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Study of the simple extension tear test sample for rubber
with Configurational Mechanics

Erwan Verron

Abstract The simple extension tear test-piece also
referred to as the trousers sample is widely used to study
crack propagation in rubber. The corresponding energy
release rate, called tearing energy for rubber materials,
was first established by Rivlin and Thomas (J Polym
Sci, 10:291–318, 1953); a second derivation was propo-
sed later by Eshelby (In G.C. Sih, H. C. van Elst, and D.
Broek, editors, Prospects of Fracture Mechanics, 69-
84, Leyden, 1975). We show here that the derivation
of this result can be advantageously revisited through
the scope of Configurational Mechanics. Our approach
is based on the rigorous definition of the configura-
tions of the body and on the physical significance of
the configurational stress tensor. More precisely, it is
demonstrated that the change in energy due to crack
growth, and then the tearing energy, is directly related
to the components of the configurational stress tensor
in the body.
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1 Introduction

In his seminal paper, Griffith (1920) proposed a crite-
rion to determine the amount of energy involved during
crack propagation in brittle materials. Denoting dU
(<0) the change of total energy (change of strain energy
and work of external forces) and d A the increase in
crack surface during crack growth in the body, the
energy release rate G is defined by

G = −dU

d A
, (1)

and the crack growth criterion can be simply written as

G < Gc, (2)

where Gc is a critical value of the energy release rate
directly related to the surface free energy of the mate-
rial. It should be measured in experiments.

More than 30 years later, Rivlin and Thomas (1953)
extended the Griffith theory to rubber-like materials
considering the following assumptions:

(a) the approach of Griffith is valid for large strain (in
fact, no restriction was formulated in the original
paper of Griffith),

(b) irreversible changes in energy due to crack growth
take place only in the neighbourhood of the crack
tip,

(c) the change in energy is independent of the shape
and dimensions of the body.
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Then, authors defined the tearing energy T , i.e. the
counterpart of G for rubberlike materials, by

T = −∂w

∂ A

∣
∣
∣
∣
l
, (3)

where w is the strain energy, A is the crack surface
and the suffix ·l denotes differentiation with constant
displacement of the boundaries over which forces are
applied. Considering thin samples (uniform thickness
h0) and denoting c the length of the crack, the tearing
energy reduces to

T = − 1

h0

∂w

∂c

∣
∣
∣
∣
l
, (4)

and the corresponding crack growth criterion is sim-
ply T > Tc, Tc being the critical value of the tearing
energy that only depends on the material. Nevertheless,
due to assumption (b), Tc cannot be directly related to
the surface free energy of the elastomer. Moreover, the
correctness of the above-mentioned assumption (c) was
investigated by several authors by making tearing mea-
surement on thin test pieces of different shapes but of
the same material, and examining the constancy of Tc

values obtained (see Thomas (1994) and the references
herein).

In their paper published in 1953, Rivlin and Thomas
proposed several experimental samples to perform
crack propagation experiments in rubber. One of these
samples is the simple extension tear test-piece also
referred to as the trousers sample. Authors calculated
the corresponding expression for the tearing energy
and used this sample to measure the critical value of
the tearing energy. Later, Eshelby (1975b) considered
the same test-piece to illustrate the relevance of path-
independent integrals for the calculation of configura-
tional forces that drive the evolution of singularities. In
his paper, Eshelby proposed a second derivation for the
tearing energy of the trousers sample. The present paper
discusses a third derivation of this result. It is demons-
trated that the tearing energy of the simple extension
tear test sample can be easily recovered using the gene-
ral theory of Configurational Mechanics and more pre-
cisely the definition of the configurational stress ten-
sor. Previous derivations are first recalled. Then, our
proposal is detailed.

2 Description of the problem

The sample is a rectangular thin sheet of length b and
width 2a; the thickness h0 is uniform. The test piece

c

b

2a

h0

Fig. 1 Trousers sample for rubber tearing

contains a cut of length c (with c � a) parallel to the
edges of length b. The sample geometry is presented in
Fig. 1.

The description of the problem is based on the Fig. 2.
Both the notations proposed by Rivlin and Thomas
(1953, p. 302) and the three-dimensional sketch of
Greensmith and Thomas (1956, p. 373) (considered
later by Eshelby (1975b, p. 76)) are adopted. In the
following, the emphasize is laid on the rigorous defini-
tion of body configurations. The initial position of the
sample shown in Fig. 1 is adopted as the reference confi-
guration (C0) (see Fig. 2a). During the experiments, the
‘legs of the trousers’ are first spread; then, the force F
is applied to the legs to produce tearing. It leads to the
definition of the deformed configuration (C) as shown
in Fig. 2b. In this configuration, the separation between
legs extremities is l and the thickness h of the piece
is no longer uniform. We consider now that the crack
length increases by dc in the deformed configuration,
the force F being kept constant. Thus, after unloading,
i.e. F = 0, the sample occupies a new reference confi-
guration (C′

0) depicted in Fig. 2c. The motion between
(C) and (C′

0) is defined by its deformation gradient f .
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Fig. 2 Definition of body configurations

Obviously, f is not exactly equal to F−1 because the
crack has grown and (C′

0) differs from (C0).

3 Previous derivations

3.1 Derivation of Rivlin and Thomas (1953)

The determination of the tearing energy as proposed
by Rivlin and Thomas (1953) is based on an energetic
analysis. For this purpose, authors considered Fig.2a
and b.

The sample can be separated into four different
regions in the deformed configuration (Fig. 2b):

– the region a of each of the legs which is substan-
tially in uniaxial extension, the corresponding
stretch ratio being denoted λ,

– the region b which is substantially undeformed
if the uncut part of the sample is sufficiently long,

– the regions c and the region d in which strain and
stress distributions are complicated, the former cor-
respond to the neighbourhood of the points in which
forces apply and the latter corresponds to the neigh-
bourhood of the tip.

When the crack length increases from c to c + dc,
authors consider that:

– the size of regions a increases and the size of the
region b decreases of the same expense. In the
reference configuration (Fig. 2a), the increase in
volume of each region A (which are transformed
into regions a by the motion) is a h0 dc; thus, the
decrease in volume of the region B (which is trans-
formed into region b by the motion) is equal to
2a h0 dc,

– the regions c and the region d are only moved and
their respective sizes (or the sizes of their undefor-
med counterparts C and D) do not change,
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– moreover, after crack growth the region a is still
in uniaxial extension with the same stretch ratio λ

because F does not change, the region b is still
undeformed, and the strain and stress distributions
in regions c and d remain unchanged.

So, the length between legs extremities increases by
dl = 2λ dc, and then,

∂l

∂c

∣
∣
∣
∣
F

= 2λ. (5)

Considering that the strain energy of the sample is a
function of the two quantities l and c, its change dw

is related to the changes of crack length dc and overall
length dl by

dw = ∂w

∂l

∣
∣
∣
∣
c

dl + ∂w

∂c

∣
∣
∣
∣
l
dc. (6)

Recalling that crack growth is due to the applied force
F which remains constant, the previous equation can
be written as

∂w

∂c

∣
∣
∣
∣
F

= ∂w

∂l

∣
∣
∣
∣
c

∂l

∂c

∣
∣
∣
∣
F

+ ∂w

∂c

∣
∣
∣
∣
l
. (7)

With respect to the previous statement about the
increase in volume of the regions a and the decrease
in volume of the region b, the change in energy can be
determined in the reference configuration (C0),

∂w

∂c

∣
∣
∣
∣
F

= W 2a h0, (8)

where W stands for the strain energy density per unit
of undeformed volume and 2a h0 is the cross-section
of the undeformed sample. Moreover, the force F is
related to the change in energy by

∂w

∂l

∣
∣
∣
∣
c

= F. (9)

Finally, recalling Eqs. 5, 8 and 9, Eq. 7 becomes

∂w

∂c

∣
∣
∣
∣
l
= W 2a h0 − F 2λ, (10)

the tearing energy being obviously deduced from Eq. 4.

3.2 Derivation of Eshelby (1975b)

In order to highlight the connection between the confi-
gurational stress tensor (also called the elastic energy
momentum tensor or the Eshelby stress tensor) and
the path-independent integral for energy release rate,

Eshelby (1975b) proposed a new derivation of the
tearing energy for the trousers sample.

In this way, following Knowles and Sternberg (1972)
he calculated the following surface integral defined in
the reference configuration (C0) shown in Fig. 2a

γ1 =
∫

S

(

W − Pi1 ui,1
)

d S (11)

where S is a surface embracing the tip of the crack,
P is the first Piola-Kirchhoff stress tensor and u is the
displacement vector. In fact, this scalar quantity cor-
responds to the first component of the configurational
force

γ =
∫

S
�n d S (12)

in which n is the unit vector normal to the surface d S
and � is the energy momentum (configurational stress)
tensor proposed by Eshelby (1951, 1975a)

� = W I − ∇ t
Xu P, (13)

where I is the 3×3 identity tensor and the superscript ·t
denotes the transposition. γ1 being path-independent,
the author considers a surface S made up of parts of the
specimen surface with normal e2 and e3 in regions A,
D and B; a cross-section of the region B (which is not
deformed); and cross-sections of both legs (in regions
A). The two first contributions are equal to zero; then
γ1 reduces to

γ1 = 2

(

W − P21
∂u2

∂ X1

)

a h0. (14)

A given point with initial coordinates (X1, X2 = 0)

being first swung round then stretched, the displace-
ment in the e2-direction is

u2 = ±λ X1 − X2, (15)

where the sign depends on the leg: plus sign for the
right-hand side leg and minus sign for the left-hand side
leg (see Fig. 2). The stress is given by P21 = ±F/a h0,
with the same remark for the signs. Thus, γ1 reduces to

γ1 = 2 (W a h0 − F λ) . (16)

Recalling that the total energy release rate (tearing
energy) is related to γ1 by

T = − 1

h0
γ1, (17)

in which the minus sign merely indicates that the tear
will run to the bottom, the result of Rivlin and Thomas
given by Eqs. 4 and 10 is recovered.
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4 A new derivation

Our method to determine the tearing energy of the trou-
sers test sample is based on the general theory of Confi-
gurational Mechanics. Before presenting our approach,
some basic results concerning the configurational stress
tensor are recalled. Only results necessary for our deri-
vation are given, for more details the reader can refer
to Maugin (1993, 1995).

4.1 Basic definitions

The configurational stress tensor permits to quantify
the evolution of the reference configuration of a given
body subject to deformation. This tensor, denoted �

through the rest of the paper, is defined as

� = W I − Ft P, (18)

where F is the deformation gradient (equal to I+∇Xu).
Note that the expression of the configurational stress
tensor is different than the one considered by Eshelby
(1975b) and given in Eq. 13, the displacement gra-
dient being replaced by the deformation gradient (see
Sect. 4.3 for comments).

The derivation will be essentially based on the phy-
sical significance of the components of �. Considering
the material space M3 in which the body is defined as
a set of particles (a reference configuration), the scalar
dU · � d S0N0 is the change in energy due to a mate-
rial displacement, i.e. a displacement in M3, dU of the
material surface d S0N0. So, as previously established
by Kienzler and Herrmann (1997) for small strain, �i j

is the change in energy due to a unit material transla-
tion in the direction of the vector ei of a unit material
surface which normal vector is ej.

4.2 Application to the trousers test sample

As recalled above, the tearing energy is related to the
change in energy between a body with a crack of length
c and the same body with a crack of length c +dc for a
given motion. In order to determine the tearing energy
for the trousers sample, let us examine the Fig. 2. In
this figure, the configurations (C0) (Fig. 2a) and (C′

0)

(Fig. 2c) are two reference configurations; then, with
the help of the configurational stress tensor, it is pos-
sible to calculate the change in energy between them. In

this way, only the material transformation, i.e. defined
in M3, between (C0) and (C′

0) has to be considered, the
forces applied to the sample being known (Fig. 2b).

The analysis of the problem proposed by Rivlin and
Thomas (1953) and recalled in Sect. 3.1 is adopted;
regions A, B, C and D of (C0) are transformed into
A′, B′, C′ and D′ of (C′

0) in the following manner:

– the two regions A are transformed into the two
regions A′ by the material translation −dc e1 of
the material surface a h0 (−e1) (grey cross-section
in Fig. 2c),

– the region B is transformed into the region B′ by the
material translation −dc e1 of the material surface
2a h0 e1 (grey cross-section in Fig. 2c),

– the regions C and D are transformed into regions
C′ et D′ by a ‘rigid body material motion’.

Then, the change in energy between configurations
(C0) and (C′

0) is

dw = dwA→A′ + dwB→B′ + dwC→C′ + dwD→D′

(19)

with

dwA→A′ = 2
[

−dc e1 · �A a h0 (−e1)
]

= 2 dc a h0 �A
11, (20)

dwB→B′ = −dc e1 · �B 2a h0 e1

= −2 dc a h0 �B
11, (21)

and

dwC→C′ = 0 and dwD→D′ = 0. (22)

In these equations �A and �B stand for the values of
the configurational stress tensor in regions A and B,
respectively. Equation 22 is obvious because regions
C and D are statically moved in M3 and consequently
their energies are unchanged. Moreover, the region B
being undeformed and stress-free, �B = 0, and

dwB→B′ = 0. (23)

Finally, the change in energy of the body is only due
to the transformation of the regions A into the regions
A′. These regions being in simple extension and assu-
ming that the material is incompressible, the deforma-
tion gradient and the first Piola-Kirchhoff stress tensor
are:
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– for the right-hand side leg of the trousers

F = λ e2 ⊗ e1 − λ− 1
2 e1 ⊗ e2 + λ− 1

2 e3 ⊗ e3 (24)

and

P = F

a h0
e2 ⊗ e1, (25)

– for the left-hand side leg of the trousers

F = −λ e2 ⊗ e1 + λ− 1
2 e1 ⊗ e2 + λ− 1

2 e3 ⊗ e3 (26)

and

P = − F

a h0
e2 ⊗ e1. (27)

For both legs, the first component of �A reduces to

�A
11 = W − Fj1 Pj1 = W − λ

F

a h0
. (28)

So, the change in energy of the regions A is

dwA→A′ = 2dc

(

W − λ
F

a h0

)

a h0

= (W 2a h0 − F 2λ) dc. (29)

So considering Eqs. 19, 22 and 23, it is also equal to
the total change in energy between configurations (C0)

and (C′
0). It can be written as

∂w

∂c
= W 2a h0 − F 2λ. (30)

So the result due to Rivlin and Thomas, and Eshelby is
recovered.

4.3 Remark on the definition of the configurational
stress tensor

It should be noted that the derivation proposed above
does not depend on the choice of the reference confi-
guration. As an example, consider the configuration
depicted in Fig. 3. During experiments, the legs of the
trousers are first spread then extended. Thus this confi-
guration is undeformed and stress-free because the
motion between the configuration (C0) shown in Fig. 2a
and this one reduces to a rigid body motion of a part of
the sample. So, it can be adopted as a reference confi-
guration. In this case, the change in energy between
regions A and A′ is simply due to a material unit trans-
lation −dc e2 of the material surface a h0 (−e2) for the
right-hand side leg and to a material unit translation

2ah 0 e1

(C0)

AA

B

C

C

D

e 2

ah 0 e 2

-ah 0 e 2

e 2

e 1

e 3

Fig. 3 A new reference configuration for the trousers sample

dc e2 of the material surface a h0 e2 for the right-hand
side leg (see the grey cross-sections in Fig. 3)

dwA→A′ = dc e2 · �A a h0 e2

+dc (−e2) · �A a h0 (−e2)

= 2 dc a h0 �A
22. (31)

The changes in energy due to the other regions remain
equal to zero. For both legs of the sample, the deforma-
tion gradient and the first Piola-Kirchhoff stress tensor
are identical and respectively given by

F = λ e2 ⊗ e2 + λ− 1
2 e1 ⊗ e1 + λ− 1

2 e3 ⊗ e3 (32)

and

P = F

a h0
e2 ⊗ e2. (33)

With these expressions, the result Eq. 30 is easily reco-
vered.

As noted above, Eshelby (1975b) considered the
configurational stress tensor � defined in terms of the
displacement gradient (Eq. 13) rather than � defined in
terms of the deformation gradient (Eq. 18). It is to note
that Knowles and Sternberg (1972) defined several
J -type invariant integrals for elastostatic finite defor-
mations and especially the integrals based on both confi-
gurational stress tensors. The former definition of the
configurational stress tensor (Eq. 13) was first propo-
sed by Eshelby (1951) for small strain but its use for
large strain problems is revealed inappropriate (Mau-
gin, 1993). In fact, this can be illustrated by the present
example. Indeed, adopting the tensor � and making
the derivation with the reference configuration shown
in Fig. 2a leads to the right expression of the tearing
energy. Nevertheless, making it with the reference
configuration of Fig. 3 fails.
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5 Conclusion

In this paper, the derivation of the energy release rate
of the simple extension tear sample was revisited in the
framework of Configurational Mechanics. Obviously,
such a derivation is possible because of the simpli-
city of the mechanical fields in the different regions
of the sample: the tearing energy reduces to the value
of one of the component of the tensor and does not
involve a surface integral. In more general cases, the
use of path-integrals, i.e. J -type integrals, is manda-
tory because the configurational stress tensor, i.e. the
integrant, is not uniform. Nevertheless, such a study is
useful to illustrate the relevance of the configurational
mechanics quantities to determine changes in energy
between different reference configurations of a given
body. Moreover, this type of approach can be conside-
red to design new test samples for fracture mechanics:
similarly to the simple tests for the mechanical res-
ponse of materials (uniaxial extension, simple shear,
equibiaxial extension . . .), new tear samples can be
proposed by studying the configurational stress field
and the possibility to calculate it analytically. Moreo-
ver, it has been shown here that the components of �

are appropriate quantities for the study of macroscopic
cracks in rubberlike materials. Motivated by this small
study, the tensor can be considered as an efficient tool
for the study of the evolution of microscopic defects
in elastomers; such an approach was recently proposed
by Verron et al., 2006, Verron and Andriyana, In Press,
Andriyana and Verron, 2007) to predict fatigue crack
initiation in rubber under multiaxial loading conditions.
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