1600 2.1–2.5

Kenaf 1.2 14–53 240–930 1.6

Bamboo 0.6–1.1 11–17 140–230 –

E-glass 2.5 70 2000–3500 2.5

Carbone 1.4 230–240 4000 1.4–1.8

As seen in Table 1, the properties of plant fibers may differ
for a given fiber. In fact, the major problem, with such fiber is
the high variability of their properties. Thus, in literature, there
is a large amount of data showing relatively wide distribution.
First, this variability can be explained by differences in the fibers
chemical composition and structure (microfibrillar angle, crys-
tallinity, defects) due to the environmental conditions during the
growth (Bourmaud et al., 2013). Secondly, it can be explained
by different testing methods employed or different environmen-
tal conditions (relative humidity, temperature, speed loading,
number of sample tested) (Placet et al., 2012a). Moreover, as
mentioned before, plant fibers can be investigated at different
scales (fiber bundles or unit fibers). In the literature, there are
mechanical data from both fibers bundles (Madsen et al., 2007;
Charlet et al., 2011) and elementary fibers (Baley, 2002; Placet
et al., 2012b). When testing is performed at the bundle scale,
there are slippage effects of the fibers relative to each other in
the middle lamella. Thus, generally, the properties of fiber bun-
dles are lower than those of the elementary fibers. Charlet et al.
(2011) studied the mechanical behavior of the middle lamella
of flax fiber bundles. Authors showed low shear strength of this
interface which can explain the weaker mechanical properties
of bundle.

As mentioned in Structural organization, a plant fiber is a
composite made of three polymers (cellulose, hemicellulose, and
lignin), in which the unidirectional cellulose microfibrils con-
stitute the reinforcing elements in the matrix blend of hemi-
cellulose and lignin. This structure could be built as multi-ply
construction with layers P, S1, S2, and S3 of cellulose microfib-
rils presenting different angles to the fiber axis (Figure 2C).
Then the elastic properties could be calculated using classi-
cal laminated theory (Gassan et al., 2001). Transition scales
models should also be used to predict hygro-elastic properties
of such fibers. Mori and Tanaka models for example should
be developed as described in Fréour et al. (2006). In order
to take into account the disorientation of microfibrils rein-
forcement, methods presented by Lacoste et al. (2010, 2011)
should be used. Mechanical properties of these three polymers
have been widely studied in literature. Tashiro and Kobayashi
(1991) and Gillis (1969) for example, presented data about cel-
lulose. Moreover, Cousins, in the 80s, helped to build a valuable
database for the lignin and hemicellulose properties (Cousins
et al., 1975; Cousins, 1976, 1978). Because of its specific struc-
ture, plant fibers have an anisotropic behavior. In the lon-
gitudinal direction, they have good mechanical properties via
microfibrils whereas in the radial direction mechanical proper-
ties are lower and more variable because of the amorphous blend
properties.

Plant fibers show a specific behavior under mechanical cycles.
Baley (2002) was the first to show that the Young’s modulus of flax
fibers increases with increasing the number of cycles (Figure 3).
Moreover, a plastic deformation appears after the first cycle. To
explain these results, the hypothesis of a new arrangement of the
microfibrils in the fiber with an increase of the crystallinity degree
has been proposed by the author. Then, the more the microfibrils
are aligned with the fiber axis, the better will be the mechanical
properties in this direction.
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A similar effect has been shown by Placet et al. (2012b) for
hydrated hemp fibers. Crystallization of plant fibers under tensile
test has been highlighted by Astley and Donald (2003) using the
X-ray diffraction. Reorientation of microfibrils during the ten-
sile test has also been confirmed by various studies (Keckes et al.,
2003; Burgert, 2006; Placet et al., 2011).

The mechanical performance of plant fibers are influenced
by different parameters including: the cellulose content, the
microfibrillar angle, the fiber diameter, the temperature, the pres-
ence of defects and the water content inside fibers. The latter case
will be the purpose of a next section.

As cellulose is the stiffer component of natural fibers, the
higher the cellulose content is, the better will be the mechanical
properties. The microfibrillar angle has also a major influence on
the elastic properties of the plant fibers. In fact, the weaker is this
angle, better are the properties because plant fibers behave as a
composite material which presents better mechanical properties
in the reinforcement direction. Regarding the influence of diam-
eter, most studies conducted on plant fibers in traction showed
that both the Young’s modulus and tensile strength increased
when the diameter of the tested fibers decreased (Baley, 2002;
Andersons et al., 2005; Charlet et al., 2010; Duval et al., 2011).
Recently, Placet et al. (2012a) found out the causes of this depen-
dence while studying hemp fibers. Using a mathematical model
and reconstructing a 3D image of the fibers, they showed that
their Young’s modulus is dependent primarily on the size of the
lumen and secondly on the diameter of the fiber outer layer. The
temperature also affects significantly the mechanical properties of
such fibers. It can lead to the emergence of defects resulting in a
decrease of the overall mechanical properties of the fibers (Gassan
et al., 2001; Stamboulis et al., 2001). The occurrence of defects
in such materials is also a source of variability of the plant fibers
mechanical properties. These defects can appear during the dif-
ferent extraction and processing steps of the fibers and especially
during the stage of retting (Bourmaud, 2011).The influence of all
these parameters has been studied in details by Mukherjee and
Satyanarayanna (1986).

FIGURE 3 | Young’s modulus evolution of flax fibers vs. number of

mechanical cycles (Baley, 2002).

SCIENTIFIC OBSTACLES TO THEIR EFFICIENT USE AS REINFORCEMENT
IN COMPOSITE MATERIALS (RESEARCH TOPICS ON NATURAL FIBERS)
Table 2 summarizes the advantages and drawbacks of these fibers.
In fact, nowadays, there are some issues that prevent their use
at a large scale, in composite materials. These different points
constitute interesting research works.

One of the main disadvantages related to the use of natu-
ral fibers as reinforcement in composites is the poor adhesion
between fiber and matrix. In composites, the matrix acts as a
binder to transfer fibers stiffness in the material. If its adhe-
sion with the fibers is weak, the composite will not have desired
properties. In addition, it will be vulnerable to the environment
in which it will be used and its lifetime should be shortened.
A lot of researches are conducted to improve the adhesion of
the fibers with polymeric matrix by modifying the fiber surface.
Two approaches are proposed by the authors: physical treatments
(plasma, corona treatment. . . ) or chemical modification (maleic
anhydride, organosilanes, isocyanates, sodium hydroxide, per-
manganate, and peroxide. . . ) (Gauthier et al., 1998; Hill et al.,
1998; Gassan and Bledzki, 1999; Tripathy et al., 1999; Mishra
et al., 2000; Mohanty et al., 2000; Bessadok et al., 2007; Islam et al.,
2010; Alix et al., 2011, 2012). Unfortunately, the treatments pro-
posed in the literature don’t always make it possible to keep the
integrity of the fibers, as well as their natural character.

Another disadvantage of such fibers is the variability of their
properties depending on the batch, the variety and even the
location of the fiber in the plant. For example, comparing the
mechanical properties of flax fibers, located at different positions
in the stem (Charlet et al., 2007) showed that flax fibers located in
the center had better mechanical properties than the others.

The low temperature resistance of these fibers constitutes
another drawback. Thus, the process temperature of the com-
posite in which they are fitted should not exceed 200◦C. Beyond
this temperature, the fiber integrity is not guaranteed. The use of
natural fibers implies a restriction about the choice of the matrix.

The resistance of such fibers to fungus can also raise some
problems (storage conditions, process conditions, use in humid
conditions).

Finally, the hydrophilic nature of fibers is a major problem
for their use as reinforcement in polymers. In fact, it has been
showed that the absorption of water by the plant fibers results
in a decrease of the composite performances in which they play
the role of reinforcement (Rangaraj and Smith, 2000). Research

Table 2 | Advantages and drawbacks of plant fibers.

Advantages Disadvantages

Low cost Hydrophilic behavior

Recyclable Dimensional instability

Zero fingerprint CO2 Low thermal resistance

← biodegradability→
Renewable resources Variability

Low density Anisotropic behavior

High specific mechanical properties Discontinuous

Good thermal and acoustics isolation

Non abrasive
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has to be carried out to understand absorption mechanisms in
such fibers. The following section is a literature review about their
hydrophilic behavior as well as the influence of water on their
properties.

HYDROPHILIC BEHAVIORS OF NATURAL FIBERS
For their use as reinforcement, the hydrophilic nature of plant
fibers has to be considered with carefulness for several reasons.
First, during the life cycle of the material, water absorption could
induce a volume change of the fibers inside the composite, leading
to the development of internal stresses. On the other hand, during
the polymerization process of the matrix above 100◦C, a vapor-
ization of water trapped inside fibers could occur, leading to their
shrinkage. These swelling and shrinkage of the fibers surrounded
by the matrix generate internal stresses at the fiber/matrix inter-
face and can eventually lead to the damage of the latter and to a
significant degradation of the initial properties of the composite.
The works of Rangaraj and Smith (2000); Dhakal et al. (2007);
Le Duigou et al. (2009); Hu et al. (2010); Assarar et al. (2011)
deal with water sorption of composites reinforced by bio-based
fibers. For example, in their work on the water uptake of a flax
fiber composite material (Assarar et al., 2011) showed an increase
of the water content absorbed, compared to a material consist-
ing of the same matrix reinforced with glass fibers. Le Duigou
et al. (2009) studied the behavior of a composite PLLA/flax in
immersion in seawater. The weight gain curves showed the influ-
ence of the cellulose fibers. The saturated moisture contents of
the specimens were around 5.6%. As a consequence, adding flax
fibers has resulted in a 17-fold increase in weight gain compared
to unreinforced PLLA. The apparent diffusion coefficient was also
significantly higher. Similar results were advanced by Lee and
Wang (2006); Chow et al. (2007); Alix et al. (2011). Secondly, Le
Duigou et al. (2009) showed a loss of the mechanical properties
of the composite and an irreversible damage of the fiber/matrix
interface during wet ageing. As mentioned before, this interface
is a critical area considering the moisture absorption. The water
diffusing in the composite material creates hydrogen bonds with
the fibers, which can lead to the reduction of the interactions
between the fibers and the matrix. Dhakal et al. (2007) showed
an increase in moisture absorption with the volume fraction of
fiber, for composite polyester/hemp immersed in water at 25◦C.
The relationship between volume fraction of fiber and water con-
tent was also clearly shown by George et al. (1998). In their work,
Dhakal et al. (2007) showed a loss of mechanical properties in

bending with the amount of water absorbed. According to them,
the moisture absorption leads to swelling of the fiber, result-
ing in the occurrence of micro cracks in the matrix. Then, as
the composite cracks and gets damaged, capillarity and trans-
port via micro cracks become active. The capillarity mechanism
could involve the flow of water molecules along fiber/matrix inter-
faces as well as a process of diffusion through the bulk matrix.
This could result in a debonding of the fiber and the matrix as
shown on Figure 4. Eventually, those micro cracks create swelling
stresses leading to the composite failure (Bismarck et al., 2002).
Debonding effect and micro cracks were also observed in the
case of other bio-based composites (Chow et al., 2007; Hu et al.,
2010). Concerning the evolution of the stress at break of biocom-
posites, there are some inconsistencies in literature. On the one
hand, Dhakal et al. (2007) show the tensile stress of hemp fiber
reinforced unsaturated polyester composites increases about 22%
after water immersion. On the other hand, Assarar et al. (2011)
show a slight decrease of the tensile stress of flax/epoxy compos-
ites after immersion (about 5%). Such a trend is not completely
consistent with (Le Duigou et al., 2009) works which present
a large decrease of the stress at break (50%) when flax/PLLA
composites were immersed in sea water.

Finally these studies highlight the following main points:

- A significant influence of the hydrophilic behavior of cellulose
fibers on the maximum moisture absorption capacity of the
composite they reinforce.

- An early damage of these kinds of composites, due to swelling
and shrinkage effect of fibers.

In order to study the durability of such composites materials,
it is thus relevant to understand water interactions occurring in
plant fibers alone. In the following sections, the link between the
microstructure of the fibers and their hydrophilic behavior will
be studied and the influence of water on their properties will be
investigated through a review of the literature.

LINK BETWEEN MICROSTRUCTURE AND HYDROPHILIC BEHAVIOR
The hydrophilic behavior of plant fibers, is mainly due to two
factors: their composition and their specific structure. Generally,
one of the most important factors controlling the water diffusion
phenomenon in polymeric materials is the molecular interaction
occurring between the diffusing compound and the substrate.
The diffusion phenomenon is subjected to the ability of the

FIGURE 4 | (A) Matrix cracking, (B) Fracture running along the interface, (C) Fiber/matrix debonding due to attack by water molecules (Dhakal et al., 2007).
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polymer molecular sites to establish hydrogen bonds with the
water molecules. In plant fibers, components which have polar
groups and thus are responsible for absorbing moisture are cel-
lulose, hemicellulose, pectin and lignin (Berthold et al., 1998;
Célino et al., 2014a).

Some authors have studied the water absorption in cellulose
(Magne et al., 1947; Nelson, 1977). They showed that the water
absorbed by the cellulose has very different properties from the
free water. In their works, Nakamura et al. (1981) showed a sig-
nificant decrease of bound water fraction in the cellulose as the
crystallinity degree of the cellulose increases, by using a differ-
ential scanning calorimetry (DSC) technique. They also revealed
that water molecules bind to the 3 hydroxyl of the glycosidic units
of the amorphous phase while the absorption of hydroxyl sites
on the crystalline phase is unpredictable. Based on these findings,
it would appear that the moisture diffusion in the cellulose takes
place mainly in the amorphous phase. Thus, most of the mod-
els used in the literature to describe the hygro-elastic behavior
of plant fibers consider cellulose microfibrils to be 100% crys-
talline and then insensitive to moisture absorption (Neagu and
Gamstedt, 2007; Marklund and Varna, 2009).

According to Davies and Bruce (1998), hemicelluloses which
constitute the major part of the amorphous phase in plant fibers
play an important role in the storage of moisture. This hypothe-
sis is confirmed by the results of Pejic et al. (2008), who observed
a significant decrease of the saturated weight gain of hemp fibers
after removal of hemicellulose and lignin. In addition, Cousins
(1976, 1978) showed that their mechanical properties signifi-
cantly decreased with the moisture absorption.

Pectin, located in the middle lamella and the S1 layer are com-
posed of highly polar carboxyl functions. These groups have the
ability to create hydrogen bonds with polar solvents such as water.
Depending on the retting rate of the fibers, their content varies
(Martin et al., 2013). So, when fiber bundles are subjected to a
humid environment, moisture uptake is more important than in
the case of a single fiber, as the middle lamella mainly composed
by pectin is a preferential area for water absorption.

Another factor determining the high level of moisture absorp-
tion in these fibers is their particular structure. These fibers are
porous and have a high exchange surface. Thus, when the fiber
is subjected to a humid environment, water can be stored inside
the free volume of the structure. Currently, the porosity content
in plant fibers is an unknown data.

To sum up, the diffusion of water is influenced by the fiber
structure at different scales. At the unit fiber scale, the fiber
exhibits a complex multi cell wall structure. This structure can in
first approximation be assumed to behave similarly to its thicker
layer S2 which usually constitutes more than 80% of the total
diameter (Gorshkova et al., 2000). Actually, this layer is assumed
to be a composite material with an amorphous phase (matrix)
reinforced by a rigid crystalline phase (cellulose microfibrils)
(Hearle, 1963). At this scale, diffusion of water would take place
in the amorphous region. Besides, these regions are mainly com-
posed by hydrophilic polymers (hemicelluloses and lignin). At the
bundle scale, diffusion is privileged trough the interface between
fibers. This interface is called middle lamella. According to
Morvan et al. (2003) the middle lamella is principally composed

of pectin where the carboxyl functions make easier the absorption
of water by hydrogen bonding. The last structural factor influ-
encing diffusion is the general porous structure of natural fibers.
Water could be trapped inside pores.

SORPTION MECHANISMS
The precise mechanisms governing the transport of water in these
fibers are still uncertain. The moisture absorption in these bio-
based materials could be due to both diffusion phenomena and
the effects of capillarity.

According to Bessadok et al. (2007), at high relative humidity
when the water concentration exceeds a certain threshold, there is
a relaxation of the existing voids in the structure, which leads to
a significant swelling of the material. In fact, it seems that water
enters in the fibers and breaks the secondary bonds between the
macromolecules of cellulose. Then, water molecules could link
to the network via hydrogen bonds resulting in a swelling of the
material (Pejic et al., 2008). Hatakeyama and Hatakeyama (1998)
studied the interaction of water with hydrophilic polymers. They
showed that the water was more or less linked to the network of
the material, highlighting the presence of bound and free water
within such structures. The amount of bound water depends on
the chemical structure of the material. This water is bound to the
network by hydrogen bonds, breaking the existing bonds between
the hydroxyl groups of the polymer chain.

Techniques for quantification and visualization of bound
and free water are: DSC, Nuclear Magnetic Resonance (NMR),
Raman spectroscopy and infrared spectroscopy (Hatakeyama
et al., 2012). In NMR, it is possible to characterize different types
of water, the molecular motion of the bound water and the water
interactions with specific polymeric chain of the material in which
they are inserted (Popineau et al., 2005). Using DSC, Nakamura
et al. (1981) visualized and quantified these two types of water
in cellulose samples. According to their works, there are actually
three types of water called as follows: “freezing water,” “freezing
bound water,” and “non- freezing water,” The first term refers
to free water while the two others are respectively, water weakly
and strongly linked to the network. The amount of “non-freezing
water” is directly related to the molecular structure of the mate-
rial. Fourier Transform Infra-Red spectroscopy (FTIR) has also
been proved to be well adapted to study water sorption phe-
nomenon since it allows characterizing molecular interactions
involving potential sorption sites for water. In literature, FTIR
spectroscopy has been widely used to study water transport in
polymers and particularly to study the water sorbed into epoxy
resins (Fieldson and Barbari, 1993; Cotugno et al., 2001; Feng
et al., 2004). Recently Célino et al. (2014a) studied the water sorp-
tion on three natural fibers (flax, hemp, and sisal) using Fourier
Transformed InfraRed spectroscopy. The spectral information
enabled both qualitative and quantitative analysis of the moisture
absorption mechanisms. The main chemical functions involved
in the water sorption phenomenon were identified (Figure 5) and
the absolute water content of the fibers was determined by using a
Partial Least Square Regression (PLS-R) approach. Moreover, dif-
fusion kinetics were plotted using this technique. More detailed
analysis (by deconvolution of the OH valency band for example)
could lead to the quantitative determination of the free and bond
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water proportions, as described in different previous works on
polymer-water mixtures (Cotugno et al., 2005; Mensitieri et al.,
2006).

Concerning the diffusion kinetics, most of the authors histori-
cally used a classical Fick model to represent the diffusive behavior
of such fibers subjected to hydrothermal ageing (Gouanvé et al.,
2007; Bessadok et al., 2009). Recently, other authors proposed
using the Parallel Exponential Kinetics model (PEK) to analyze
the absorption and desorption curves of different cellulose fibers
(Hill and Xie, 2011; Xie et al., 2011). They suppose that the dif-
fusion process is limited by the swelling of the material and not
by the diffusion phenomenon. This model represented by a dou-
ble exponential, divides the diffusion kinetics into two first-order
kinetics: a slow kinetics and a rapid kinetics. The physical sense
of this model has been discussed by Hill and Xie (2011). In their
work, the PEK parameters for sorption have been evaluated by
the authors in terms of two Kelvin–Voigt elements arranged in
series. Then, the force constant in the spring of each Kelvin–Voigt
elements have been determined to be the equilibrium moisture
content for each process, whereas the viscosity of the dashpot
is represented by the time constant for each kinetic. Indeed, the
adsorbed water vapor molecules exert a pressure within the cell
wall leading to a dimensional change, which is equivalent to the
extension of the spring in the Kelvin–Voigt model. The spring
modulus therefore defines the water content of the system at
infinite time (MC1, MC2). Moreover, the rate at which water
molecules are adsorbed or desorbed by the system is a function
of the viscosity of the dashpot in the model. The more rapidly the
matrix is able to deform, the faster the rate of water ingress or
egress into or out of the cell wall.

More recently Célino et al. (2013, 2014a,b) proposed to use
Langmuir theory to explain the diffusion kinetics of several fibers
in immersion. In this model developed by Carter and Kibler
(1978) 35 years ago, the moisture absorption can be explained
quantitatively by assuming that absorbed moisture consists of
both mobile and bound phases. Molecules of the mobile phase

FIGURE 5 | Infrared spectra bands impacted by increasing relative

humidity for sisal fiber. p-values scores (used with a threshold of 0.05),
indicating significant impact of the water uptake on the FTIR bands, were
marked using red dots (Célino et al., 2013, 2014a,b).

diffuse with a concentration and stress independent diffusion
coefficient Dγ, and are absorbed (become bound) with a proba-
bility per unit time γ at certain sites (for example: voids within the
polymer, hydrogen bonding, and heterogeneous morphologies).
Molecules are emitted from the bound phase, thereby becom-
ing mobile, with a probability per unit time β. This model is
well adapted with the structure and composition of plant fibers
because it takes into account free and bound water.

Concerning the sorption isotherms, the water content is
directly related to the relative humidity by following a sigmoidal
relation, as described by Alix et al. (2009); Gouanvé et al. (2007).
That kind of sorption isotherms are in a good agreement with
the Park’s model (Park, 1986). This model assumes the asso-
ciation of three mechanisms describing the three parts of the
curve (Figure 6) It is often used to explain the sorption isotherms
of hydrophilic and porous media, as cellulosic fibers (Bessadok
et al., 2009). The first part of the curve could be related to
Langmuir’s mode (RH < 10%). At these relative humidities,
water is sorbed onto specific sites by hydrogen bonding. As pre-
viously discussed, the specific sites could be hydroxyl functions of
amorphous cellulose and hemicelluloses or carboxylic function of
pectin (Célino et al., 2014a). When relative humidity increases,
there is a saturation of these specific sites of sorption. Then,
the water concentration increases linearly with relative humid-
ity as Henry’s law describes (until RH = 65%). This behavior
could be explained by the porous structure of fibers where water
is free to diffuse. The third part is well described by a power
function that represents an aggregation phenomenon of water
molecules. Indeed, at high relative humidity, water concentration
is too important, and water molecules link together to form
clusters. Moreover, it has been shown that fibers immersed in
distilled water at room temperature could absorb 100–200% of
water by weight depending on the kind of fiber (Symington et al.,
2009; Célino et al., 2013) whereas in 80% relative humidity, the

FIGURE 6 | Equilibrium water vapor sorption isotherm for modified

agave fibers at 25◦C [inspired by Bessadok et al. (2009)].
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water content reaches about 10–15% (Watt and Kabir, 1975; Xie
et al., 2011; Célino et al., 2013). Other sorption mechanisms
could explain such a gap between immersion and vapor humidity
conditions.

EFFECT OF WATER ON NATURAL FIBERS PROPERTIES
The moisture absorption in these hydrophilic fibers leads to a
modification of their physical and chemical properties. Indeed,
the interaction of water with hydrophilic materials may cause
multiple phenomena as dimensional changes, modification of
the mechanical, and chemical properties, and so on... Water can
have a plasticization effect on the structure or, on the contrary,
form stable hydrogen bonds leading to an anti-plasticizing effect
(Hatakeyama and Hatakeyama, 1998).

DIMENSIONAL CHANGES
For synthetic composites, the relationship between the amount
of water absorbed and the dimensional change is well docu-
mented (Weitsman, 2000). In the case of bio-composites, fibers
are considered as anisotropic and hydrophilic, requiring to change
models classically used for transversally isotropic and hydropho-
bic fibers. Quantitative information about the hydro-expansion
coefficient of these fibers would be therefore an important factor
for the development of new models adapted to these bioma-
terials. Some works have been published on the swelling of
bio-composites (Madsen et al., 2012; Masoodi and Pillai, 2012).
For instance, a study based on the deformation measurement of
composites reinforced by hemp fibers, showed that the hydro-
expansion coefficient increased with the fiber content in the
material (Madsen et al., 2012). These results have also been
observed by Masoodi and Pillai (2012) on a jute/epoxy bio-
composite, showing that natural fibers have a strong influence on
the dimensional changes of composites in which they are fitted.
At the fiber scale, few study has been led to measure this coef-
ficient despite the swelling is recognized to occur. Indeed, plant
fibers have an unstable dimensional behavior. When subjected to
a humid environment, they swell, resulting in the formation of
internal stresses in the structure. For example, during their dry-
ing, natural fibers lose water so that shrinkage in their transverse
direction could be observed. Moreover, dimensional changes of

natural fibers depend on their composition. Lee et al. (2010)
studied the hygroscopic deformation of cellulose microfibrils by
AFM (Atomic Force Microscopy). They showed that the char-
acteristic times of water uptake and dimensional change of the
sample are not in the same scale. Indeed, there is a delay time
of swelling or shrinkage of cellulose fibrils after sorption phe-
nomenon. Hygroscopic strains may be reversible -in this case they
are predicted by the hydro-expansion coefficient- or irreversible
due to structural defects.

Using a hygro-elastic model applied to an elementary
fiber considered as a multilayer’s hollow cylinder, (Neagu and
Gamstedt, 2007) highlighted the parameters influencing the
hydro-expansion coefficient on wood fibers. They found that the
parameter the most influential is the microfibrillar angle of the S2
layer.

INFLUENCE ON MECHANICAL PROPERTIES
Concerning the influence of water on the mechanical proper-
ties, several authors showed a relationship between moisture and
mechanical properties of plant fibers. Although this influence has
been clearly demonstrated, the different results of the literature
are not consistent altogether (Table 3). Indeed, Davies and Bruce
(1998), observed experimentally a tendency to a decrease of the
Young’s modulus with increasing relative humidity for flax and
nettle fibers (decrease of the Young modulus of flax fibers about
23% when relative humidity varies from 30 to 80%). This trend is
also highlighted by Symington et al. (2009) for flax, and Ho and
Ngo (2005) for hemp and coir fibers. However, other studies show
an increase of the Young’s modulus of fibers with relative humid-
ity up to a specific threshold of water absorbed (Symington et al.,
2009; Placet et al., 2012b). Particularly Placet et al. (2012b) show
the young modulus of hemp fibers increases about 20% in the
25–80% relative humidity range. This increase in stiffness could
be explained by a rearrangement of the microfibrils and the sur-
rounding molecules acting as a matrix (Placet et al., 2012b). This
rearrangement could be activated by the swelling of the fibers.
Beyond a certain moisture content threshold, the decrease of the
Young’s modulus could be explained by the plasticization of the
fiber. In fact, the formation of hydrogen bonds replacing bonds in
hemicellulose macromolecular network could make the material

Table 3 | Literature review of the moisture absorption influence on the mechanical properties of plant fibers.

Kind of fiber Hygroscopic

conditions

Young’s modulus

evolution

Failure strength

evolution

Elongation at break

evolution

References

Flax and nettle 30, 40, 50, 60, and
70%

Decreases Not significative effect Davies and Bruce,
1998

Flax and sisal Maximum for RH
= 70%

Van Voorn et al., 2001

Flax 30, 66, 93% Increases and stabilizes
at RH = 66%

Stamboulis et al., 2001

Hemp 10, 25, 50, et 80% increases Maximum for 50 < HR
< 70%

Placet et al., 2012b

Jute, flax,
sisal, hemp,
coir, agave

65, 90% et
immersion

Increases until a
threshold, then decreases
(depend on the fiber)

Not significative effects increases Symington et al., 2009
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more flexible and compliant. Astley and Donald (2001) studied
this possible realignment of microfibrils during the hydration of
flax fibers using X-ray diffraction. They highlighted a structural
evolution of the fibers during dehydration. Thus, they proposed a
model taking into account the reorganization of microfibrils dur-
ing the water molecules desorption (microfibrillar angle varying
from 15◦ to 11◦ for the dry sample).

Concerning the effect of water on the maximum tensile stress,
the different results of the literature are consistent. It is often
observed an increase in the stress at failure with the relative
humidity, up to a threshold value of RH = 50 to 60% (Placet
et al., 2012b) or RH= 70% (Van Voorn et al., 2001). Above these
relative humidity, the tensile strength decreases. The absorption
of water inside the fiber can lead to a rupture of the hydrogen
bonds between the matrix of amorphous phase and the crys-
talline fraction of the fiber. This would reduce the tensile strength.
The literature review reveals an increase of the fiber elongation
with increasing the water content. Water acts as a plasticizer and
softener of the structure.

Another phenomenon, highlighted by Mannan and Robbany
(1996) and more recently by Placet et al. (2012b), is the rota-
tion of the fibers in the presence of moisture. For a static loading,
the authors showed that the rotation angle increased with rela-
tive humidity. In the same work Placet et al. (2012b) observed a
remarkable increase in the stiffness of the fiber during tensile tests
through relative humidity cycles of RH= 50% to RH= 80%. The
elastic modulus is increased by 250% from its initial value.

The diversity of these results in the literature is once again
to be linked with the test conditions and variability factors of
these fibers (growth conditions, extraction condition, storage
condition...)

STRUCTURAL MODIFICATIONS
Structural modifications have been highlighted by several works.
For example, in their research paper, Nakamura et al. (1983) sug-
gest that the amorphous phase of the crystalline cellulose might
become crystalline in the presence of bound water. Further tests
by XRD show that the absorption of moisture in cellulose I results
in an increase of the crystallinity degree. In connection with this
increase of crystallinity, the authors showed an increase in tensile
strength of hydrated cellulose I. The evolution of the crystalline
structure of the fibers during drying was also investigated by
Célino et al. (2014b) through calculating the total crystallinity
index or TCI described by Nelson and O’Connor in the 60s
(Nelson and O’Connor, 1964). This method supports the exis-
tence, in the cellulose infrared spectrum of both crystalline and
amorphous characteristic bands. Then it is possible to estimate
the fraction of the crystalline cellulose in the sample by deter-
mining the ratio of intensity of these bands. Results showed a
decrease of the crystallinity degree with the decrease of the water
content inside fibers, testifying the action of water on the cel-
lulose macromolecular network. When water is removed from
the sample, hydrogen bonds created between the water and the
hydrophilic sites of the fibers are broken, leading to a relaxation
of the macromolecular network and a decrease of the crystallinity
degree. Recently, this hypothesis was confirmed by a XRD study
on wood fibers submitted to hygroscopic cycles (Toba et al., 2013).

SUMMARY
Composites reinforced with natural fibers have developed signif-
icantly over the past years because of their biodegradability, low
cost, low relative density, high specific mechanical properties, and
renewable nature. These composites are predestined to find more
and more applications in the near future since a lot of studies are
led to understand and improve their properties. The understand-
ing of the hygroscopic behavior of these materials is a key issue in
order to use it in different weathering conditions. Many studies
are examined, reviewed and highlighted in this paper regarding
the link between the microstructure and the hydrophilic behav-
ior of plant fibers, the influence of moisture on their properties as
well as the final properties of the composites they reinforce. Water
sorption in fibers and their composites has been found to signif-
icantly affect their dimensional and structural properties. Water
sorbed in such fibers could be divided in two kinds of popula-
tions i.e., free and bound water. Free water is trapped inside the
porous structure of plant fibers, whereas bound water could link
to specific polar sites. These sites could be well identified by using
spectroscopic techniques.

Further research is required to develop chemical or physi-
cal treatments which could reduce their water uptake. Moreover,
investigations have to be conducted in order to take into
account the swelling of fibers inside the composite and evalu-
ate the internal stresses. In addition to that coupled diffusion
model could be used in order to take into account the effects
induced by mechanical states on the diffusion of moisture. Then,
upcoming investigations could be focused on the use of more
advanced multi-physics theoretical approaches dedicated to the
modeling of the moisture uptake occurring while the hetero-
geneous, local swelling experienced by the reinforced polymer
is accounted for Youssef et al. (2009, 2011); Sar et al. (2012,
2013).
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