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A new method for the simulation of particulate ows, based on the extended nite element method (X-FEM), is described. In this method, the particle surfaces need not conform to the nite element boundaries, so that moving particles can be simulated without remeshing. The near eld form of the uid ow about each particle is built into the nite element basis using a partition of unity enrichment, allowing the simple enforcement of boundary conditions and improved accuracy over other methods on a coarse mesh. We present a weak form of the equations of motion useful for the simulation of freely moving particles, and solve example problems for particles with prescribed and unknown velocities.

INTRODUCTION

A recurring theme in the study of the rheology of particulate suspensions is the use of the analytical solution for a single particle or small group of particles to aid in the construction of the many-particle solution. For example, for very dilute suspensions of rigid spheres [START_REF] Peskin | Numerical analysis of blood ow in the heart[END_REF], rigid ellipsoids [START_REF] Jeery | The motion of ellipsoidal particles immersed in a viscous uid[END_REF], or spherical droplets [START_REF] Taylor | The viscosity of a uid containing small drops of another uid[END_REF], particle-particle interactions can be ignored, and the properties of the suspension can be derived in terms of the vanishing Reynolds number solution for linear ow past a single particle. For more concentrated solutions, as in Batchelor and Green's analysis of a suspension of rigid spheres [START_REF] Batchelor | The determination of the bulk stress in a suspension of spherical particles to order c 2[END_REF], the two-sphere analytical solution is used to approximate particle-particle interactions. Analytical solutions for single particles have also been exploited in numerical simulations of particulate ows; the method of Stokesian dynamics [START_REF] Hu | Direct simulation of ows of solid-liquid mixtures[END_REF] utilizes a grand mobility matrix, constructed by assembling solutions for pairs of particles, to compute the velocities of all particles in a suspension.

In the last few years, the state of the art in computers and numerical methods has made the direct numerical simulation of particle-laden ows possible. Recently, nite element methods have been used to simulate particulate ows in great detail. These simulations can be divided into two classes: moving mesh simulations, in which the computational grid moves with the particles, and xed mesh simulations, in which the particles move through a xed, regular grid. For example, Hu [START_REF] Proudman | Expansions at small Reynolds numbers for the ow past a sphere and a circular cylinder[END_REF] used an arbitrary Lagrangian-Eulerian moving nite element mesh technique to simulate a large number of rigid particles. Johnson and Tezduyar [START_REF] Belytschko | Elastic crack growth in nite elements with minimal remeshing[END_REF] also used an unstructured moving mesh; their simulation used a stabilized space-time formulation to simulate up to 100 rigid spherical particles. For a nite element problem of this size, the number of degrees of freedom required is extremely large, and the uid domain must be remeshed frequently to avoid element distortion. For example, Johnson and Tezduyar report mesh sizes of around 1.2 million elements and 240 000 nodes for their simulation of 100 particles, although the mesh size varies signicantly due to remeshing and adaptivity. Fixed mesh methods help alleviate these diculties, but the enforcement of boundary conditions at particle surfaces (which do not necessarily coincide with element surfaces) can be dicult. Glowinski et al. [START_REF] Johnson | 3d simulation of uid-particle interactions with the number of particles reaching 100[END_REF] used a ctitious domain technique for particulate ows, applying a distributed Lagrange multiplier to enforce rigidity inside the particles. Both moving and xed mesh methods require very ne meshes in order to capture ow details near the particles.

The xed mesh methods listed above are related to methods in which a complex boundary, moving or stationary, is captured on a regular grid that does not conform to the boundary. In the immersed boundary method [START_REF] Goldstein | Modeling a no-slip ow with an external force eld[END_REF], the force and velocity at the uid-surface interface are interpolated using approximated Dirac delta functions. This method has been applied to the ow of suspensions [21; 1]. A similar method is the virtual boundary method [START_REF] Daux | Arbitrary branched and intersecting cracks with the extended nite element method[END_REF], in which a feedback force is added at the boundary to constrain the velocity. For problems in solid mechanics, Donning and Liu [START_REF] Glowinski | A distributed Lagrange multiplier=ctitious domain method for particulate ows[END_REF] used Lagrange multipliers to enforce boundary conditions at a non-conforming boundary. In their study, the objective was to remove the locking constraints of plates and beams. They concluded that a very ne mesh is required to capture detailed solutions near the boundary.

In this paper we describe a method that utilizes an analytical solution near the particle surfaces, allowing for a solution on a coarser mesh than would otherwise be possible. The technique is based on the extended nite element method (X-FEM), which was originally developed for crack growth problems without remeshing [18; 22]; the method uses a partition of unity enrichment [START_REF] Babu Ska | The partition of unity method[END_REF] to allow knowledge about the partial dierential equation being solved to be included in the nite element space. X-FEM has also been used for elastic solid problems with holes [START_REF] Brady | Stokesian dynamics[END_REF] and inclusions [START_REF] Mo Es | A nite element method for crack growth without remeshing[END_REF] which need not conform to the mesh. These geometrical features can pass arbitrarily through element interiors, because the set of basis functions includes discontinuities across the feature surface.

A similar partition of unity method, the multi-scale nite element method, can be found in Liu et al. [START_REF] Liu | Multiple scale nite element methods[END_REF]. In this approach, the analytical wave and beam solutions were embedded in the numerical solutions by multiplying the linear nite elements with the wave-number banded solutions. As a result, the selected band of wavenumber solutions was obtained. An alternative nite element enrichment procedure with a mesh-free method can be found in Liu et al. [START_REF] Happel | Low Reynolds Number Hydrodynamics Noordho International[END_REF].

The rst class of uid ow problems to which we have applied this technique is the simulation of rigid circular particles in 2D viscous ow. Currently, the 2D problem is solved, so that the ow near each particle is equivalent to the ow eld past a rigid circular cylinder. The same method can be extended to the 3D problem of a suspension of rigid spheres. The method can also be modied to handle non-spherical or deformable particles.

The method which is developed here has the following advantages:

• It allows the automatic satisfaction of boundary conditions at particle surfaces through the construction of the trial function basis. This is generally simpler than the imposition of boundary conditions using a Lagrange multiplier. • The analytical near-eld form of the velocity is built into the velocity space, so that the solution for the single particle case can be reproduced exactly, even with a coarse mesh.

In fact, we nd that accurate solutions are possible even when the particle sizes are of the order of the element size. The far-eld velocity and thus particle-particle interaction eects are captured with a standard nite element basis. • The locality of the X-FEM enrichment preserves the sparsity of the matrix problem.

• There is no need to model the uid-particle interaction forces at the particle surfaces, as in the immersed boundary method; rather, global conservation of momentum allows these surface forces to be eliminated from the weak form of the problem.

In Section 2, we show how a combined weak form of the particle and uid equations of motion for Stokes ow can be derived. The velocity approximation is constructed using X-FEM to satisfy the boundary conditions at the particle surfaces (Section 3). The method is veried by solving a simple problem with a known solution in Section 4, and examples are shown in Section 5.

X-FEM=FICTITIOUS DOMAIN METHOD FOR PARTICULATE STOKES FLOWS

Glowinski et al. [START_REF] Johnson | 3d simulation of uid-particle interactions with the number of particles reaching 100[END_REF] presented a ctitious domain method for the simulation of particulate ows which used a distributed Lagrange multiplier to enforce rigid body motion inside the particle domains. In our method, this ctitious domain method can be used without the need for any Lagrange multipliers, as X-FEM makes it simple to construct a solution space which automatically satises the rigid body constraint inside the particles. Here we present a ctitious domain method similar to that of Glowinski et al, but simplied for the case of Stokes ow using X-FEM.

The problem geometry is shown in Figure 1. The uid domain is bounded externally by surface . Each particle has interior domain P (t), bounded externally by surface S (t). The unit normal at the particle surface pointing into the uid is denoted n * , and that pointing inward by n.

At a given time t, the particle has translational velocity U (measured at the particle centre) and rotation G about the particle centre.

Fluid motion

The uid motion u(x; y) is governed by the Stokes equations, with rigid body motion enforced at the particle surfaces: 

(1a) f g + ∇∇∇• A = 0 in
∇ ∇ ∇•u = 0 in (1b) A = -pI + ∇ ∇ ∇u +(∇ ∇ ∇u) T in (1c) u(t)=u (t) on (1d) u = U + G × r on S (t) ( 1e 
)
where f is the viscosity of the uid, g is the acceleration due to gravity, A is the uid stress, u (t) is a prescribed outer boundary condition and r is the directed distance from the centre of particle .

Particle motion

Because the ow is in the Stokes regime, particle inertia is ignored and the total force and torque on the particle are zero. Then for each particle :

M g + F + F ′ = 0 (2a) T = 0 (2b)
where M is the mass of particle . The hydrodynamic force F and torque T on each particle are given by

F = @P(t) A • n * dA (3a) T = @P(t) r × A • n * dA (3b)
F ′ is a short-range repulsive force between pairs of particles and between particles and the walls included in order to avoid collisions (see for example, Reference [START_REF] Johnson | 3d simulation of uid-particle interactions with the number of particles reaching 100[END_REF]). It is ignored in the examples reported here.

Combined weak form

In order to derive a weak form we dene a space of velocities, valid both inside and outside the particles, from which we will seek a solution. The test velocity space involves test function v(x; y; t) for the velocity, along with particle translations V and rotations ^. The eld v(x; y; t) is constrained to match rigid body motion of the particles on the particle surfaces. The trial function space is then

V(t)={(v; V; ^) | v ∈ H 1 (); v = V + ^ × r on P (t) and S (t); v = u (t)o n } (4) V 0 (t)={(v; V; ^) | v ∈ H 1 (); v = V + ^ × r on P (t) and S (t); v = 0 on } (5) 
The pressure p(x; y) lies in the space

L 2 0 () = q ∈ L 2 ()| q dx =0 (6) 
Choosing velocity and pressure trial functions (u; U ; G ) ∈ V and p ∈ L 2 0 (), and test functions (v; V ; ^) ∈ V 0 and q ∈ L 2 (), the weak form of ( 1) and ( 2) is (now using index notation):

( f g i + ij; j )v i dx + [(M g i + F i + F ′ i )V i + T i i ] = 0 (7a) qu i;i dx = 0 (7b)
Integrating (7a) by parts, with use of Equation ( 3) and the constraints on V and V 0 , gives:

f g i v i dx - v i; j ij dx + pv i; i dx + [M g i V i + F ′ i V i ]=0 (8) 
Note that the forces and torques on the particle surfaces have cancelled because the force of the uid on the particles is equal and opposite to the force of the particles on the uid. This is an attractive property of this method, as it obviates the need to perform cumbersome surface integrals on the particles to calculate the force. This approach for dealing with uidsolid interaction should also be compared with the immersed boundary method [START_REF] Goldstein | Modeling a no-slip ow with an external force eld[END_REF], which requires an approximation to transfer the solid forces to the uid and vice versa. No such approximation is necessary here.

The nal step in the derivation is to extend the integrals in (8) to the entire domain ∪ P(t), where P(t) is the total domain of all the particles. With this goal in mind, we note that letting s represent the density of the solid, we can write:

M g i V i = P(t) s g i (V + ^ × r )dx = P(t) f + 1 - f s s g i (V + ^ × r )dx = P(t) f g i v i dx + 1 - f s M g i V i
In the rst equality, we have used the fact that the integral of r over particle is zero. Substituting into (8), and using the fact that v (i; j) = 0 inside the particles because of the rigid body motion constraint, we arrive at the nal form ∪P(t)

f g i v i dx - ∪P(t) v i; j ij dx + 1 - f s M g i V i + F ′ i V i = 0 (9a) ∪P(t) qu i;i dx = 0 (9b)
These equations can be solved to give the velocities everywhere in the domain at a given time step; this solution can then be used to update the particle positions at the next time step.

ENRICHMENT SCHEME

The advantage of X-FEM for this problem is that the combined velocity space V(t) given in ( 4) can be constructed without Lagrange multipliers to enforce particle rigidity. Instead, the total nite element and enrichment solutions are formulated to satisfy this constraint exactly, while particle translational and rotational velocities remain unknowns which are part of the solution. This provides an advantage over the use of Lagrange multipliers, which increase the problem size and add complexity to the problem formulation and solution.

In our approach, the velocity and pressure solutions spaces are augmented by a partition of unity enrichment method [16; 19]. Supposing that the basis for a scalar variable w(x)i st o be enriched with functions (x), the approximation for w(x)i s

w(x)= I N I (x)w I + nE =1 I ∈D N I (x) (x)a I (10) 
where N I (x) are the standard nite element shape functions, (x) are the enrichment functions, n E is the number of enrichment functions, and w I and a I are scalar coecients. D is the set of nodes whose supports (domains of non-zero shape function) lie in the region D, which is the union of all subdomains in which the solution is to be enriched. Using [START_REF] Fogelson | A fast numerical method for solving three-dimensional Stokes equations in the presence of suspended particles[END_REF], the standard nite element interpolation can be recovered by setting the a Ii coecients to zero. Furthermore, any enrichment function (x) can be exactly reproduced in the region D by setting the coecients a I to unity and all other coecients to zero, i.e.

w(x)= nE =1 I ∈D N I (x) (x)a I = (x) I ∈D N I (x)= (x)i n D (11) 
The nite element shape functions N I (x) in the enrichment term in [START_REF] Fogelson | A fast numerical method for solving three-dimensional Stokes equations in the presence of suspended particles[END_REF] preserve the sparsity of the resulting matrix problem; any a I contributes to w(x) only where N I (x) is non-zero, i.e. within the support of node I .

Velocity enrichment

The enrichment of a vector eld such as velocity is similar to that of a scalar eld [START_REF] Fogelson | A fast numerical method for solving three-dimensional Stokes equations in the presence of suspended particles[END_REF], but requires special attention. Specically, we must decide whether to enrich each component of the vector separately with a scalar function (x), or to tie the components together by enriching with a vector function M (x). Enriching separately oers more freedom in the solution, but leads to additional unknowns.

For this particular problem, we will enrich the velocity with vector functions u (x), since vector elds which satisfy the Stokes equation and the incompressibility equation can be derived (see the appendix). The total velocity eld is thus

u h (x)= nSD i=1 I N I (x)ê i u Ii + 4 =1 I ∈D N I (x)u * (x)a I ( 12 
)
where êi is the unit vector in the ith spatial direction. The vectors u * (x) are four fundamental solutions of the Stokes equations. They are derived in the appendix, and quoted here for convenience (along with the associated pressure elds)

u * 1 = (R 2 -r 2 ) cos 2 + r 2 ln(r=R)+(1=2)(r 2 -R 2 ) r 2 (13a) v * 1 = (R 2 -r 2 ) sin cos r 2 (13b) p * 1 = - 2 cos r (13c) u * 2 = 2(R 4 -r 4 ) cos 2 +3r 4 -2R 2 r 2 -R 4 r 2 (14a) v * 2 = 2(R 4 -r 4 ) sin cos r 2 (14b) p * 2 =8r cos (14c) u * 3 = (r 2 -R 2 ) sin cos r 2 (15a) v * 3 = (R 2 -r 2 ) cos 2 -r 2 ln(r=R)+(1=2)(r 2 -R 2 ) r 2 (15b) p * 3 = 2 sin r (15c) u * 4 = 2(r 4 -R 4 ) sin cos r 2 (16a) v * 4 = 2(R 4 -r 4 ) cos 2 -r 4 +2R 2 r 2 -R 4 r 2 (16b) p * 4 = -8r sin (16c)

Pressure enrichment

In enriching the pressure eld, modes that will lead to a singular matrix problem should be excluded from the enrichment basis. We note that (14c) and (16c) can be rewritten in Cartesian co-ordinates

p 2 =8x ( 17a 
)
p 4 = -8y (17b) 
Because these linear elds can already be exactly reproduced by the piecewise linearnite element shape functions, their inclusion as enrichment functions would lead to ambiguity; i.e. more than one choice of nite element and enrichment coecients would lead to the same pressure solution. Therefore, we enrich only with the functions p * 1 (13c) and p * 3 (15c):

p h (x)= I N p I (x)p I + I ∈D N p I (x) p * 1 b I 1 + p * 3 b I 3 (18) 
The unknown pressure coecients are p I and b I ; the superscript p on N p I (x)i sar eminder that we need not choose the same nite element shape functions for pressure as for velocity.

Enrichment of higher-order shape functions

Care must be taken in choosing nite element spaces for velocity and pressure in problems with incompressibility constraints. These spaces should ideally satisfy the Bab uska-Brezzi condition [START_REF] Donning | Meshless methods for shear-deformable beams and plates[END_REF]. To satisfy this condition for our 2D problem, we have used quadrilateral elements with nine velocity nodes and four pressure nodes, so that the velocity eld is quadratic and the pressure eld is linear. All examples solved in this work use square elements with regularly spaced nodes.

In selecting nodes to be enriched, we follow Mo es et al. [START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended nite element method[END_REF], who for an elastic crack problem enrich with a discontinuous displacement eld at all nodes whose support is intersected by the crack. This was done for a linear displacement eld (four-node quad elements), but the extension to higher-order elements is straightforward. All nodes whose supports are intersected by a particle surface are enriched. The support of a node is dened as the region in which the node's shape function is non-zero. For an edge node, this region consists of the two elements which share that edge; for a node at the center of an element, the support is ( )-nodes with nite element degrees of freedom set to match rigid body particle motion.

that single element. An example showing which nodes are enriched near the particle surfaces is shown in Figure 2.

Boundary conditions

The enrichment functions in Equations ( 13)-( 16) were chosen to exactly satisfy the u = 0 boundary condition at the particle surface. Thus, for ow past a stationary particle, the zero boundary condition is met very simply: all nite element velocity degrees of freedom which contribute to the solution inside the particle are set to zero. For example, in Figure 2 all boxed nodes are set to zero. For a moving particle, we construct a nite element velocity eld in the enrichment region equal to a rigid body translation and rotation of the particle; the other enrichment elds vanish inside the particle and at the surface, so the total solution is equal to a rigid body translation and rotation inside the particle. To construct the proper nite element eld, we rst express the velocity inside the particle as

U part (r)=U + G × r ( 19 
)
where r is measured from the centre of the particle and U and ! ! ! are the translational and rotational velocities of the particle, respectively. In the enrichment region D associated with particle , the nite element eld is

u FEM (x)= nSD i=1 I ∈D N I (x)ê i U i + nSD i=1 I ∈D N I (x)[! i êi × r I ] (20) 
The enrichment term in [START_REF] Liu | Enrichment of the nite element method with the reproducing kernel particle method[END_REF] was rst introduced in Reference [START_REF] Sulsky | A numerical method for suspension ow[END_REF] to model the rigid rotation of a disk placed on a regular mesh which need not conform to the disk geometry. Note the introduction of the additional degrees of freedom ! i . In order to enforce the desired boundary condition, we simply set U i and ! i equal to the constant particle velocity and rotation. The benet of decomposing the near-particle velocity eld in this way is that the particle translation and rotation can be xed or left as unknowns in the discrete equations.

Numerical integration

In order to integrate the weak form as accurately as possible, we subdivide elements which are intersected by particle surfaces into smaller integration cells. The algorithm we use is the same as that used by Mo es et al. in Reference [START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended nite element method[END_REF].

METHOD VERIFICATION

In order to ensure that the method works properly, we would like to be able to compare simulation results for a simple problem with an exact solution. However, there is no analytical solution for pure Stokes ow for the problem of a 2D cylinder in a ow which is uniform at innity. Furthermore, since we need to solve on a nite domain, we must look at a problem with known boundary conditions at the outer boundary of the ow domain, rather than at r →∞.

The problem we choose for code verication is that of a cylinder of radius R at the centre of a square domain, where the velocity on the outer boundary of the domain is u = u * 1 ;v * 1 where u * 1 and v * 1 are taken from [START_REF] Donning | Meshless methods for shear-deformable beams and plates[END_REF]. The exact solution to this problem is simply u = u * 1 ;v * 1 on the entire domain, since this solution is known to satisfy the Stokes equations. This problem is attractive for code verication purposes because the enrichment part of the numerical solution is expected to be able to exactly capture the analytical solution.

Although all four velocity enrichments given in Equations ( 13)-( 16) are solutions of the equations of motion and satisfy the boundary conditions, and are therefore valid enrichments, we nd in practice that enriching with all four enrichment elds leads to a poorly conditioned matrix problem. This problem is alleviated by enriching only with the sets of functions given in ( 13) and [START_REF] Belytschko | Elastic crack growth in nite elements with minimal remeshing[END_REF]. The other two sets grow as r 2 far from the cylinder, and are expected to be unimportant in real ow problems. We nd that enriching with only two sets of functions instead of four leads to very little loss in accuracy, and we have therefore used only these two set of functions for all of the problems solved in this paper.

The problem is solved on a square domain of side length 2, with a cylinder of radius 0:2 centred at the origin. Velocity contours for a standard nite element solution and the X-FEM solution are plotted in Figure 3. The nite element mesh has 1042 triangular elements, while the X-FEM mesh is a 20 × 20 array of square elements.

The L 2 error in the velocity solution both for the standard nite element method with a conforming mesh and for X-FEM is plotted in Figure 4. The error is plotted against N 1=2 where N is the total number of degrees of freedom in the simulation for both velocity and pressure. The X-FEM solution shows the same rate of convergence as the conforming nite element solution, but with a smaller error for a given number of degrees of freedom. We conclude that for this example the extended nite element method can achieve a given level of accuracy more eciently than standard nite elements, since it requires fewer degrees of freedom.

EXAMPLE PROBLEMS

Particles with prescribed motions

The X-FEM technique described in the previous sections has been applied to several problems of Stokes ow past arrays of xed or moving particles. All solutions reported here are for square domains of side length 2:0, centred at the origin. In all cases, solutions are plotted both for standard nite element meshes that confom to particle boundaries and for an X-FEM mesh consisting of a regular array of square elements.

5.1.1. Uniform ow past a stationary particle. A particle of radius 0:2 is located at the origin, with a boundary condition of u = e x applied at the outer boundary. The X-FEM mesh is an array of 20 × 20 square elements. Velocity contours are shown in Figure 5, and velocities on the cross-section y =0:21 are shown in Figure 6. Note in Figure 6 that the FEM and X-FEM solutions are except very near the particle surface (x = 0), where the X-FEM solution picks up more detail.

5.1.2. Uniform ow past an array of three moving particles. The same outer boundary condition as above is applied for ow past three particles, with centres and radii of (x; y; R)=(-0:25; 0:25; 0:0625); (0:3125; 0:0625; 0:0875), and (-0:0625; -0:0375; 0:0375). The particles have velocities of u 1 = -0:5e y ; u 2 =1:0e x +1:0e y , and u 3 =0:5e y , respectively. The X-FEM mesh used is an array of 20 × 20 square elements. Velocity contours are shown in Figure 7, and velocities on the cross section y =0:175 are plotted in Figure 8. N is the total number of velocity and pressure degrees of freedom.

5.1.3. Flow eld due to four rotating particles. Four particles of radius R =0:2 are located at (x; y)=(±0:3; ±0:3). The particles in the rst and third quadrants rotate with angular velocity 1:0, while those in the second and fourth quadrants have angular velocity -1:0. The X-FEM mesh consists of 30 × 30 square elements. Velocity contours are shown in Figure 9, and velocities on the cross-section y =0:0 are plotted in Figure 10.

Freely moving particles in a gravitational eld

As simple test cases of the simulation of freely moving particles, we consider a pair of related problems for which analytical solutions are available. In the rst of these, an innitely long two-dimensional channel of width 2L is oriented such that gravity acts parallel to the channel walls. A solid circular particle of radius R and density s is located at the centre of the channel (Figure 11a). The uid is assumed to have zero density; this is done in order to match the analytical solution, which is derived for a force acting on the particle but not on the uid. The variable to be solved for is the resulting downward particle velocity U . The asymptotic solution to this problem for R=L small is [20]

U = s gR 2 f 1 (R=L) 4 (21a) f 1 (R=L)=ln L R -0:9157 + 1:7244 R L 2 -1:7302 R L 4 + O R L 6 ( 21b 
)
where g is the gravitational acceleration and is the uid viscosity. The second problem is similar, but with gravity acting perpendicular to the channel walls (Figure 11b). In this case, the asymptotic solution is [START_REF] Liu | Enrichment of the nite element method with the reproducing kernel particle method[END_REF] 

U = s gR 2 f 2 (R=L) 4 (22a) f 2 R L =ln L R -0:62026 + 1:04207 R L 2 + O R L 4 ( 22b 
)
It should be stressed that the numerical solutions we have computed use the same enrichment scheme as the previous examples. The enrichment functions are those derived in the appendix, and contain no information from the asymptotic analyses mentioned above. Our numerical solutions are on a computational domain with length of 6L, with boundary condition u = 0 at the channel ends as well as the channel walls. The domain was meshed with a rectangular grid with 10 square elements across the channel width by 30 elements down the length. The computed values of f 1 (R=L) and f 2 (R=L) are shown in Figures 12 and13, respectively. As can be seen, the computed solutions match the asymptotic solutions very well, especially where R=L is small, which is where the asymptotic solution is most accurate. Note that the smallest value of R=L computed is 0:02; for this case the particle radius is just one fth the size of the element width for the 10 × 30 mesh used. The method is applicable to the motion of a large array of particles on a relatively coarse mesh. Figure 14 shows the y-velocity in the uid for an array of 50 sedimenting particles in a channel of length 3:0 and width 1:2. The nite element mesh consists of 1440 square elements. The falling particles cause a ow in the positive y-direction between columns of the array due to the conservation of mass; the total ux through any horizontal cross section must be zero.

SUMMARY AND CONCLUSIONS

We have presented a method for the simulation of solid particles in a 2D ow in which the computational mesh need not conform to the particle surfaces. The partition of unity enrichment scheme we use is designed to incorporate the analytical solution for ow past a circular particle in the region near the particle surface. We have also formulated the problem so that the particle translational and rotational velocities are unknown, making the simulation of a suspension of freely moving particles possible. The method remains accurate even for particle sizes on the order of or smaller than the size of an element in the mesh.

The eventual goal of this work is the simulation of large numbers of particles in a suspension ow. This will require the extension of the method presented here in several directions. The simulation of three dimensional problems with this method is straightforward; in fact, there are more analytical solutions in three dimensions than in two available in the literature for use as enrichment functions. One potential complication in three dimensions is one of computational geometry; elements are partitioned across particle surfaces for accurate integration, and the partitioning of a 2D element by a 1D surface as is done here is simpler than the partitioning of a 3D element by a 2D surface. However, methods are available which can be applied to this task.

The method used to apply boundary conditions in this work may require modication for more concentrated suspensions in which particles collide or nearly collide. Enrichment functions based on solutions to two-sphere problems can be used instead of the analytical solutions given in Section 6. However, a nite element degree of freedom cannot be tied to the rigid body velocities of all particles in the vicinity as in Section 3.4, since this would force all particles in the vicinity of a single node to move with the same velocity. For the treatment of closely spaced particles, one can imagine all particles in the ow would be tied together and move as a block, which is obviously incorrect. A more general formulation is needed, such as one in which the nite element degrees of freedom capture a velocity eld which is averaged in some sense and an enrichment solution which represents the perturbation due to the presence of the particles.

Although the formulation and examples given in this work are limited to slow viscous ow, the method is applicable to ows of higher Reynolds number as well. It should be recognized that the analysis of Section 6 is valid for low particle Reynolds number Re p , i.e. the Reynolds number based on particle size. A ow with a much higher Reynolds number based on ow domain dimensions can also be enriched with the given functions provided that the particles are small enough. Higher Re p of order unity call for enrichment based on asymptotic solutions such as those of Proudman and Pearson [START_REF] Fogelson | A fast numerical method for solving three-dimensional Stokes equations in the presence of suspended particles[END_REF]. For even higher Re p it may be necessary to simply choose an enrichment function which satises the boundary conditions at the particle surface and rely on the renement of the mesh to pick up details like ow separation and trailing wakes.

None of these obstacles in the path to large-scale particulate ow simulations seem insurmountable. Suspension ow is an excellent example of a problem in which multiple scale phenomena are at work, and it seems natural to apply a technique such as the one outlined which allows the long-range, large-scale eects to be computed while analytical models are employed to account for the near-eld, small-scale perturbations. In this way, the strengths of both numerical and analytical methods can be exploited.

APPENDIX: ANALYTICAL SOLUTIONS OF STOKES FLOW PAST A CYLINDER

It is well known that the problem of two-dimensional Stokes ow past a single cylinder, with no-slip boundary conditions on the cylinder and uniform ow at r = ∞, has no solution. The diculty lies in the inappropriateness of the fundamental assumption that viscous forces are much larger than inertial forces. Very far from the cylinder, where velocity gradients are small, viscous forces become negligible and the assumption is violated; the problem must then be approached using either an approximation like Oseen's (see for instance, Reference [START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF]) or by matched asymptotics [START_REF] Fogelson | A fast numerical method for solving three-dimensional Stokes equations in the presence of suspended particles[END_REF].

In the present case, we simulate only nite domains, for which the Stokes equations do have a solution. Furthermore, since we enrich the nite element method only near the cylinder, we can ignore the loss of validity of the solution far from the cylinder. Rather, we will look for solutions which satisfy the boundary conditions at the cylinder surface. One can think of the method as a matching problem, in which the form of the analytical solution near the surface is used as the inner solution, and the outer solution is obtained by nite elements. Matching is done automatically through the Galerkin weak form.

The equations for an incompressible, very viscous uid are

-∇ ∇ ∇p + ∇ 2 u = 0 (A1) ∇ ∇ ∇•u = 0 (A2)
Equations (A14)-(A25) give the functions with which the standard nite element basis will be enriched in the region near the cylinder surface.

Figure 1 .

 1 Figure 1. Fluid and particle system geometry.

Figure 2 .

 2 Figure 2. Enrichment nodes near the particle surfaces: (⊙)-nodes enriched with Stokes ow solutions;( )-nodes with nite element degrees of freedom set to match rigid body particle motion.

Figure 3 .

 3 Figure 3. Velocity contours for problem with exact solution given by Equation (13): (a) ux, FEM, 1042 elements; (b) uy, FEM, 1042 elements; (c) ux, X-FEM, 400 elements; (d) uy, X-FEM, 400 elements.

Figure 4 .

 4 Figure 4. Convergence of L 2 velocity error for the problem with exact solution given by Equation (13).N is the total number of velocity and pressure degrees of freedom.

Figure 5 .

 5 Figure 5. Velocity contours for uniform ow past a stationary particle: (a) ux, unstructured FEM; (b) uy, unstructured FEM; (c) ux, X-FEM; (d) uy, X-FEM.

Figure 6 .

 6 Figure 6. Horizontal and vertical velocity at y =0:21 for uniform ow past a stationary particle: (-): ux, unstructured FEM; (--): uy, unstructured FEM; (-): ux, X-FEM; (--): uy, X-FEM.

Figure 7 .

 7 Figure 7. Velocity contours for uniform ow past an array of three moving particles: (a) ux, unstructured FEM; (b) uy, unstructured FEM; (c) ux, X-FEM; (d) uy, X-FEM.

Figure 8 .

 8 Figure 8. Horizontal and vertical velocity at y =0:175 for uniform ow past an array of three moving particles: (-): ux, unstructured FEM; (--): uy, unstructured FEM; (-): ux, X-FEM; (--): uy, X-FEM.

Figure 9 .

 9 Figure 9. Velocity contours for ow due to four rotating particles: (a) ux, unstructured FEM; (b) uy, unstructured FEM; (c) ux, X-FEM; (d) uy, X-FEM.

Figure 10 .

 10 Figure 10. Horizontal and vertical velocity for ow due to four rotating particles. (-): ux, unstructured FEM; (--): uy, unstructured FEM; (-): ux, X-FEM; (--): uy, X-FEM.

Figure 11 .

 11 Figure 11. Geometry for falling particle test problem.

Figure 12 .

 12 Figure 12. Asymptotic and computed solution for f 1 (R=L) for cylindrical particle falling parallel to channel walls.

Figure 13 .

 13 Figure 13. Asymptotic and computed solution for f 2 (R=L) for cylindrical particle falling perpendicular to channel walls.

Figure 14 .

 14 Figure 14. Y-velocity eld for simulation of an array of 50 sedimenting particles.
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The problem to be solved is that of a cylinder of radius R located at the origin. The ow far from the cylinder has uniform velocity U in the x-direction, so the boundary conditions are u = 0 at r = A (A3) u = U e x at r →∞ (A4)

where r = x 2 + y 2 and e x is the unit vector in the x-direction. The problem will be solved in terms of a streamfunction (x), dened such that

This form of the velocity automatically satises the incompressibility condition (A2). Taking the divergence of (A1) gives the biharmonic equation:

with boundary conditions on :

at r = R : @ @r =0; @ @ = 0 (A7) at r →∞: @ @r = U sin ; @ @ = Ur cos (A8)

Based on the boundary conditions as r →∞ (A8), we will look for solutions of the form (r; )=f(r) sin (A9) for which (A6) reduces to

Integration of (A9) gives a solution for (r; ) in terms of the unknown constants A-D:

Because the velocities are in terms of the derivatives of the streamfunction (A5), (r; )i s unique only up to an additive constant. We are, therefore, free to satisfy (A7) by requiring that (r = R; ) = 0, leading to the following two independent solutions for :

Unfortunately, no linear combination of 1 and 2 satises the boundary conditions at r →∞; this is the diculty alluded to at the beginning of this section. We will, therefore, keep both solutions as enrichments for the velocity eld near the cylinder surface. After converting to rectangular co-ordinates, in which the velocity components will be denoted u * and v * , the velocity and pressure elds implied by 1 and 2 (setting A = B = 1) are

and

Because we do not wish to limit our eventual computations to problems with uniform x velocity at r →∞, we also derive the solution for uniform y velocity. Any oblique ow can then be written as a superposition of these two fundamental cases. The analysis is similar, except that we now look for solutions for (r; ) of the form = f(r) cos . The resulting velocity and pressure elds are