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Abstract – Experimental results from an investigation of the assembly of two-dimensional
granular piles are presented. Three different particle shapes were used in the investigation of the
evolution of piles towards isostatic and isotropic granular assemblies. Good agreement is found
with previous experimental results for all particle shapes. We attempt to classify the divergence of
a characteristic length-scale of the system as a power law and provide an estimate of the critical
exponent. We find that the results are independent of particle shapes and speculate this may be
a general feature of two-dimensional convex particles.

Introduction. – Interesting and often counterintu-
itive properties of collections of granular materials have
attracted the attention of physicists, where the tools of
condensed matter physics have been brought to bear [1–3].
Dense assemblies of granular materials can exhibit both
solid and liquid-like behavior. Moreover, materials such
as soils can switch state from solid to liquid-like under
cyclic [4] or even constant loading [5]. This transition
between behavior types constitutes an important problem
in civil engineering.
It is argued [6] that the static equilibrium of a two-

dimensional assembly of Ng frictional and rigid particles
requires at least 3Ng equations for the forces and torque
to balance. When friction is taken into account, each
particle contact involves both normal and tangential
components of the force. Thus, static equilibrium of an
assembly of Ng particles with Nc contacts is only assured
when 2Nc � 3Ng, which corresponds to a minimum
contact number Nc � 3Ng/2 and a minimum coordination
number (mean number of contacts per particle) z � zc = 3
in two dimensions (see also [7]). When z = zc, the granular
assembly corresponds to an isostatic mechanical system
and results from discrete numerical simulations and
experiments [6,8–10], corroborate that zc = 3 constitutes
a lower boundary for “solid” bi-dimensional granular
assemblies in quasi-static equilibrium. The evolution of
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a granular assembly from a “solid” to a “liquid” state is
expected to be characterized by a coordination number
equal to zc [11], although, this has not been demonstrated
conclusively in an experiment.
The marginal rigidity occurs when z = zc [12–14]. Since

a granular assembly at this condition constitutes an
isostatic system, it is believed that the distribution of
stress transmission can be obtained from the geometry of
the contact network [7,14,15]. In order to test these ideas
experimentally the marginal rigidity state was accessed
by building granular piles on a horizontal plane in two
dimensions using a belt feed system [12,13]. This is argued
to be analogous to free fall without the dynamic factor
of impact resulting from gravity. It is shown that for
increasing values of the initial density of the particles,
the coordination number in the final pile decreases until
a value close to zc = 3 is achieved i.e. it is equivalent
to the marginal rigidity state discussed above. During
the construction of the pile a yield front of rearranging
particles is formed between the oncoming particles and
the consolidated pile where the size of the front can
be considered as the number of particles within the
region. The depth of the front in terms of normalized
density is expected to diverge as a power law when the
marginal rigidity state is approached, suggesting a critical
phenomenon.
Available evidence suggests that the exponent of the

power law is close to one, but it may be argued the size
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Fig. 1: (a) Sketch of the experimental device, particles are
placed on a plate moving toward a �-shaped collector; (b) two-
dimensional particles: bidisperse discs, ellipse and with a pear
shape (relative sizes have been respected in the figure).

of the system investigated was too small to give complete
confidence in this value [13]. The experiments were
performed with particles with an elliptical cross-section
and it is suggested that the critical exponent ought to
be insensitive to details of the particle shape so that the
findings might be applicable to a wide range of frictional
bi-dimensional granular materials. Here we report the
results of an experimental investigation into the construc-
tion of granular piles with three different particle shapes:
discs, ellipses, and pear shapes. Images of the particles
captured during the construction of the pile were used
to characterize both the consolidated pile and the yield
front. The effect of particle shape on the marginal rigidity
state and the front size divergence is discussed, and an
estimate of the critical exponent is given.

Experimental details. – The piles were approx-
imately two-dimensional and were assembled in the
manner suggested by Blumenfeld et al. [13]. A schematic
diagram of experimental device is presented in fig. 1a.
Particles were placed on a 1 cm thick Perspex plate which
was translated at constant speed towards a �-shaped
collector which was 160mm wide. Hence, particles were
carried along by the moving plate until they encountered
either the wall of the collector or other particles in the
growing pile. Once the free translation of particles was
stopped, further movement took place as the particles slid
on the moving plate and an analogue of gravitational force
was produced by frictional interaction between particles
and the plate. A high resolution camera with 4288× 2848
pixels i.e. 16 pixels/mm, was fixed above the experiment
which was illuminated from below and pictures of the

(a)
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Fig. 2: (Colour on-line) Construction of a granular pile with
pear-shaped particles, (a) at the start of the test, (b) near the
end of the test.

growing pile were captured at predetermined regular time
steps. All the experiments were performed under quasi-
static conditions since a low velocity, vi = 25mm/min,
was chosen for the moving plate.
The particles were all cylinders of height 6.6± 0.1mm
with the three different cross-sections shown in fig. 1b (see
also [16]). The first set of particles consisted of a binary
mixture of 144 disks of 6.9mm diameter and 144 disks with
diameter 8.9mm. The mixture was chosen to minimize
the possibility of the formation of regular fabrics in the
granular piles. The second set of particles consisted of 280
ellipses with dimensions 9.9mm and 4.9mm on the major
and minor axes, respectively. The third set comprised
280 pear-shaped particles which were 9.9mm long and
4.9mm wide as shown in fig. 1b. The initial conditions
for the experiments were set by placing particles by hand
at random positions on the plate with the constraint of
no contacts. A more sophisticated procedure was initially
tried involving creating a pattern of locations using a
randomization algorithm. This proved to be impractical
and placement by eye was found to be satisfactory and the
following checks were made. The density ρi was verified to
be homogeneous by dividing the initial granular assemblies
into several virtual layers, and ascertaining that the local
density did not differ by more than ± 7% from the density
of the whole assembly. The assembly was also checked to
be isotropic with respect to particle orientations for both
elliptical and pear-shaped grains.
The ratio η between the width of the collector and

the mean particle size φ (for each particle shape) was
η= 20.3 for the discs and η= 21.6 for the ellipses and the
pears. This value was a compromise between minimizing
the effects of the sidewalls and the computational time
required for image analysis. As shown in fig. 2, the bottom
of the �-shaped collector had appropriate particles glued
to it in order to minimize the influence of the otherwise flat
end-wall of the collector on the fabric of the granular pile.
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Experiments were performed for each particle shape,
by building piles with different initial densities ρi. For
each initial density and particle shape, tests were repeated
ten times and a total of 260 tests were realized. Each
experimental run produced a set of snapshot images
of the processes involved in pile formation. Information
concerning position and orientation of the particles as well
as the number of contacts was extracted from each of the
images.
Two different image processing procedures were used,

depending on the information required. In order to
determine the positions and orientations of particles in
each image, image segmentation based on the selection of
sets of pixels with respect to their colour was performed
where each particle was ascribed a given set of pixels.
Grain position was determined from the centre of mass of
the pixel set. The second moment of inertia of the pixel
set about a prescribed direction Ω was calculated. The
particle orientation for ellipses and pears was computed as
the angle between the direction Ω and the major axis of an
ellipse or a pear resulting in the same second moment of
inertia of the pixel set. The direction Ω was chosen to be
parallel to the translation direction of the moving plate.
The computation of the number of contacts from an

image required a more sophisticated procedure. Once
the centre of mass and the orientation of each particle
had been established using the method described above,
the number of contacts could, in principle, be estimated
by representing each particle by an idealized model of
a disc, ellipse or pear. However, the actual geometry
of each particle differed slightly from the idealized
model. Consequently, a tolerance was introduced to
obtain estimates of the coordination number [8,9]. In
order to reduce errors incurred using idealized models
of particles, the computation of the number of contacts
was instead based on the detection and recognition of
particle edges. The edge of each particle was detected
in images by performing segmentations with the “GVF
snake” developed by Xu and Prince [17] and based on
the method of active contours. We define the spacing s as
the distance between the apparent (or detected) edges of
two neighbouring particles. The apparent spacing s was
measured with an accuracy of 1 pixel (i.e. 0.0625mm).
However, errors in edge detection, and small tilts of some
particles sometimes produced an apparent non-vanishing
spacing s between two particles which were actually in
contact. The apparent coordination number computed
for apparent contacts with a spacing s lower than a given
threshold s∗ is plotted in fig. 3. The true coordination
number z for a vanishing spacing was determined from
the extrapolation of a linear approximation [13].

Characterization of the granular pile. – Three
phases were distinguished during the construction of all of
the granular piles (see fig. 6): i) the particles were not in
contact and were simply carried along by the moving plate,
ii) the consolidated pile was composed of particles which
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Fig. 3: Apparent coordination number computed for apparent
contacts with a spacing s < s∗ (for a pile built with ellipses).

had achieved a steady state1, iii) a yield front between
these two phases including particles in a consolidation
process, i.e. they had not reached a steady state.
The consolidated pile was characterized in terms of its

density ρ, coordination number z and fabric anisotropy a.
We define the density ρ, on a surface of area S including
particles occupying an area Sg, as ρ= Sg/S. Zones within
a mean particle width of the sidewalls, characterized
by a lower density than the mean value taken over the
whole consolidated pile, were not taken into account in
the computation of the pile density. The evolution of the
consolidated pile density ρp is shown in fig. 4a plotted as
a function of the initial density ρi where each point was
estimated from ten repetitions of the experiment. The
variations in ρp are small for all the particle shapes but
the trend is statistically significant. For the discs, ρp is
slightly lower than the density of a square arrangement
of mono-disperse discs, ρ= π/4 = 0.785, and close to
the density of a random loose packing of hard discs
(ρ= 0.772) [18]. for ellipses and pears, rotation of parti-
cles is partially locked because of the shape anisotropy.
Consequently, rearrangement of the particles is restrained
and ρp is lower than for disks.
The coordination number z was computed on the same

part of the consolidated pile as the pile density (zones close
to the walls were excluded). Values of z with respect to ρi
are shown in fig. 4b. For discs, at low initial density, the
coordination number approaches 3.8 which is in good
agreement with the highest values of z = 4 found from
discrete numerical simulations [6]. For all particle shapes,
after a slight decrease in z with increasing ρi, z is seen to
stabilize at values of ≈ 3.4 (disks and ellipses), and ≈ 3.2
(pears).
The fabric of the granular piles can be characterized by

the vector branch joining the centres of mass of particles
in contact. A histogram of N(θ)/Nc where N(θ) is the
number of vector branches belonging to a range of mean
orientation θ, and Nc is the total number of contacts is
shown in fig. 5. A least squares fit to the variation in the

1The notion of steady state is relative, since while the pile was
growing, the stress at the bottom of the pile evolved slowly and could
lead to some modification of the structure of the pile.
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Fig. 4: (Colour on-line) Pile density (a) and coordination
number (b) vs. the density ρi of the falling particles; error
bars represent the standard deviation; dashed lines represent
linear approximations for the smallest five values of ρi. (c) The
fabric anisotropy is determined from the distribution of the
orientations of the branch vectors (see fig. 5).

data is given by the function

N(θ) =m [1+ a cos(4θ+ θ0) ] , (1)

where a represents the fabric anisotropy. The variation of a
with increasing ρi is presented in fig. 4c. It can be seen that
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Fig. 5: Histogram of the branch vector orientations for the
ellipses and ρi = 0.12, the continuous line represents the fit
defined in eq. (1).

a decreases monotonously when ρi increases for all particle
shapes. For high ρi values, the fabric of the pile tends to
be isotropic. The pears and ellipses had identical ratios
between the major and minor axes, i.e. similar particle
shape anisotropies, and the observed values of a were very
close to each other as might be expected.
The variations in ρp and z can be analyzed in the

manner suggested by Blumenfeld et al. [13]. Initially we
consider, for each particle shape, the points corresponding
to the smallest five ρi values in figs. 4a and b. The
remaining data points will be discussed later. For the first
sets of five points, the pile density ρp and the coordination
number z decreases with increasing initial density ρi.
This evolution is well described by a linear least squares
fit approximation as shown in figs. 4a and b. By extrap-
olating these approximations to the values for ρp, we find
a limit density ρc for which ρp = ρi with ρ

Discs
c = 0.739,

ρEllipsesc = 0.705 and ρPearsc = 0.721. Granular piles at
these limit densities ρc can also be characterized by
extrapolated coordination numbers zc with z

Discs
c = 2.98,

zEllipsesc = 3.06 and zPearsc = 2.94. These values provide
a good match with the analytical results for an isostatic
granular assembly of frictional particles zc = 3, with a
relative error � 2%.
The experimental results indicate that the coordination

number z does not monotonically decrease until it reaches
zc with increasing ρi, but, instead, z appears to stabilize
at a fixed value (≈ 3.4 for disks and ellipses and ≈ 3.2
for pears) as discussed above. As the granular pile tends
toward an isostatic system with zc = 3, the stability of
the pile provided by the contact network becomes less
and less assured. In other words, the contact network
of an isostatic system readily evolves, after a “small
disturbance”, into an hyperstatic and more stable state.
It is, perhaps, a necessary consequence of “imperfections”
which will be present in any experiment, that granular
piles below a given z value are not sufficiently stable to
reach the theoretical limit of zc = 3. Nevertheless, fabrics
of granular piles evolve, as shown in fig. 4c where it can be
seen that the anisotropy continues to decrease even after
z saturates. Extrapolations of the linear approximations
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Fig. 6: (Colour on-line) Ellipses with thick edges form the
yield front; ellipses in dashed line are in analogue free fall, the
consolidated pile is composed of ellipses with thin continuous
edges (ρi = 0.30).

indicate that the fabric approaches an isotropic state when
ρi = ρc (a

Discs
c ≈ 0, aEllipsesc = 0.025 and aPearsc = 0.034).

The increase of ρp when z stabilizes is still an open
question, but constitutes experimental evidence that ρp
depends on both z and fabric anisotropy a [6,10].

Characterization of the yield front. – We consider
now the yield front formed at the top of the granular pile
including particles involved in the consolidation process.
Such particles are defined at a given time as particles in
direct contact with others either in the pile or in the front
itself but having not yet reached a final position [13]. In
practice, a particle was attributed to the yield front if its
translation displacement between two sequential images
was higher than 2% of the displacement of the moving
plate (fig. 6). The identification of the yield front was
performed in the same way for all particle shapes and any
rotations of the particles was ignored.
We denote the velocity of the particles in free motion

by vi, and that of the centre of mass of the front by vf .
A local frame of reference with respect to the front can be
defined such that particles enter in the front at a velocity
vr = vf + vi with a density ρi. They leave the front at
vf with a density ρp, since they are now within the
consolidated pile. From mass conservation, the following
relationships between velocities can be established:

vf = vi
ρi

ρp− ρi , (2)

and vr = vf + vi = vi ρp/(ρp− ρi). In order to estimate
the evolution of the depth of the front ξ with increasing
ρi we consider the time τ taken by a particle to pass
through the front and to reorganize [13]. If we assume
that the particle has a constant velocity vr (this is a good
approximation when ρi→ ρp) during the transit of the
front, the transit time is given by

τ ≈ ξ/vr =∆ρ ξ/vi with ∆ρ= (ρp− ρi)/ρp. (3)

An upper limit of the lateral translation dl of a parti-
cle during the crossing of the front is of the order of
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Fig. 7: (Colour on-line) Evolution of dimensionless front depth
ξn with respect to ∆ρ, the inset figure shows a comparison of
the same results with those published by Blumenfeld et al. [13]
for ellipses (the definition of dimensionless variables by these
last authors is slightly different).

dl ≈ τ vi [13]. By combining with relation (3), the front
depth ξ can be expressed as

ξ ≈ dl/∆ρ. (4)

ξ and dl can be normalized, for each particle shape, with
respect to the mean particle size φ. Let us denote by Nf
the number of particles involved in the front, then we can
define the dimensionless front depth by ξn = ξ/φ=Nf/η
and ξn ≈ dl / (φ∆ρ).
The evolution of the dimensionless front depth ξn vs.∆ρ

is shown in fig. 7. It can be seen by inspection that particle
shape does not have a significant influence on the results.
A comparison with a depth front measured by Blumenfeld
et al. [13] for cardboard ellipses is presented in the inset
figure of fig. 7. The results from different experiments are
all in very good agreement with each other showing the
robustness of this feature.
As conjectured in [13], it appears from measurements of

the lateral translation dl during the transit of the front,
that dl converges very slowly towards 0 when ∆ρ→ 0.
Thus we can expect the front depth diverging with a power
law as [13]

ξ ∝∆ρ−α. (5)

The dimensionless front depth ξn vs. ∆ρ is shown plotted
on a logarithmic scale for each particle shape in fig. 8.
Points corresponding to the lowest value of ∆ρ for each
particle shape respectively deviate from a power law.
These points are clearly influenced by the finite size of
our experiment. In this case, almost all of the particles
were involved in the front and the front depth was still
increasing when experiment was stopped, i.e. a steady
front depth has not been reached. However, these three
points are interesting since they constitute lower limits
of ξn for low ∆ρ values. However, they were not taken
into account in the estimation of the exponent α of the
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Fig. 8: (Colour on-line) Plot on logarithmic scales of ξnvs. ∆ρ,
the dashed line represents a critical divergence ξn ∝∆ρ−1.7.

power law, eq. (5). We find that front depth divergence is
accurately described by α= 1.7, for all particle shapes.

Discussion and conclusion. – We have shown that
characteristics of the final consolidated pile in terms of
density ρp, coordination number z and fabric anisotropy
a are all a result of particle reorganization in the yield
front. At very low initial densities ρi, the front is less
than one particle layer thick. The particles are not in
direct contact with each other and hence do not interact.
Therefore, each incoming particle to the pile is “free” to
find a stable position and forms at least two contacts with
particles involved in the consolidated pile. The subsequent
compressive force, which we argue is an analogue of
gravity, leads to highly anisotropic granular piles.
For larger initial densities, the front size increases, and

it can comprise one or more layers of particles. In the
front, particles interact with their neighbors restricting the
possibilities of translational and rotational motion. In this
case, the fabric of a granular pile is not uniquely related to
the analogue gravitational force but also depends on the
increased number of inter-particle interactions in the
front. Since particle reorganizations are restricted in
the dense limit, the fabric of the pile approaches that of
the incoming particles, fewer contacts are created and the
coordination number decreases. However, the marginal
rigidity state is not achieved experimentally, whatever the
particle shapes. When approaching an isostatic system
where z = zc, we expect the pile to contain clusters of
particles with z > zc and others with z < zc. Consequently,
some slight reorganizations will always take place in the
pile (preferentially in clusters where z < zc) preventing
the coordination number decreasing below a given value.
Density is function of z and a [6,10], and it appears that
ρp increases for z constant with a decreasing.
Despite the above practical limitations, extrapolation

of the results indicates convergence towards a marginal
rigidity state characterized by zc = 3± 2% in accordance
with that predicted from simple considerations on isosta-
ticity of a contact network. The lack of anisotropy together

with the isostaticity of the pile fabric for a unidirectional
building process may indicate the limiting state between
a liquid-like and solid-like behavior.
The construction of the pile can be characterized by a

dimensionless length-scale corresponding to the depth of
the yield front [13] which is independent of the particle
shape. Moreover, the measured front depth is in good
agreement with previous results [13] for cardboard ellipses.
When ∆ρ→ 0, i.e. when approaching the marginal rigidity
state, the dimensionless front depth diverges to infinity
according to the power law ξn =∆ρ

−α. This suggests that
the marginal rigidity state is equivalent to a critical point.
The critical exponent appears insensitive to the particle
shape and the rough estimate of α≈ 1.7 may be considered
as a general property for two-dimensional and frictional
particles under quasi-static conditions.
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