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Systematic Coarse Graining of 4-Cyano-4′-pentylbiphenyl

Grigorios Megariotis, Antonia Vyrkou, Adrien Leygue, and Doros N. Theodorou*

Department of Materials Science and Engineering, School of Chemical Engineering, National Technical
UniVersity of Athens, 9 Heroon Polytechniou, Zografou Campus, Athens 15780, Greece

A coarse-grained model is derived for a liquid-crystal-forming molecule, 4-cyano-4′-pentylbiphenyl (5CB),
from a detailed atomistic model using the iterative Boltzmann inversion (IBI) method in the isotropic phase
at 315 K and 1 bar. The coarse-grained model consists of five “superatoms” (one for the cyano group, two
for the aromatic rings in the biphenyl moiety, and two for the alkyl tail), which are categorized as three
types. A modification of IBI, wherein only one of the effective intermolecular potentials (the one corresponding
to the superatom pair whose intermolecular correlation function exhibits the highest deviation from the atomistic
one) is updated at each iteration, proves to be necessary to achieve convergence. The coarse-grained model,
which enables a savings of a factor of 35 in computational cost relative to atomistic simulation, is used to
explore ordering into liquid-crystalline phases at lower temperatures. It is found to yield a first-order ordering
transition at 288 K with small hysteresis and negligible system size effects. A detailed investigation in terms
of various structural and dynamical measurements indicates that the ordered phase is of the smectic type
rather than nematic, as observed experimentally. The ordering temperature can be brought close to the
experimental value of 308.5 K through the simple rescaling of the intermolecular effective interaction potentials
employed in the coarse-grained model. A nematic ordered phase can be obtained from the coarse-grained
model by scaling up the head-head and tail-tail effective interaction potentials obtained by IBI.

1. Introduction

Molecular simulations have been employed extensively over
the last 2 decades to study soft matter (polymers, liquid crystals,
colloids, surfactants, etc.). Despite the rapid increase of comput-
ing power available on modern machines and the possibility of
massive parallelization, atomistic simulations are currently
confined to a few hundreds of nanoseconds in molecular
dynamics (MD) or a few hundred million moves in Monte Carlo
simulations. To access the long time and length scales that
govern the behavior of soft-matter systems, there is a need to
change the level of description. This is the idea behind
mesoscopic simulation methods, such as coarse-grained MD,
Langevin dynamics, Brownian dynamics, lattice Boltzmann,
dissipative particle dynamics, and dynamic density functional
theory.1-5 To retain a maximum level of predictive power, it is
highly desirable that the models invoked in mesoscopic simula-
tions be based directly on detailed atomistic ones. The derivation
of a less detailed model, cast in terms of fewer degrees of
freedom, from a detailed atomistic one is termed “coarse
graining”.

The idea of coarse graining has been widely used in molecular
simulations.6 In the present work, coarse graining entails the
gathering of small units to form larger quasi-spherical entities,
with the use of appropriate effective potentials among the newly
defined larger entities (also called “beads” or “superatoms”).
Even an atomistic model can be regarded as resulting from a
coarse-graining procedure; the electrons are incorporated into
their nuclei, and each atom is represented by a single sphere.
Another familiar example of simple coarse graining is the
commonly used united-atom or anisotropic united-atom repre-
sentation,7-9 in which hydrogens are absorbed by their vicinal
carbons. An important advantage of such an approximation is
the elimination of the fastest degrees of freedom, which are
vibrational modes associated with the explicit hydrogens. In the

same fashion, a mesoscopic model can be constructed from an
atomistic one. Properties computed by mesoscopic models, such
as elastic constants, viscosities, etc., can, in principle, be used
as inputs to continuum models, which employ volume elements
to represent a material.10,11

A variety of coarse-graining techniques have been presented
in the literature. For polymer systems, iterative Boltzmann
inversion (IBI) is a popular and rather straightforward method
for constructing coarse-grained models.12-19 Moreover, Müller-
Plathe and co-workers have developed the automated simplex
optimization method.20-23 Biomolecules (proteins, lipids, DNA,
etc.) constitute another area of significance in which phenomena
cannot be captured by atomistic models because of the time
and length scales on which they occur; hence, the development
of accurate mesoscopic models is necessary.24-27 An example
of such a model, developed heuristically to match atomistic
simulation results and experiment, is that of Marrink et al. for
lipid-bilayer membranes.24 A promising development in the field
of systematic coarse graining is the force-matching method of
Voth and collaborators, which has been applied successfully to
lipid-water systems.28-31 Coarse-grained models have also been
developed systematically by the inverse Monte Carlo method.32

The objective of the work described in this article is
systematically to coarse-grain a molecular system capable of
forming thermotropic liquid-crystalline (LC) phases. This study
is motivated by recent experiments that indicate that LC phases
are capable of interrogating the structure of phospholipidic
interfaces at the scale of nanometers,33-35 thereby providing a
powerful tool for probing the nanoscale structure and a basis
for the development of sensors for biological molecules.33

Because the time and length scales involved in these experiments
are clearly out of the range of molecular simulations, there is a
pressing need for reliable coarse-grained models. Liquid crystals,
a class of substances with numerous and versatile applications
in science and technology,36,37 have been simulated extensively
with coarse-grained models, based primarily on Gay-Berne
ellipsoids.38-43 Fewer simulations of thermotropic liquid crystals

* To whom correspondence should be addressed. E-mail doros@
central.ntua.gr.

1



can be found in the literature based on detailed atomistic or
united-atom models.44-51 Attempts to develop coarse-grained
models for LC systems by the application of a systematic
method have been scarce.52

The particular LC system that we have chosen for our study
is 4-cyano-4′-pentylbiphenyl (5CB), an archetypal example of
small-molecule liquid crystals with numerous technological
applications.36,37 Extensive experimental studies are available
for 5CB. A number of atomistic models have been developed
for this system and for related systems in the bulk.44-51 Our
aim here is to develop a mesoscopic model for 5CB that will
be optimized in the isotropic phase for some chosen structural
and thermodynamic properties (radial distribution functions,
intramolecular correlations, and density) and then test the ability
of this model to capture the ordering transition and the structure
and density of the ordered phase. The method we chose to apply
for coarse graining is IBI. Specific questions we address are as
follows: (a) Is it possible to coarse-grain 5CB in the isotropic
phase, starting from a detailed atomistic model, through the IBI
procedure? (b) If not, how can the IBI procedure be modified
to achieve convergence to the target distribution functions? (c)
Does a coarse-grained model so derived using structural
information from the isotropic phase capture the first-order
transition into the LC phase qualitatively and quantitatively?
(d) How can the quantitative performance of the model in the
ordered phase be improved? It has to be mentioned that this is
the first time that the IBI method, as used for polymer systems,
is applied in a LC system (5CB). A related method has been
employed for nonbonded interactions in a previous study,52 but
in that case, the effective potentials were computed by simulat-
ing phases formed by fragments of the LC molecules.

This paper is organized as follows. The coarse-grained model
that we developed is introduced in section 2. In section 3, we
provide a brief description of the IBI method, discuss problems
that we encountered with it, and introduce a modification that
we designed in order to achieve convergence in the case of 5CB
molecules. In section 4, we provide details on the simulations
that we have conducted. The performance of our coarse-graining
strategy in the isotropic phase is discussed in section 5, where
convergence of the algorithm is quantified via appropriate figures
and tables. Section 6 reports on our coarse-grained simulations
of the ordering transition. Section 7 is devoted to a modification
of our coarse-grained model aimed at improving the description
of the ordered phase and to the structural and thermodynamic
predictions that we obtained from the modified model. Section
8 summarizes the main conclusions from this study.

2. Molecular Models and Measurements of the
Structures

All coarse-grained descriptions presented in this work have
been developed from the same parent atomistic model, that of
ref 51. The atomistic force field employs stretching, bending,
and torsional intramolecular contributions along with Coulombic
and Lennard-Jones intermolecular interactions. It adopts a
united-atom representation for the alkyl tails and aromatic rings
of the 5CB molecules. A total of 19 sites are used to represent
each 5CB molecule.

In the coarse-grained (mesoscopic) model that we developed,
the 19 atomistic sites were replaced by five superatoms. The
coarse-grained representation is shown in Figure 1, along with
an atomistic one. The first step toward the development of a
coarse-grained model is mapping, i.e., defining the coordinates
of each superatom on the atomistically represented molecule.
At the mesoscopic level, the centers of superatoms CT1 and

CT2 (group type CGCT) of the alkyl tail are placed at the
positions of its second and fourth atomistic carbons, respectively.
The positions of the superatoms AC1 and AC2 (group type
CGAC), which represent the aromatic rings, are chosen to
coincide with the atomistic centers of the rings, while the
position of CNZ (group type CGCNZ) is chosen as the center
of the atomistic CtN bond. Table 1 provides the molar masses
of the superatoms in the context of the mapping adopted here.

Now we turn our attention to the intramolecular potentials
of a 5CB molecule at the mesoscopic level. Intramolecular
potentials are applied here only for effective bending angles
(θ) and distance (r)-dependent intermolecular interactions.
Applying our coarse-graining strategy to a fully flexible
mesoscopic model led to narrow Gaussian distributions of the
effective bond lengths (l; see the Supporting Information). Using
fixed effective bond lengths in place of these distributions left
all structural and thermodynamic properties obtained at the
mesoscopic level unchanged, while at the same time affording
an increase in the time step for integration of the equations of
motion of the mesoscopic model by more than a factor of 2.
Thus, it was decided to use fixed l in the production phase of
all coarse-grained simulations. The constant l values employed
are given in the caption to Figure 1. As far as effective torsion
angles (�) are concerned, only torsion around the AC1-CT2
effective bond needs to be considered with the coarse-grained
model adopted here. The difference between the minimum and
maximum in the effective potential derived by Boltzmann
inversion of this effective torsion angle, however, was much
less than kBT. Thus, no effective torsional potentials were
incorporated in the coarse-grained model.

The number of intermolecular effective potentials required
at the coarse-grained level is n(n + 1)/2 ) 6, with n ) 3 being
the number of superatom types. The development of coarse-
grained potentials could be based on nonbonded interactions,
instead of intermolecular ones. In this study, however, we
preferred to separate intermolecular nonbonded interactions from
possible intramolecular nonbonded interactions. The six inter-

Figure 1. Detailed (19-site) and coarse-grained (five-bead) representations
of a 5CB molecule. The lengths of the effective bonds CT1-CT2,
CT2-AC1, AC1-AC2, and AC2-CNZ are 0.249, 0.380, 0.422, and 0.338
nm, respectively.

Table 1. Molar Masses of the Beads in a 5CB Molecule at the
Mesoscopic Level

beads molar mass (g/mol) beads molar mass (g/mol)

CT1 35.5 AC2 76.0
CT2 35.5 CNZ 26.0
AC1 76.0
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molecular potentials were developed by the iterative strategy
described in sections 3 and 4 and stored as functions of
separation r in tabular form.

We have evaluated an alternative coarse-grained model that,
in addition to the superatoms and interactions described above,
contained two partial charges on virtual atoms representing the
carbon and nitrogen of the cyano group. The values of the partial
charges reproduced the atomistic dipole moment of the 5CB
molecule at the mesoscopic level. Good convergence to the
target distribution functions was achieved for this coarse-grained
model with explicit charges with the method described in
sections 3 and 4. It was observed, however, that this model
tended to form “glassy” phases, rather than ordered LC phases,
upon cooling. This failure to predict the correct thermodynamic
behavior can be explained on the basis of effective intermo-
lecular potentials: The electrostatic interactions of the atomistic
model have already been taken into account in deriving the
effective potentials of the coarse-grained model (see also section
3); consequently, the use of explicit charges leads to double
counting of the interactions in question. The model with explicit
charges was therefore abandoned, and the simpler (and less
expensive computationally) charge-free coarse-grained model
outlined above was adopted for the production phase of our
calculations.

Experimentally, 5CB is a uniaxial thermotropic LC molecule
that displays only a nematic phase between its isotropic and
crystalline phases. There are, however, other CB (cyanobiphe-
nyl) molecules that exhibit both nematic and smectic phases
(e.g., 8CB).53,54 A central role in our analysis of ordering will
be played by the Saupe ordering tensor,55 defined by the
following equation:

In eq 1, N is the number of molecules, ûi is the unit vector
along the axis of the ith molecule, and 1 is the unitary tensor
of second order. The (dyadic) tensor Q is obtained as an
instantaneous value for each configuration. The molecular axis
is defined as the long axis obtained by diagonalization of the
moment of inertia tensor,56 I:

Equation 2 is applied to each molecule, and the sum is taken
over all atoms a that constitute one molecule. The atomic
position vectors ra are defined with respect to the molecular
center of mass.

As defined, the tensor Q is symmetric and traceless, so it
will have three real eigenvalues that sum to zero. In a phase
characterized by cylindrical symmetry, Q will have one positive
and two equal negative eigenvalues. As a criterion for the
transition from the isotropic to the LC phase and vice versa,
we will consider the order parameter S, defined as the largest
eigenvalue of Q. An alternative, but equivalent, definition of
the order parameter equates it with -2 times the middle
eigenvalue of the Q tensor.57 In our ordered phases, the
molecules will be oriented, on average, along a specific
direction, which is specified by a unit vector called the director,
n. The director is defined here as that eigenvector of Q that
corresponds to its largest eigenvalue. Instantaneous order
parameters and directors are defined for each configuration and
averaged over the production phase of a run.

Practically, values of the order parameter from 0.45 to 0.6
indicate the existence of a nematic phase.58 In the isotropic
phase, the order parameter tends to zero, with an increasing
number of molecules N as ∼N-1/2 (see section 5).

3. Coarse-Graining Method

The application of IBI presupposes a description of each
molecule at the mesoscopic level as a set of superatoms. The
many-body joint distribution function for all superatom coor-
dinates could, in principle, be derived from atomistic simulation,
and a potential of mean force could be defined by the logarithm
of this joint distribution function. In place of the rigorous many-
body potential of mean force, IBI uses a combination of effective
potentials, each depending on a particular subset of the
superatom degrees of freedom, to approximate it. The IBI
procedure identifies this particular approximation as the unique
decomposition that reproduces a particular set of lower-order
distribution functions. In particular, it has been proven that there
is a unique relationship between a pair potential and its
corresponding radial distribution function (RDF).32,59-61 In
general, IBI considers contributions from effective bond lengths
(l), effective bond angles (θ), and effective torsion angles (φ)
formed by the superatoms, as well as distance-dependent
effective intermolecular pair potentials between the superatoms.
The results presented here were obtained with a model employ-
ing constant effective bond lengths and no effective torsional
potentials. First estimates for the intramolecular bending
potentials and for the intermolecular potentials between supera-
toms were obtained from the probability densities of the three
θ’s and the six intermolecular pair distribution functions between
superatom types accumulated in the course of an equilibrated
detailed atomistic simulation12,13 (eqs 3 and 4):

The functions P(θ) are atomistically computed intramolecular
probability densities for the effective bond angles θ, while the
factor sin θ arises in the Jacobian of transformation from
Cartesian to generalized coordinates.62 Equation 4 contains a
RDF, gR�(r), for the pair of superatom species (R, �), obtained
from the atomistic trajectory as well. In eqs 3 and 4, the
prelogarithmic factor contains the temperature T of the system
and the Boltzmann constant kB (1.381 × 10-23 J/K), which
emphasizes that U1

bend(θ) and UR�,1
inter(r) are not real potentials but

configurational free energies. Additional temperature and density
dependence arises from the distributions within the logarithmic
factors.

Detailed descriptions of the IBI method are given in many
previous simulation studies.12-19 In our work, we found that
the standard IBI method, when applied in the isotropic phase
of 5CB in conjunction with the atomistic model discussed above,
failed to converge (see Figure 2). This necessitated the develop-
ment of a modified IBI method. Instead of globally updating
all intermolecular effective potentials UR�

inter at every iteration,
our modified procedure updates only one UR�

inter at a time.
Specifically, each time we choose to modify that intermolecular
effective potential that corresponds to the RDF of maximum
error relative to the atomistically computed target RDF. A flow
diagram of our modified IBI method is given in Scheme 1.

To correct the density or pressure of the system (depending
on what ensemble is simulated), a ramp correction (or else
“linear correction”) was applied:

Q ) 1
N ∑

i)1

N

{3
2

ûiûi -
1
2

1} (1)

I ) ∑
a

ma(ra
21 - rara) (2)

U1
bend(θ) ) -kBT ln[P(θ)/sin θ] (3)

UR�,1
inter(r) ) -kBT ln[gR�(r)] (4)
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The left-hand side of the previous equation contains the
corrected intermolecular potentials UR�

corr(r) between the supera-
toms R and �. The second term on the right-hand side of eq 5
depends on the temperature and on the cutoff distance rc of the
intermolecular potentials, and C is an adjustable dimensionless
parameter used to modify the pressure P. C is here taken to be
the same for all pairs of superatom types. An estimate of C can
be obtained through the pressure equation

with Nmol, NR, and V standing for the total number of molecules,
the total number of superatoms of type R, and the volume of
the system, respectively.

Substituting eq 5 in eq 6, the following equation in C is
obtained:

∆P represents the difference between the target (atomistic) value
of pressure and the value derived from a coarse-grained
simulation using IBI effective potentials. The need to adjust
the pressure after implementation of IBI is attributed to the fact
that the virial pressure is not retained upon coarse graining, even
if the atomistically derived gR�(r) functions are reproduced.29

In eqs 5 and 7, rc and the adjustable dimensionless parameter
C are defined to be the same for all superatom pairs (R, �).

4. Simulation Details

All simulations were performed with the MD package63-65

GROMACS 3.3.2. Effective bond lengths in the coarse-grained
model were constrained to their average values using the
SHAKE66 algorithm (relative tolerance 10-5). This allowed the
use of a time step of 20 fs. By comparison, the time step used
in connection with the atomistic model was 2 fs.51 The atomistic
trajectories employed in this work were produced by repeating
all simulations in the GROMACS package with the same
simulation details as those reported in ref 51 except for the time
step, which was equal to 2 fs in our simulations. All structural
and thermodynamic information derived from our atomistic
simulations was within error bars of those reported in ref 51.

The coarse-grained MD simulations involved in the IBI
iterations were conducted in the NVT and NPT ensembles using
the Nosé-Hoover thermostat67,68 with a time constant equal to
1.0 ps. In the NPT ensemble, the simulation box was kept
rectangular and the pressure was set to P ) 1 bar using the
GROMACS65 version of the Parrinello-Rahman barostat69,70

with a time constant equal to 4.0 ps. In order to obtain accurate
structural properties, free of statistical noise, every IBI iteration
involved a coarse-grained MD simulation of one million steps.

For the intermolecular interactions of the coarse-grained
model, a simple cutoff scheme was employed with a rc distance
equal to 1.5 nm, where intermolecular potentials tend to zero
or, equivalently, the RDFs between superatoms tend to unity.
These interactions, as obtained by the IBI method, were stored
in tabular form, and a smoothing via Chebyshev polynomials71,72

Figure 3. (a) Example of a fitting (for the CGAC-CGCNZ potential) by
Chebyshev polynomials. (b) More detailed snapshot of the fitting.

Figure 2. Divergence of the CGCT-CGCT RDF when all potentials are
updated simultaneously at each IBI iteration.

Scheme 1. Flow Diagram for the Modified IBI Method

UR�
corr(r) ) UR�(r) - CkBT(1 - r

rc
) (5)

PV ) NmolkBT - 1
6V ∑

R
∑

�

NRN�∫0

+∞
r

dUR�(r)

dr
gR�(r) 4πr2 dr

(6)

V∆P ) - 2π
3

CkBT

Vrc
∑
R

∑
�

NRN�∫0

rc
gR�(r) r3 dr (7)
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was applied (full details are given in the Supporting Informa-
tion). The effectiveness of this method is depicted in Figure 3,
where a noisy effective potential is approximated by a smooth
function. Intramolecular interactions were fitted by functional
forms available in GROMACS 3.3.2 (see also the Supporting
Information for effective bending potentials). In all cases, the
fitting involved a least-squares approximation of the numerical
potentials.

The excluded volume region, readily detected in the RDFs
between superatoms, was described by a simple repulsive
potential of an inverse 12th degree (A/r12). The parameter A
was computed under the demand of continuity between this
extrapolated repulsive potential and the IBI potentials at the
connection point. The best value of parameter C in the ramp
correction of eq 5 was found to be equal to 1.5 × 10-4.

Because of the elimination of some degrees of freedom for
5CB, the dynamics appears faster in comparison to that of the
atomistic model. In order to obtain similar self-diffusivities of
5CB between the two levels of description, a friction force is
introduced in the context of Langevin dynamics. The friction
constant value that proved to work well in this work equals 4.5
ps-1. Details on how stochastic dynamics is applied are given
in ref 65. All other parameters are exactly the same as those of
the MD simulations, reported above.

The IBI method was initially applied to a coarse-grained
system of 216 5CB molecules in the isotropic phase (315 K
and 1 bar). In addition, in order to check for possible system
size effects on structural properties, larger isotropic systems of
5CB, consisting of 432, 864, and 1728 molecules, were
simulated at the coarse-grained level. Initial configurations for
these systems were constructed by appropriate transformations
of the primary simulation box of 216 molecules. Neither
distribution functions nor density exhibited any dependence on
the size of the simulated system.

After the development of the coarse-grained model in the
isotropic phase, the structure of the system was investigated in
the LC region. To this end, MD simulations were conducted
with the temperature changing linearly with time at a prescribed
rate of cooling or heating (annealing mode of GROMACS).65

All other conditions of the ordering coarse-grained simulations
were exactly the same as those reported above for simulations
of the isotropic phase.

5. Performance of the Coarse-Graining Algorithm in the
Isotropic Phase

In this section, we first discuss the ability of the developed
coarse-grained model to reproduce the chosen atomistic struc-
tural properties in the isotropic phase of 5CB at 315 K and 1
bar. The crucial part for developing this model was the
convergence of RDFs. For this reason, the iterative coarse-
graining procedure was monitored via relative errors defined
by the following equation:

The RDFs of the ith iteration and the atomistic target function
for superatom pair (R, �) are symbolized bygR�,i(r) and gR�(r),
respectively. The weighting function wR�(r) in these integrals
may be used to give more weight to some points of the grid. In
our case, this function was set equal to exp(-r/r*) with r* ) 1
nm. Table 2 lists the relative errors for all RDFs for the first,
second, and final iterations of the IBI method. It is concluded
from the third row of the aforementioned table that a high quality
of convergence was achieved. The success of the modified IBI
method is also shown clearly in Figure 4, where three of the
six RDFs are presented (see the Supporting Information for the
other three). In each diagram, three lines are depicted, displaying
the gR�(r) obtained from the atomistic simulation, the gR�,1(r)
from the first iteration of the IBI algorithm, and the final
converged distribution function gR�,15(r) describing the structure
at the mesoscopic level. A reminder of how the IBI algorithm
is started would perhaps be useful here. First, the RDFs and
intramolecular distributions are computed by the atomistic model
for the given mapping. Second, the aforementioned quantities
are substituted in eqs 3 and 4. With this procedure, the first set
of intra- and intermolecular potentials are available so as to start
the first simulation (i.e., first iteration of IBI) at the mesoscopic
level.

As far as the density of the system at the mesoscopic level is
concerned, there is very good agreement with both the parent
atomistic model51 and experimental measurements.73 Although
the optimization procedure took place at a specific temperature
(315 K), we present in Figure 5 the results for three different
temperatures in the isotropic phase. In addition, the densities
are compared with those reported for another atomistic model.49

It is instructive to examine system size effects on the order
parameter S of the isotropic phase. To this end, we have
simulated systems of 216, 432, 864, and 1728 5CB molecules
at the coarse-grained level at 315 K and 1 bar. S was obtained
by diagonalizing the instantaneous Q tensor in each recorded
configuration and then averaging over all configurations in the
equilibrated portion of a run. The statistical error on S thus
obtained was also estimated by block averaging74 over the
equilibrated portion of the run. The results are presented in
Figure 6. They can be fitted to an excellent approximation with
an expression of the form S(N) ) constant/N1/2. In the isotropic
phase, S, which is nonnegative by definition (compare the
discussion in section 1), behaves as a fluctuation quantity
converging to its thermodynamic limit of 0 as N-1/2.

Closing this section, it has to be mentioned that the diffusion
constant of 5CB is not retained upon coarse graining. In
particular, it is greater in the case of the coarse-grained model
(2.9 × 10-5 cm2/s) in comparison with the corresponding
atomistic value (5.5 × 10-6 cm2/s). This problem can be
alleviated by applying stochastic dynamics instead of MD. Now,
a friction and a random force are introduced so that the
dissipation-fluctuation theorem is satisfied.75 The value of the
friction constant used in our coarse-grained stochastic dynamics
simulations was reported in section 4; for this value, the
diffusion constant equals 5.3 × 10-6 cm2/s. At this point, it has
to be stressed that the correction of the self-diffusion constant
was based on a trial-and-error procedure rather than on a

Table 2. Relative Errors (%) (eq 8) of the RDFs for Three Different Iterations

CGCT-CGCT CGCT-CGAC CGCT-CGCNZ CGAC-CGAC CGAC-CGCNZ CGCNZ-CGCNZ

RE1
a 2.56 0.71 1.93 1.00 0.294 2.08

RE2
b 1.08 0.340 0.861 1.40 1.76 0.751

RE15
c 0.111 0.0862 0.0584 0.153 0.100 0.104

a Relative error of the first iteration in the NVT ensemble. b Relative error of the second iteration in the NVT ensemble. c Relative error of the 15th
iteration in NPT ensemble.

RE )
∫0

rc
wR�(r) [gR�,i(r) - gR�(r)]2 dr

∫0

rc
wR�(r) [gR�(r)]2 dr

(8)
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systematic technique for dynamical coarse graining, such as the
projection operator formalism.1,2,76,77 An interesting discussion
of how this more rigorous formalism can be applied in computer
simulations can be found in ref 78.

6. Coarse-Grained Simulations of the Ordering
Transition

We now turn our attention to the ability of the coarse-grained
model, as developed by our modified IBI method in the isotropic
phase, to predict characteristics of the ordering transition and
of the LC phase of 5CB.

Isobaric cooling MD simulations of our IBI-based model,
started in the isotropic phase, led readily to ordering, detectable
by discontinuous increases in the order parameter S (large) and
the density (small). A schematic representation of the isotropic
and LC phases at the mesoscopic level is provided in Figure 7.

In this figure, each 5CB molecule is represented by a vector
connecting the superatoms AC1 and CNZ. The ordering is
visually obvious.

To estimate the first-order transition points from the isotropic
to LC phase and vice versa, we conducted coarse-grained MD
at decreasing and increasing temperatures. Initially, an isobaric
MD simulation was undertaken with a cooling rate of 0.3 K/ns
starting from the isotropic phase at 300 K and 1 bar and ending
at 278 K. An isobaric heating simulation back to 300 K followed
at the same heating rate, 0.3 K/ns. Results from the latter
cooling/heating computer experiment are shown in Figure 8. It
can be concluded from this figure that the transition points of
the IBI-based coarse-grained model from the isotropic to LC
phase and vice versa are 281 and 295 K, respectively. As the
number of 5CB molecules in the model system increases, the
cooling and heating rates for the temperature annealing must
be lowered to maintain the width of the hysteretic region. Such
a hysteresis in the ordering phase transition is not seen
experimentally; nevertheless, it is not too large, given the high
rates of cooling and heating (compared to the laboratory rates)
employed in the simulations. We can estimate the equilibrium
temperature for the coexistence of disordered and LC phases
of our coarse-grained model as an average from the estimates
obtained from cooling and heating simulations, i.e., 288 K. The
hysteresis region can be made narrower by reducing the cooling/
heating rate. To explore this, we undertook constant temperature

Figure 4. RDFs of the pairs (a) CGCT-CGCT, (b) CGCT-CGCNZ, and
(c) CGCNZ-CGCNZ for the first and final iterations of the modified IBI
method and a comparison with the target atomistic RDF.

Figure 5. Comparison of orthobaric densities in the isotropic phase, as
obtained from NPT simulations using the IBI-based model (Sim), with other
(atomistic) simulation results (At1, parent atomistic model;51 At2, atomistic
model of ref 49) and with experiment81 (Exp).

Figure 6. Order parameter S as a function of the number N of 5CB
molecules in the model system and a least-squares approximation of the
same order parameter for the IBI-based model in the isotropic phase at 315
K and 1 bar.
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simulations in this region. An initial isotropic phase was found
to change into a smectic phase after 720 ns of constant-
temperature MD at 285 K, while a smectic phase was found to
disorder into an isotropic one after 40 ns of constant-temperature

simulation at 292 K. The atomistic model that served as a basis
for our coarse-grained model51 yields a nematic-to-isotropic
transition temperature very close to the experimental value of
308.5 K. We conclude that our coarse-grained model with
parameters developed to match the atomistic structure in the
isotropic phase at 315 K underestimates the transition temper-
ature by 20 K. This observation underlines the difficulty of
capturing the ordering transition correctly with IBI-based
models. Another interesting observation is that the transition is
indeed of first order from a thermodynamics point of view. The
reader may have noticed our use of the term “liquid-crystalline
phase”, rather than “nematic phase”, for the phase obtained by
cooling. This is intentional because the structure of this ordered
phase will have to be investigated. Moreover, some important
properties of the LC phase are compared and discussed with
those obtained from a modified approach in the next section.
At this point, one can speculate about the inability of the original
model to predict the nematic phase. CB liquid crystals can
produce different LC phases according to the length of their
alkyl tail. For instance, 5CB forms a nematic phase, while 8CB
can be ordered both in nematic and smectic phases. In our case,
because of the use of a simple and coarse-grained model for
5CB, the flexibility of the alkyl tail is not reproduced perfectly,
and consequently the nematic phase is not formed.

7. Improved Coarse-Grained Models and the LC
Structure Obtained from Them

7a. Approach to the Smectic Phase. From the above
analysis, an important question arises: Can our IBI-based model
be modified so as to give a transition temperature close to the
experimental value for 5CB? Such a modification (modified
model I) was attempted by rescaling the intermolecular interac-
tion potentials (eq 9). In particular, only the intermolecular
potentials were changed according to the following scheme:

The prefactor a, common to all coarse-grained intermolecular
potentials, was estimated through a trial-and-error procedure,
until the predicted transition temperature was within 6 K of the
experimental value TNI

EXP(308.4 K). Again, all intermolecular
potentials Umodified(r) were determined in tabular form. In
particular, a MD simulation with increasing temperature was
undertaken (heating rate equal to 0.3 K/ns), starting from 275
K. The pressure was kept at 1 bar in all three directions. When
the prefactor R is equal to 1.05, a very satisfactory transition
point (302 K) is obtained. In addition, with the above set of
modified potentials, a new ramp correction was applied (C )
-1.0 × 10-5) so as to adjust the density.

Having defined the parameter a, we have a set of intermo-
lecular potentials available in tabular form that allow a study
of the modified model in the LC region at higher temperatures
than those where a LC phase is observed with the IBI-based
model. All simulation results for the LC phase, in the context
of the modified model, were collected at 300 K, where the
system of coarse-grained 5CB molecules is found in the ordered
phase. As regards the orientation of the director, this stays
practically unchanged during simulations, as indicated by the
normalized autocorrelation function C(t) ) 〈n(0) ·n(t)〉 [C(t) >
0.994 for the longest simulation time accessed], depicted in
Figure 9. In addition, the same quantity is presented for the
IBI-based model at 275 K for a modified model, designed to
give a nematic phase at 300 K (for more details, see the next
subsection).

Figure 7. Total of 1728 5CB molecules, represented by vectors connecting
beads AC1 and CNZ: (a) in the isotropic phase at 315 K and 1 bar; (b) in
the LC phase at 275 K and 1 bar (IBI-based model, box dimensions in
nanometers).

Figure 8. Evolution of the order parameter with the temperature during
cooling and heating runs at 1 bar on the IBI-based model from 300 to 278
K and vice versa. The cooling and heating rates were 0.3 K/ns.

Umodified(r) ) aU(r) (9)
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A detailed analysis of some important properties was
undertaken to characterize the structure of the LC phase. These
properties were computed for both the original IBI-based
(section 6) and modified coarse-grained model I (present section)
at two different temperatures (the modified model at 300 K and
the IBI-based model at 275 K). We started with the self-diffusion
behavior of LC molecules in the coarse-grained system. In view
of the strong anisotropy, separate self-diffusion coefficients were
computed along the director and in the plane perpendicular to
the director. An important quantity, presented in Table 3, is the
ratio of these two diffusion coefficients, D|/D⊥. It is seen that
D| < D⊥ for both coarse-grained models, which is evidence for
the existence of a smectic phase.79 In nematic phases, the
following inequality holds: D| > D⊥. Thus, the self-diffusion
behavior, along with the layered structure observed visually in
our ordered phases (see Figure 7b), gives us a first indication
for a smectic phase. Some quantitative measurements of the
structure are needed as well, however.

The first structural property presented is the probability
density of the angle θ between the molecular axis and the
director, divided by the factor sin(θ)/2 (see Figure 10). The latter
factor is the probability density expected of an isotropic phase,
where molecular orientations are random. Three main conclu-
sions are derived from Figure 10: First, there is a strong tendency
for molecules to orient parallel or antiparallel to the director.
Second, parallel and antiparallel orientations are equally prob-
able. Third, the existence of a smectic C phase is excluded; in
such a smectic phase, the director does not coincide with the
normal to the layers. The reduced distribution of orientation
angles is plotted in Figure 10 at two different temperatures (275
and 300 K for the IBI-based model and its modification,
respectively), but corresponding diagrams at different temper-
atures in the smectic phase are very similar.

Another important structural property is the distribution of
molecular centers along the director, depicted in Figure 11. From
the form of this distribution, it is clear that we have a layered

structure. This further supports the evidence presented above
for a smectic phase. In the same figure, we have plotted the
distributions that we obtained by simulating systems of 432 and
1728 molecules with the IBI-based model. The distributions are
very similar, confirming the absence of system size effects. The
difference between these distributions and the distribution
obtained for the IBI-based model at 275 K is insignificant. One
can discern two characteristic distances in the distributions of
Figure 11. This tells us that the smectic phase formed by the
coarse-grained model actually consists of bilayers made up of
antiparallel 5CB molecules. Such a structure consisting of
bilayers of antiparallel molecules is observed in the smectic
phase of 8CB.80 Unfortunately, the smectic structure predicted
by the coarse-grained model at 1 atm and 300 K is not in
agreement with experiments and simulations with the parent
atomistic model51 of 5CB, which give a nematic phase under
these conditions.

To confirm that the smectic phase is actually the equilibrium
phase of our coarse-grained model at low temperature, we
generated a nematic configuration of 216 5CB molecules at 300
K and 1 bar by atomistic simulation; replicated it periodically
to generate a quadruple system; replaced the atomistically
represented molecules in the resulting system by coarse-grained
molecules; and proceeded to simulate the coarse-grained system
with isothermal-isobaric MD under the same conditions. The
coarse-grained model system readily converted from the nematic
to a smectic phase, characterized by the structural features
discussed above.

Figure 9. Comparison of the normalized time autocorrelation function of
the director in the smectic phases (IBI-based model at 275 K and modified
model at 300 K) and in the nematic phase at 300 K.

Table 3. Diffusion Constants along the Director and in a Plane
Normal to the Director for the Coarse-Grained Models under
Studya

T (K) D|/D⊥

275 0.049 ( 0.027
300 0.22 ( 0.06
300 1.149 ( 0.450

a The first row refers to the IBI-based model at 275 K and the second
and third rows to the modified models in smectic and nematic phases,
respectively, at 300 K.

Figure 10. Comparison of probability densities of angle θ between the
molecular axis and director divided by the factor (sin θ)/2 for the two coarse-
grained models (the IBI-based model at 275 K and the modified model I at
300 K).

Figure 11. Comparison of the distributions of 5CB molecular centers along
the director for three models (the IBI-based model at 275 K and modified
models I and II at 300 K). At 275 K, possible size effects were checked.
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7b. Approach to the Nematic Phase. In the previous
subsection, we provided a methodology that allows us to correct
the transition temperature with good consistency between the
original and modified approaches. However, the ordered struc-
ture predicted for 5CB by our coarse-grained model under
ambient conditions is incorrect, as pointed out in the previous
section. For this reason, we designed a heuristic approach, based
on a rescaling of the potentials as described by eq 9, to develop
an alternative coarse-grained model that will give a nematic
phase at 300 K and 1 atm. Our choice is to rescale only the
potentials CGCT-CGCT (tail-tail) and CGCNZ-CGCNZ
(head-head) with the parameter R equal to 1.2. For the
remaining potentials, a ramp correction (C ) -8 × 10-6) was
applied to adjust the density of the system.

Order parameter and density are two crucial parameters that
can be compared directly against the parent atomistic model.
The comparison in question is recorded in Table 4. Moreover,
some additional properties were checked in order to judge the
quality of the nematic phase. First, the stability of this phase is
explicitly depicted in Figure 9, in which the normalized
autocorrelation function of the director is recorded. The smooth
appearance of this function in relation to those shown in the
same figure for the smectic phase is ascribed to the fact that
results from a much larger system (1728 molecules) are depicted
in the case of the nematic phase. All ordered phases examined
in Figure 9 are clearly very stable because the aforementioned
autocorrelation functions of the director remain close to unity.
Another criterion that we have a nematic phase is the ratio of
the diffusion constants along the director and normal to the
director. In Table 3, it is seen that this quantity D|/D⊥ is greater
than unity for the nematic phase that we constructed. Futher-
more, the phase does not have a layered structure, as is seen in
Figure 11.

8. Conclusions

A coarse-grained model of 5CB molecules has been devel-
oped in this study based on simulations of a detailed atomistic
model51 at 1 bar and 315 K, where 5CB is found in the isotropic
phase. The IBI method had to be modified to achieve conver-
gence in our case (liquid of small, strongly polar molecules
consisting of three types of coarse-grained sites). Important
elements of the modified IBI strategy were (a) a conservative
updating scheme, which updates only one (the poorest) effective
intermolecular potential at a time, instead of the common global
update and (b) the use of Chebyshev polynomials and of a r-12

excluded volume repulsion at short distances to fit the pretabu-
lated numerical effective intermolecular interaction potentials
and eliminate the adverse effects of noise in these potentials.
The algorithm that we have designed, built around the MD
engine of GROMACS 3.3.2, is rather fast, requiring 15 iterations
to reproduce the structure and density to within 0.2% and 1.5%
of the atomistic simulation, respectively.

In general, the main aim of a coarse-grained model is to
augment the time and length scales that can be addressed by
simulation. The coarse-grained model that we have developed
can be used with a time step of 20 fs, instead of 2 fs required
at the atomistic level. Moreover, the degrees of freedom for a
5CB molecule have been reduced drastically to the coordinates
of 5 superatoms subject to 4 holonomic effective bond length

constraints, in place of 19 atoms in the original united-atom
representation. Using this coarse-grained model, our simulations
were readily extended up to a simulation box 8 times bigger
than the atomistic box of 216 molecules for times of 1 µs.
Overall, the coarse-grained model is roughly 35 times more
efficient computationally on a single processor than the atomistic
model from which it was derived. Of course, simulations of
even bigger systems can easily be achieved via parallelization.
In addition, we point out that the mesoscopic models presented
here do not require electrostatic interactions. Consequently,
given the nonideal scaling characterizing commonly used
algorithms for electrostatics, they offer an additional advantage
for parallelization in comparison with the atomistic model.

We have performed MD simulations of our coarse-grained
model, developed in the isotropic phase at 315 K and 1 bar, in
order to investigate its ability to predict a transition to a LC
phase and the structure of that phase. Our IBI-based model was
found to underestimate the transition temperature from the
isotropic to oriented phase and vice versa by roughly 20 K. To
remedy this, two modified models were developed by heuristic
rescaling of the effective intermolecular interaction potentials
of the IBI-based model. The first modified model still gives a
smectic phase but predicts a transition point of 302 K with
relatively small hysteresis (6 K), in good agreement with
experiment (308.5 K). On the basis of the order parameter, the
predicted transition of this model is clearly first order from a
thermodynamic point of view. A number of structural and
dynamical characteristics of the LC phase were computed,
including the distribution of angles formed with the director,
the distribution of molecular centers of mass along the director,
and self-diffusivities along and normal to the director. All of
these measurements indicate that the ordered structure in the
LC phase is smectic. Real 5CB, however, as well as the parent
atomistic model, undergoes a transition from the isotropic to
nematic phase. For this reason, through a heuristic modification
of two effective pair potentials, we developed another modified
model II, which predicts a nematic phase around 300 K. The
order parameter and density for this model are very close to
the atomistic model and the experimental predictions.

Longer CB molecules (e.g., 8CB) form both nematic and
smectic phases in their LC region. In view of this, our modified
models may be appropriately extended to simulate such liquid
crystals. In addition, we intend to simulate the interface
water-5CB in the mesoscopic model (300 K) by using modified
model II, which gives the correct phase from a thermodynamic
point of view, in conjunction with a coarse-grained water model
already available in the literature. Our work so far indicates
that Marrink’s coarse-grained water model is satisfactory in this
respect.24 After coupling the two coarse-grained models, we
apply an optimization technique that minimizes deviations from
the structural features of the interface computed by the atomistic
model, to determine coarse-grained parameters for the water-5CB
interactions. Also, a systematic procedure of deriving a nematic
phase (without modifications in the intermolecular potentials)
is being investigated.
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grained simulations of the isotropic and LC phases of 5CB: (S.1)
divergence of the standard IBI scheme in the case of 5CB; (S.2)
effective intermolecular potentials, as obtained from the modified
IBI procedure in the isotropic phase of 5CB; (S.3) convergence
of intramolecular distribution functions upon application of the
modified IBI scheme to the isotropic phase of 5CB. This material
is available free of charge via the Internet at http://pubs.acs.org.
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