
HAL Id: hal-01007367
https://hal.science/hal-01007367

Submitted on 24 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

The extended finite element method for rigid particles
in Stokes flow

Gregory J Wagner, Nicolas Moës, Wing Kam Liu, Ted Belytschko

To cite this version:
Gregory J Wagner, Nicolas Moës, Wing Kam Liu, Ted Belytschko. The extended finite element method
for rigid particles in Stokes flow. International Journal for Numerical Methods in Engineering, 2001,
51 (3), pp.293-313. �10.1002/nme.169�. �hal-01007367�

https://hal.science/hal-01007367
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


The extended �nite element method for rigid particles
in Stokes 
ow

G. J. Wagner, N. Mo�es, W. K. Liu∗;† and T. Belytschko

Department of Mechanical Engineering; Northwestern University 2145 Sheridan Road;

Evanston; IL 60208; U.S.A.

A new method for the simulation of particulate 
ows, based on the extended �nite element method
(X-FEM), is described. In this method, the particle surfaces need not conform to the �nite element
boundaries, so that moving particles can be simulated without remeshing. The near �eld form of the

uid 
ow about each particle is built into the �nite element basis using a partition of unity enrichment,
allowing the simple enforcement of boundary conditions and improved accuracy over other methods on
a coarse mesh. We present a weak form of the equations of motion useful for the simulation of freely
moving particles, and solve example problems for particles with prescribed and unknown velocities.

KEY WORDS: enrichment; Stokes 
ow; multiphase 
ow; �ctitious domain method

1. INTRODUCTION

A recurring theme in the study of the rheology of particulate suspensions is the use of the
analytical solution for a single particle or small group of particles to aid in the construction
of the many-particle solution. For example, for very dilute suspensions of rigid spheres [9],
rigid ellipsoids [2], or spherical droplets [3], particle–particle interactions can be ignored, and
the properties of the suspension can be derived in terms of the vanishing Reynolds number
solution for linear 
ow past a single particle. For more concentrated solutions, as in Batchelor
and Green’s analysis of a suspension of rigid spheres [4], the two-sphere analytical solution
is used to approximate particle–particle interactions. Analytical solutions for single particles
have also been exploited in numerical simulations of particulate 
ows; the method of Stokesian
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dynamics [6] utilizes a grand mobility matrix, constructed by assembling solutions for pairs
of particles, to compute the velocities of all particles in a suspension.
In the last few years, the state of the art in computers and numerical methods has made the

direct numerical simulation of particle-laden 
ows possible. Recently, �nite element methods
have been used to simulate particulate 
ows in great detail. These simulations can be divided
into two classes: moving mesh simulations, in which the computational grid moves with the
particles, and �xed mesh simulations, in which the particles move through a �xed, regular
grid. For example, Hu [24] used an arbitrary Lagrangian–Eulerian moving �nite element mesh
technique to simulate a large number of rigid particles. Johnson and Tezduyar [15] also used
an unstructured moving mesh; their simulation used a stabilized space-time formulation to
simulate up to 100 rigid spherical particles. For a �nite element problem of this size, the
number of degrees of freedom required is extremely large, and the 
uid domain must be
remeshed frequently to avoid element distortion. For example, Johnson and Tezduyar report
mesh sizes of around 1.2 million elements and 240 000 nodes for their simulation of 100
particles, although the mesh size varies signi�cantly due to remeshing and adaptivity. Fixed
mesh methods help alleviate these di�culties, but the enforcement of boundary conditions at
particle surfaces (which do not necessarily coincide with element surfaces) can be di�cult.
Glowinski et al. [7] used a �ctitious domain technique for particulate 
ows, applying a dis-
tributed Lagrange multiplier to enforce rigidity inside the particles. Both moving and �xed
mesh methods require very �ne meshes in order to capture 
ow details near the particles.
The �xed mesh methods listed above are related to methods in which a complex boundary,

moving or stationary, is captured on a regular grid that does not conform to the boundary. In
the immersed boundary method [12], the force and velocity at the 
uid–surface interface are
interpolated using approximated Dirac delta functions. This method has been applied to the

ow of suspensions [21; 1]. A similar method is the virtual boundary method [17], in which
a feedback force is added at the boundary to constrain the velocity. For problems in solid
mechanics, Donning and Liu [8] used Lagrange multipliers to enforce boundary conditions at a
non-conforming boundary. In their study, the objective was to remove the locking constraints
of plates and beams. They concluded that a very �ne mesh is required to capture detailed
solutions near the boundary.
In this paper we describe a method that utilizes an analytical solution near the particle

surfaces, allowing for a solution on a coarser mesh than would otherwise be possible. The
technique is based on the extended �nite element method (X-FEM), which was originally
developed for crack growth problems without remeshing [18; 22]; the method uses a partition
of unity enrichment [16] to allow knowledge about the partial di�erential equation being
solved to be included in the �nite element space. X-FEM has also been used for elastic solid
problems with holes [5] and inclusions [14] which need not conform to the mesh. These
geometrical features can pass arbitrarily through element interiors, because the set of basis
functions includes discontinuities across the feature surface.
A similar partition of unity method, the multi-scale �nite element method, can be found in

Liu et al. [19]. In this approach, the analytical wave and beam solutions were embedded in
the numerical solutions by multiplying the linear �nite elements with the wave-number banded
solutions. As a result, the selected band of wavenumber solutions was obtained. An alternative
�nite element enrichment procedure with a mesh-free method can be found in Liu et al. [23].
The �rst class of 
uid 
ow problems to which we have applied this technique is the

simulation of rigid circular particles in 2D viscous 
ow. Currently, the 2D problem is solved,
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so that the 
ow near each particle is equivalent to the 
ow �eld past a rigid circular cylinder.
The same method can be extended to the 3D problem of a suspension of rigid spheres. The
method can also be modi�ed to handle non-spherical or deformable particles.
The method which is developed here has the following advantages:

• It allows the automatic satisfaction of boundary conditions at particle surfaces through
the construction of the trial function basis. This is generally simpler than the imposition
of boundary conditions using a Lagrange multiplier.

• The analytical near-�eld form of the velocity is built into the velocity space, so that the
solution for the single particle case can be reproduced exactly, even with a coarse mesh.
In fact, we �nd that accurate solutions are possible even when the particle sizes are of
the order of the element size. The far-�eld velocity and thus particle–particle interaction
e�ects are captured with a standard �nite element basis.

• The locality of the X-FEM enrichment preserves the sparsity of the matrix problem.
• There is no need to model the 
uid–particle interaction forces at the particle surfaces,
as in the immersed boundary method; rather, global conservation of momentum allows
these surface forces to be eliminated from the weak form of the problem.

In Section 2, we show how a combined weak form of the particle and 
uid equations
of motion for Stokes 
ow can be derived. The velocity approximation is constructed using
X-FEM to satisfy the boundary conditions at the particle surfaces (Section 3). The method is
veri�ed by solving a simple problem with a known solution in Section 4, and examples are
shown in Section 5.

2. X-FEM=FICTITIOUS DOMAIN METHOD FOR PARTICULATE STOKES FLOWS

Glowinski et al. [7] presented a �ctitious domain method for the simulation of particulate

ows which used a distributed Lagrange multiplier to enforce rigid body motion inside the
particle domains. In our method, this �ctitious domain method can be used without the need
for any Lagrange multipliers, as X-FEM makes it simple to construct a solution space which
automatically satis�es the rigid body constraint inside the particles. Here we present a �ctitious
domain method similar to that of Glowinski et al, but simpli�ed for the case of Stokes 
ow
using X-FEM.
The problem geometry is shown in Figure 1. The 
uid domain 
 is bounded externally

by surface �. Each particle � has interior domain P�(t), bounded externally by surface S�(t).
The unit normal at the particle surface pointing into the 
uid is denoted n∗, and that pointing
inward by n.
At a given time t, the particle � has translational velocity U� (measured at the particle

centre) and rotation h� about the particle centre.

2.1. Fluid motion

The 
uid motion u(x; y) is governed by the Stokes equations, with rigid body motion enforced
at the particle surfaces:

(1a)�fg + ∇∇∇ ·  b = 0 in 
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Figure 1. Fluid and particle system geometry.

∇∇∇ · u=0 in 
 (1b)

b=−pI+ �
(

∇∇∇u+ (∇∇∇u)T
)

in 
 (1c)

u(t) = u�(t) on � (1d)

u=U� + h� × r� on S�(t) (1e)

where �f is the viscosity of the 
uid, g is the acceleration due to gravity, b is the 
uid stress,
u�(t) is a prescribed outer boundary condition and r� is the directed distance from the centre
of particle �.

2.2. Particle motion

Because the 
ow is in the Stokes regime, particle inertia is ignored and the total force and
torque on the particle are zero. Then for each particle �:

M�g+ F� + F
′

� = 0 (2a)

T� = 0 (2b)

where M� is the mass of particle �. The hydrodynamic force F� and torque T� on each particle
are given by

F� =

∫

@P�(t)

b · n∗ dA (3a)

T� =

∫

@P�(t)

r� × b · n
∗ dA (3b)
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F′

� is a short-range repulsive force between pairs of particles and between particles and the
walls included in order to avoid collisions (see for example, Reference [7]). It is ignored in
the examples reported here.

2.3. Combined weak form

In order to derive a weak form we de�ne a space of velocities, valid both inside and outside
the particles, from which we will seek a solution. The test velocity space involves test function
v(x; y; t) for the velocity, along with particle translations V� and rotations ^�. The �eld v(x; y; t)
is constrained to match rigid body motion of the particles on the particle surfaces. The trial
function space is then

V(t) = {(v;V; ^) | v∈H 1(
); v=V� + ^� × r� on P�(t) and S�(t); v= u�(t) on �} (4)

V0(t) = {(v;V; ^) | v∈H 1(
); v=V� + ^� × r� on P�(t) and S�(t); v= 0 on �} (5)

The pressure p(x; y) lies in the space

L20(
)=

{

q∈L2(
)|

∫




q dx = 0

}

(6)

Choosing velocity and pressure trial functions (u;U�;h�)∈V and p ∈ L20(
), and test
functions (v;V�; ^�)∈V0 and q ∈ L2(
), the weak form of (1) and (2) is (now using index
notation):

∫




(�fgi + �ij; j)vi dx+
∑

�

[(M�gi + F�i + F ′

�i)V�i + T�i��i] = 0 (7a)

∫




qui;i dx=0 (7b)

Integrating (7a) by parts, with use of Equation (3) and the constraints on V and V0, gives:
∫




�fgivi dx −

∫




vi; j�ij dx+

∫




pvi; idx+
∑

�

[M�giV�i + F ′

�iV�i]= 0 (8)

Note that the forces and torques on the particle surfaces have cancelled because the force
of the 
uid on the particles is equal and opposite to the force of the particles on the 
uid.
This is an attractive property of this method, as it obviates the need to perform cumbersome
surface integrals on the particles to calculate the force. This approach for dealing with 
uid–
solid interaction should also be compared with the immersed boundary method [12], which
requires an approximation to transfer the solid forces to the 
uid and vice versa. No such
approximation is necessary here.
The �nal step in the derivation is to extend the integrals in (8) to the entire domain


∪P(t), where P(t) is the total domain of all the particles. With this goal in mind, we note
that letting �s represent the density of the solid, we can write:

M�giV�i =

∫

P�(t)

�sgi(V� + ^� × r�) dx
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=

∫

P�(t)

(

�f +

(

1−
�f

�s

)

�s

)

gi(V� + ^� × r�) dx

=

∫

P�(t)

�fgivi dx+

(

1−
�f

�s

)

M�giV�i

In the �rst equality, we have used the fact that the integral of r over particle � is zero.
Substituting into (8), and using the fact that v(i; j)=0 inside the particles because of the rigid
body motion constraint, we arrive at the �nal form

∫


∪P(t)

�fgivi dx −

∫


∪P(t)

vi; j�ij dx+
∑

�

[(

1−
�f

�s

)

M�giV�i + F ′

�iV�i

]

=0 (9a)

∫


∪P(t)

qui;i dx=0 (9b)

These equations can be solved to give the velocities everywhere in the domain at a given
time step; this solution can then be used to update the particle positions at the next time
step.

3. ENRICHMENT SCHEME

The advantage of X-FEM for this problem is that the combined velocity space V(t) given
in (4) can be constructed without Lagrange multipliers to enforce particle rigidity. Instead, the
total �nite element and enrichment solutions are formulated to satisfy this constraint exactly,
while particle translational and rotational velocities remain unknowns which are part of the
solution. This provides an advantage over the use of Lagrange multipliers, which increase the
problem size and add complexity to the problem formulation and solution.
In our approach, the velocity and pressure solutions spaces are augmented by a partition of

unity enrichment method [16; 19]. Supposing that the basis for a scalar variable w(x) is to
be enriched with functions ��(x), the approximation for w(x) is

w(x)=
∑

I

NI (x)wI +
nE
∑

�=1

∑

I∈D

NI (x)��(x)aI� (10)

where NI (x) are the standard �nite element shape functions, ��(x) are the enrichment func-
tions, nE is the number of enrichment functions, and wI and aI� are scalar coe�cients. D is
the set of nodes whose supports (domains of non-zero shape function) lie in the region D,
which is the union of all subdomains in which the solution is to be enriched.
Using (10), the standard �nite element interpolation can be recovered by setting the aIi

coe�cients to zero. Furthermore, any enrichment function ��(x) can be exactly reproduced
in the region D by setting the coe�cients aI� to unity and all other coe�cients to zero, i.e.

w(x)=
nE
∑

�=1

∑

I∈D

NI (x)��(x)aI�=��(x)
∑

I∈D

NI (x)=��(x) in D (11)
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The �nite element shape functions NI (x) in the enrichment term in (10) preserve the sparsity
of the resulting matrix problem; any aI� contributes to w(x) only where NI (x) is non-zero,
i.e. within the support of node I .

3.1. Velocity enrichment

The enrichment of a vector �eld such as velocity is similar to that of a scalar �eld (10),
but requires special attention. Speci�cally, we must decide whether to enrich each component
of the vector separately with a scalar function ��(x), or to tie the components together
by enriching with a vector function M�(x). Enriching separately o�ers more freedom in the
solution, but leads to additional unknowns.
For this particular problem, we will enrich the velocity with vector functions u�(x), since

vector �elds which satisfy the Stokes equation and the incompressibility equation can be
derived (see the appendix). The total velocity �eld is thus

uh(x)=
nSD
∑

i=1

∑

I

NI (x)êiuIi+
4
∑

�=1

∑

I∈D

NI (x)u
∗
� (x)aI� (12)

where êi is the unit vector in the ith spatial direction. The vectors u∗� (x) are four fundamental
solutions of the Stokes equations. They are derived in the appendix, and quoted here for
convenience (along with the associated pressure �elds)

u∗1 =
(R2 − r2) cos2 �+ r2 ln(r=R) + (1=2)(r2 − R2)

r2
(13a)

v∗1 =
(R2 − r2) sin � cos �

r2
(13b)

p∗1 =−
2 cos �

r
(13c)

u∗2 =
2(R4 − r4) cos2 �+ 3r4 − 2R2r2 − R4

r2
(14a)

v∗2 =
2(R4 − r4) sin � cos �

r2
(14b)

p∗2 =8r cos � (14c)

u∗3 =
(r2 − R2) sin � cos �

r2
(15a)

v∗3 =
(R2 − r2) cos2 �− r2 ln(r=R) + (1=2)(r2 − R2)

r2
(15b)

p∗3 =
2 sin �

r
(15c)
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u∗4 =
2(r4 − R4) sin � cos �

r2
(16a)

v∗4 =
2(R4 − r4) cos2 �− r4 + 2R2r2 − R4

r2
(16b)

p∗4 =−8r sin � (16c)

3.2. Pressure enrichment

In enriching the pressure �eld, modes that will lead to a singular matrix problem should
be excluded from the enrichment basis. We note that (14c) and (16c) can be rewritten in
Cartesian co-ordinates

p2 =8x (17a)

p4 =−8y (17b)

Because these linear �elds can already be exactly reproduced by the piecewise linear �-
nite element shape functions, their inclusion as enrichment functions would lead to ambi-
guity; i.e. more than one choice of �nite element and enrichment coe�cients would lead
to the same pressure solution. Therefore, we enrich only with the functions p∗1 (13c) and
p∗3 (15c):

ph(x)=
∑

I

N
p
I (x)pI +

∑

I∈D

N
p
I (x)

(

p∗1 bI1 + p∗3 bI3

)

(18)

The unknown pressure coe�cients are pI and bI�; the superscript p on N
p
I (x) is a re-

minder that we need not choose the same �nite element shape functions for pressure as for
velocity.

3.3. Enrichment of higher-order shape functions

Care must be taken in choosing �nite element spaces for velocity and pressure in problems
with incompressibility constraints. These spaces should ideally satisfy the Bab�uska–Brezzi
condition [13]. To satisfy this condition for our 2D problem, we have used quadrilateral ele-
ments with nine velocity nodes and four pressure nodes, so that the velocity �eld is quadratic
and the pressure �eld is linear. All examples solved in this work use square elements with
regularly spaced nodes.
In selecting nodes to be enriched, we follow Mo�es et al. [18], who for an elastic crack

problem enrich with a discontinuous displacement �eld at all nodes whose support is inter-
sected by the crack. This was done for a linear displacement �eld (four-node quad elements),
but the extension to higher-order elements is straightforward. All nodes whose supports are
intersected by a particle surface are enriched. The support of a node is de�ned as the region
in which the node’s shape function is non-zero. For an edge node, this region consists of the
two elements which share that edge; for a node at the center of an element, the support is

8



Figure 2. Enrichment nodes near the particle surfaces: (⊙)—nodes enriched with Stokes 
ow solutions;
( )—nodes with �nite element degrees of freedom set to match rigid body particle motion.

that single element. An example showing which nodes are enriched near the particle surfaces
is shown in Figure 2.

3.4. Boundary conditions

The enrichment functions in Equations (13)–(16) were chosen to exactly satisfy the u= 0
boundary condition at the particle surface. Thus, for 
ow past a stationary particle, the zero
boundary condition is met very simply: all �nite element velocity degrees of freedom which
contribute to the solution inside the particle are set to zero. For example, in Figure 2 all
boxed nodes are set to zero.
For a moving particle, we construct a �nite element velocity �eld in the enrichment region

equal to a rigid body translation and rotation of the particle; the other enrichment �elds vanish
inside the particle and at the surface, so the total solution is equal to a rigid body translation
and rotation inside the particle. To construct the proper �nite element �eld, we �rst express
the velocity inside the particle as

Upart(r)=U+ h× r (19)

where r is measured from the centre of the particle and U and !!! are the translational and
rotational velocities of the particle, respectively. In the enrichment region D associated with
particle �, the �nite element �eld is

uFEM� (x)=
nSD
∑

i=1

∑

I∈D�

NI (x)êiU�i+
nSD
∑

i=1

∑

I∈D�

NI (x)[!�iêi × rI ] (20)

The enrichment term in (20) was �rst introduced in Reference [11] to model the rigid rotation
of a disk placed on a regular mesh which need not conform to the disk geometry. Note the
introduction of the additional degrees of freedom !�i. In order to enforce the desired boundary
condition, we simply set U�i and !�i equal to the constant particle velocity and rotation. The
bene�t of decomposing the near-particle velocity �eld in this way is that the particle translation
and rotation can be �xed or left as unknowns in the discrete equations.
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3.5. Numerical integration

In order to integrate the weak form as accurately as possible, we subdivide elements which
are intersected by particle surfaces into smaller integration cells. The algorithm we use is the
same as that used by Mo�es et al. in Reference [18].

4. METHOD VERIFICATION

In order to ensure that the method works properly, we would like to be able to compare sim-
ulation results for a simple problem with an exact solution. However, there is no analytical
solution for pure Stokes 
ow for the problem of a 2D cylinder in a 
ow which is uniform at in-
�nity. Furthermore, since we need to solve on a �nite domain, we must look at a problem with
known boundary conditions at the outer boundary of the 
ow domain, rather than at r→∞.
The problem we choose for code veri�cation is that of a cylinder of radius R at the centre of

a square domain, where the velocity on the outer boundary of the domain is u= 〈u∗1 ; v
∗
1 〉 where

u∗1 and v∗1 are taken from (13). The exact solution to this problem is simply u= 〈u∗1 ; v
∗
1 〉 on

the entire domain, since this solution is known to satisfy the Stokes equations. This problem is
attractive for code veri�cation purposes because the enrichment part of the numerical solution
is expected to be able to exactly capture the analytical solution.
Although all four velocity enrichments given in Equations (13)–(16) are solutions of the

equations of motion and satisfy the boundary conditions, and are therefore valid enrichments,
we �nd in practice that enriching with all four enrichment �elds leads to a poorly conditioned
matrix problem. This problem is alleviated by enriching only with the sets of functions given
in (13) and (15). The other two sets grow as r2 far from the cylinder, and are expected to
be unimportant in real 
ow problems. We �nd that enriching with only two sets of functions
instead of four leads to very little loss in accuracy, and we have therefore used only these
two set of functions for all of the problems solved in this paper.
The problem is solved on a square domain of side length 2, with a cylinder of radius 0:2

centred at the origin. Velocity contours for a standard �nite element solution and the X-FEM
solution are plotted in Figure 3. The �nite element mesh has 1042 triangular elements, while
the X-FEM mesh is a 20× 20 array of square elements.
The L2 error in the velocity solution both for the standard �nite element method with a

conforming mesh and for X-FEM is plotted in Figure 4. The error is plotted against N 1=2 where
N is the total number of degrees of freedom in the simulation for both velocity and pressure.
The X-FEM solution shows the same rate of convergence as the conforming �nite element
solution, but with a smaller error for a given number of degrees of freedom. We conclude that
for this example the extended �nite element method can achieve a given level of accuracy
more e�ciently than standard �nite elements, since it requires fewer degrees of freedom.

5. EXAMPLE PROBLEMS

5.1. Particles with prescribed motions

The X-FEM technique described in the previous sections has been applied to several problems
of Stokes 
ow past arrays of �xed or moving particles. All solutions reported here are for
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Figure 3. Velocity contours for problem with exact solution given by Equation (13): (a) ux, FEM, 1042
elements; (b) uy, FEM, 1042 elements; (c) ux, X-FEM, 400 elements; (d) uy, X-FEM, 400 elements.

square domains of side length 2:0, centred at the origin. In all cases, solutions are plotted
both for standard �nite element meshes that confom to particle boundaries and for an X-FEM
mesh consisting of a regular array of square elements.

5.1.1. Uniform 
ow past a stationary particle. A particle of radius 0:2 is located at the origin,
with a boundary condition of u= ex applied at the outer boundary. The X-FEM mesh is an
array of 20× 20 square elements. Velocity contours are shown in Figure 5, and velocities
on the cross-section y=0:21 are shown in Figure 6. Note in Figure 6 that the FEM and
X-FEM solutions are indistinguishable except very near the particle surface (x=0), where
the X-FEM solution picks up more detail.

5.1.2. Uniform 
ow past an array of three moving particles. The same outer boundary condi-
tion as above is applied for 
ow past three particles, with centres and radii of (x; y; R)= (−0:25;
0:25; 0:0625); (0:3125; 0:0625; 0:0875), and (−0:0625;−0:0375; 0:0375). The particles have ve-
locities of u1=−0:5ey; u2=1:0ex+1:0ey, and u3=0:5ey, respectively. The X-FEM mesh used
is an array of 20× 20 square elements. Velocity contours are shown in Figure 7, and velocities
on the cross section y=0:175 are plotted in Figure 8.
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Figure 4. Convergence of L2 velocity error for the problem with exact solution given by Equation (13).
N is the total number of velocity and pressure degrees of freedom.

5.1.3. Flow �eld due to four rotating particles. Four particles of radius R=0:2 are located at
(x; y)= (±0:3;±0:3). The particles in the �rst and third quadrants rotate with angular velocity
1:0, while those in the second and fourth quadrants have angular velocity −1:0. The X-FEM
mesh consists of 30× 30 square elements. Velocity contours are shown in Figure 9, and
velocities on the cross-section y=0:0 are plotted in Figure 10.

5.2. Freely moving particles in a gravitational �eld

As simple test cases of the simulation of freely moving particles, we consider a pair of related
problems for which analytical solutions are available. In the �rst of these, an in�nitely long
two-dimensional channel of width 2L is oriented such that gravity acts parallel to the channel
walls. A solid circular particle of radius R and density �s is located at the centre of the
channel (Figure 11a). The 
uid is assumed to have zero density; this is done in order to
match the analytical solution, which is derived for a force acting on the particle but not on
the 
uid. The variable to be solved for is the resulting downward particle velocity U .
The asymptotic solution to this problem for R=L small is [20]

U =
�sgR

2f1(R=L)

4�
(21a)

f1(R=L) = ln

(

L

R

)

− 0:9157 + 1:7244

(

R

L

)2

− 1:7302

(

R

L

)4

+O

(

(

R

L

)6
)

(21b)

where g is the gravitational acceleration and � is the 
uid viscosity.
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Figure 5. Velocity contours for uniform 
ow past a stationary particle: (a) ux, unstructured FEM;
(b) uy, unstructured FEM; (c) ux, X-FEM; (d) uy, X-FEM.

Figure 6. Horizontal and vertical velocity at y=0:21 for uniform 
ow past a stationary particle: (—):
ux, unstructured FEM; (−−): uy, unstructured FEM; (—): ux, X-FEM; (−−): uy, X-FEM.
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Figure 7. Velocity contours for uniform 
ow past an array of three moving particles: (a) ux, unstructured
FEM; (b) uy, unstructured FEM; (c) ux, X-FEM; (d) uy, X-FEM.

The second problem is similar, but with gravity acting perpendicular to the channel walls
(Figure 11b). In this case, the asymptotic solution is [20]

U =
�sgR

2f2(R=L)

4�
(22a)

f2

(

R

L

)

= ln

(

L

R

)

− 0:62026 + 1:04207

(

R

L

)2

+O

(

(

R

L

)4
)

(22b)

It should be stressed that the numerical solutions we have computed use the same enrichment
scheme as the previous examples. The enrichment functions are those derived in the appendix,
and contain no information from the asymptotic analyses mentioned above.
Our numerical solutions are on a computational domain with length of 6L, with boundary

condition u= 0 at the channel ends as well as the channel walls. The domain was meshed
with a rectangular grid with 10 square elements across the channel width by 30 elements
down the length. The computed values of f1(R=L) and f2(R=L) are shown in Figures 12 and
13, respectively. As can be seen, the computed solutions match the asymptotic solutions very

14



Figure 8. Horizontal and vertical velocity at y=0:175 for uniform 
ow past an array of
three moving particles: (—): ux, unstructured FEM; (−−): uy, unstructured FEM; (—): ux,

X-FEM; (−−): uy, X-FEM.

Figure 9. Velocity contours for 
ow due to four rotating particles: (a) ux, unstructured FEM;
(b) uy, unstructured FEM; (c) ux, X-FEM; (d) uy, X-FEM.
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Figure 10. Horizontal and vertical velocity for

ow due to four rotating particles. (—): ux, un-
structured FEM; (−−): uy, unstructured FEM;

(—): ux, X-FEM; (−−): uy, X-FEM.

Figure 11. Geometry for falling particle
test problem.

Figure 12. Asymptotic and computed solution for
f1(R=L) for cylindrical particle falling parallel to

channel walls.

Figure 13. Asymptotic and computed solu-
tion for f2(R=L) for cylindrical particle falling

perpendicular to channel walls.

well, especially where R=L is small, which is where the asymptotic solution is most accurate.
Note that the smallest value of R=L computed is 0:02; for this case the particle radius is just
one �fth the size of the element width for the 10× 30 mesh used.
The method is applicable to the motion of a large array of particles on a relatively coarse

mesh. Figure 14 shows the y-velocity in the 
uid for an array of 50 sedimenting particles
in a channel of length 3:0 and width 1:2. The �nite element mesh consists of 1440 square
elements. The falling particles cause a 
ow in the positive y-direction between columns of
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Figure 14. Y-velocity �eld for simulation of an array of 50 sedimenting particles.

the array due to the conservation of mass; the total 
ux through any horizontal cross section
must be zero.

6. SUMMARY AND CONCLUSIONS

We have presented a method for the simulation of solid particles in a 2D 
ow in which
the computational mesh need not conform to the particle surfaces. The partition of unity
enrichment scheme we use is designed to incorporate the analytical solution for 
ow past a
circular particle in the region near the particle surface. We have also formulated the problem
so that the particle translational and rotational velocities are unknown, making the simulation
of a suspension of freely moving particles possible. The method remains accurate even for
particle sizes on the order of or smaller than the size of an element in the mesh.
The eventual goal of this work is the simulation of large numbers of particles in a suspension


ow. This will require the extension of the method presented here in several directions. The
simulation of three dimensional problems with this method is straightforward; in fact, there are
more analytical solutions in three dimensions than in two available in the literature for use as
enrichment functions. One potential complication in three dimensions is one of computational
geometry; elements are partitioned across particle surfaces for accurate integration, and the
partitioning of a 2D element by a 1D surface as is done here is simpler than the partitioning
of a 3D element by a 2D surface. However, methods are available which can be applied to
this task.
The method used to apply boundary conditions in this work may require modi�cation

for more concentrated suspensions in which particles collide or nearly collide. Enrichment
functions based on solutions to two-sphere problems can be used instead of the analytical
solutions given in Section 6. However, a �nite element degree of freedom cannot be tied to
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the rigid body velocities of all particles in the vicinity as in Section 3.4, since this would
force all particles in the vicinity of a single node to move with the same velocity. For the
treatment of closely spaced particles, one can imagine all particles in the 
ow would be tied
together and move as a block, which is obviously incorrect. A more general formulation is
needed, such as one in which the �nite element degrees of freedom capture a velocity �eld
which is averaged in some sense and an enrichment solution which represents the perturbation
due to the presence of the particles.
Although the formulation and examples given in this work are limited to slow viscous 
ow,

the method is applicable to 
ows of higher Reynolds number as well. It should be recognized
that the analysis of Section 6 is valid for low particle Reynolds number Rep, i.e. the Reynolds
number based on particle size. A 
ow with a much higher Reynolds number based on 
ow
domain dimensions can also be enriched with the given functions provided that the particles
are small enough. Higher Rep of order unity call for enrichment based on asymptotic solutions
such as those of Proudman and Pearson [10]. For even higher Rep it may be necessary to
simply choose an enrichment function which satis�es the boundary conditions at the particle
surface and rely on the re�nement of the mesh to pick up details like 
ow separation and
trailing wakes.
None of these obstacles in the path to large-scale particulate 
ow simulations seem insur-

mountable. Suspension 
ow is an excellent example of a problem in which multiple scale
phenomena are at work, and it seems natural to apply a technique such as the one outlined
which allows the long-range, large-scale e�ects to be computed while analytical models are
employed to account for the near-�eld, small-scale perturbations. In this way, the strengths of
both numerical and analytical methods can be exploited.

APPENDIX: ANALYTICAL SOLUTIONS OF STOKES FLOW PAST A CYLINDER

It is well known that the problem of two-dimensional Stokes 
ow past a single cylinder,
with no-slip boundary conditions on the cylinder and uniform 
ow at r=∞, has no solution.
The di�culty lies in the inappropriateness of the fundamental assumption that viscous forces
are much larger than inertial forces. Very far from the cylinder, where velocity gradients are
small, viscous forces become negligible and the assumption is violated; the problem must
then be approached using either an approximation like Oseen’s (see for instance, Reference
[25]) or by matched asymptotics [10].
In the present case, we simulate only �nite domains, for which the Stokes equations do have

a solution. Furthermore, since we enrich the �nite element method only near the cylinder, we
can ignore the loss of validity of the solution far from the cylinder. Rather, we will look for
solutions which satisfy the boundary conditions at the cylinder surface. One can think of the
method as a matching problem, in which the form of the analytical solution near the surface
is used as the inner solution, and the outer solution is obtained by �nite elements. Matching
is done automatically through the Galerkin weak form.
The equations for an incompressible, very viscous 
uid are

−∇∇∇p+ �∇2u= 0 (A1)

∇∇∇ · u=0 (A2)
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The problem to be solved is that of a cylinder of radius R located at the origin. The 
ow
far from the cylinder has uniform velocity U in the x-direction, so the boundary conditions
are

u= 0 at r=A (A3)

u=Uex at r→∞ (A4)

where r=
√

x2 + y2 and ex is the unit vector in the x-direction. The problem will be solved
in terms of a streamfunction  (x), de�ned such that

u=
1

r

@ 

@�
er −

@ 

@r
e� (A5)

This form of the velocity automatically satis�es the incompressibility condition (A2). Taking
the divergence of (A1) gives the biharmonic equation:

∇2(∇2 )=0 (A6)

with boundary conditions on  :

at r=R :
@ 

@r
=0;

@ 

@�
=0 (A7)

at r→∞ :
@ 

@r
=U sin �;

@ 

@�
=Ur cos � (A8)

Based on the boundary conditions as r→∞ (A8), we will look for solutions of the form

 (r; �)=f(r) sin � (A9)

for which (A6) reduces to

[

1

r

@

@r

(

r
@

@r

)

−
1

r2

]2

f(r)=0 (A10)

Integration of (A9) gives a solution for  (r; �) in terms of the unknown constants A–D:

 (r; �)=

(

Ar3 + Br ln r + Cr +
D

r

)

sin � (A11)

Because the velocities are in terms of the derivatives of the streamfunction (A5),  (r; �) is
unique only up to an additive constant. We are, therefore, free to satisfy (A7) by requiring
that  (r=R; �)=0, leading to the following two independent solutions for  :

 1 = B

(

r ln
( r

R

)

−
1

2
r +

R2

2r

)

sin � (A12)

 2 = A

(

r3 − 2R2r +
R4

r

)

sin � (A13)
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Unfortunately, no linear combination of  1 and  2 satis�es the boundary conditions at
r→∞; this is the di�culty alluded to at the beginning of this section. We will, therefore,
keep both solutions as enrichments for the velocity �eld near the cylinder surface. After
converting to rectangular co-ordinates, in which the velocity components will be denoted u∗

and v∗, the velocity and pressure �elds implied by  1 and  2 (setting A=B=1) are

u∗1 =
(R2 − r2) cos2 �+ r2 ln(r=R) + (1=2)(r2 − R2)

r2
(A14)

v∗1 =
(R2 − r2) sin � cos �

r2
(A15)

p∗1 =−
2 cos �

r
(A16)

and

u∗2 =
2(R4 − r4) cos2 �+ 3r4 − 2R2r2 − R4

r2
(A17)

v∗2 =
2(R4 − r4) sin � cos �

r2
(A18)

p∗2 =8r cos � (A19)

Because we do not wish to limit our eventual computations to problems with uniform x
velocity at r→∞, we also derive the solution for uniform y velocity. Any oblique 
ow can
then be written as a superposition of these two fundamental cases. The analysis is similar,
except that we now look for solutions for  (r; �) of the form  =f(r) cos �. The resulting
velocity and pressure �elds are

u∗3 =
(r2 − R2) sin � cos �

r2
(A20)

v∗3 =
(R2 − r2) cos2 �− r2 ln(r=R) + (1=2)(r2 − R2)

r2
(A21)

p∗3 =
2 sin �

r
(A22)

and

u∗4 =
2(r4 − R4) sin � cos �

r2
(A23)

v∗4 =
2(R4 − r4) cos2 �− r4 + 2R2r2 − R4

r2
(A24)

(A25)p4
∗ = −8r sin � 
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Equations (A14)–(A25) give the functions with which the standard �nite element basis
will be enriched in the region near the cylinder surface.
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