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Abstract. The present paper describes a new approach developed in order to determine the 
Coefficients of Thermal Expansion (CTE) of phases embedded in two-phase materials. The 
procedure is based on the coupling of numerical simulations with scale transition models and 
experiments. A three scales one-site thermo-elastic self-consistent model following the formalism 
introduced by Kroner and Eshelby (KE) was extended to multiphase materials. Preliminary 
numerical computations justify to identify the CTE of a given phase embedded in a two-phase 
material with the CTE of the corresponding pure single-phase. This additional assumption was 
introduced in KE model. The implementation yields an explicit formulation for the unknown CTE 

of a phase embedded in a (a+f3) two-phases material. The application of this expression to the 

characterization of f3 thermal expansion properties implies the measurement or knowledge of 
several parameters. This approach was checked through the study of an Al-50%vol.-SiC-50%vol. 
MM C. The CTE of Silicon Carbide were determined as a function of the temperature. Simulated 
results obtained show a very good agreement with experimental values available in the literature. 

Introduction. 

The mechanical behaviour, performance [I] and durability [2] of materials are strongly related to 
the presence and the amount of residual stresses. During thermal processes, residual stresses appear 

under specific conditions. The magnitude and the sign of these stresses are strongly related to the 
Coefficients of Thermal Expansion of the grains and phases constituting the material. Numerous 

phases are very difficult to process under an acceptable non-porous single-phase state. It is the case 

of many advanced materials dedicated to industrial applications, as the [3-phase of a+f3 Titanium 
alloys. But, this assertion is relevant for more common materials as carbide reinforced steels [3]. 
Thus, the characterization of the properties of phases embedded in multiphase material is a 
requirement for a more accurate prediction of the consequences of thermal loadings on the forming 
and service-life of the material. The CTE of a given phase, when it is embedded in a multi phase 
structure is studied in section 2-1. The crucial question of the deviation between the CTE of the 
single-phase and those of the same phase included in a heterogeneous matrix will be examined. 
According to a preceding study performed in pure elasticity [ 4], this groundwork will be used in 
order to implement the classical self-consistent thermo-elastic formalism. A solution will be 
proposed in order to characterize the CTE of a phase embedded in a multi phase material. 

1. Self-Consistent estimates. 

1.1 Constitutive equations. According to the original formalism introduced by Kroner in pure 
elasticity [5], Self-Consistent (SC) estimates are suitable to deal with the question of heterogeneous 
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materials such as polycrystals [6-7] or Metal Matrix Composites (MMC). The models are based on 

a statistical description of the material. se approaches are particularly adapted to represent 

aggregates of crystalline grains exhibiting local variations of their properties due to the elastic 

and/or thermal heterogeneities occurring when the material is composed of two or more phases. 

The material is split up into the classical three scales described in [8-9] : 

- the macroscopic scale, denoted by the superscript I The so-called Homogeneous 

Effective Medium (HEM) is assumed to have the average properties of the multi phase 

polycrystalline aggregate. 

the pseudo-macroscopic scale, denoted by the superscripts 'X, 13 and so on. It represents 

the average properties of the considered a (or J3, ... ) ~hase. 
The mesoscopic scale, denoted by the superscript 1

. The anisotropic properties of an 

inclusion of a given phase are exhibited at this level. The orientation of a crystallite is 

expressed by the letter Q. 

Let us consider a pure thermo-elastic solicitation of the material. The thermal dilatation created by a 

temperature increment oT is considered as a stress-free strain. The stresses respectively induced in 

the grains ( crn), the multi phase polycrystal ( cr1) and a particular phase e. g. a ( cra) are linked to the 

strains (E) as follows: 

(1) 

(2) 

cra =ea .. (Ea- MaoT) (3) 

c''", ea and e 1 are the elastic stiffnesses, respectively at mesoscopic, pseudo-macroscopic and 

macroscopic scales, whereas ma, ~and M1 denote the corresponding CTE tensors. A •• B denotes 

the double scalar product AijkiBkimn· 

SC simulation framework is based on a scale transition formalism. For ellipsoidal inclusions, 

mesoscopic stresses and strains are uniform in an inclusion and linearly related to the macroscopic 

stresses and strains through the well-known interaction equation [10] : 

all -cr1 = -e1 .. R 1 .. (En -E1) (4) 

Where the so-called reaction tensor R1 will be easily obtained from the knowledge of the 

morphology of the crystallites and the average properties of the HEM : 

R 1 =(I-ses~~).s~ =(e~-~-E)..E-1 (5) 

Hill's tensor E expresses the local interactions depending on the morphology of the crystallites [11]. 

It is linked to Eshelby's tensor Sesh by E=e1 
.. Sesb· I is the fourth order identity tensor. 

In another main paper, Hill demonstrated the following useful average equations [12] : 

(6) 

The pseudo-macroscopic scale has been defined by the average on the crystallites of the studied 

phase. This entails (6) to be rewritten at this level through an extension of Hill's formulation: 

(7) 
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The average elastic stiffness and CTE of the polycrystal may be deduced from the well-known 

equations (13] : 

cl= (ci(n).~+E..k(n)-cJl1)i=1.N (8) 

MI = (k(n)+c~ .. R~ J1 .. c~[.N .. (k(n)+cl .. R~ j1 .. ci(n).mi(n)r~1.N (9) 

Where N is the number of grains in the HEM. It has been demonstrated in a previous work [4] that 

the pseudo-macroscopic stiffness of a given a-phase embedded in a multiphase polycrystal could 

be expressed by : 

(10) 

In consequence, the stiffness tensor at any scale will be determined independently from the thermal 

expansion properties of the material. Nevertheless, it should be remembered that, in metallic 

materials, the elastic stiffness often varies with the temperature. 
In the following, only pure thermal loading will be considered so that, the material will be 

submitted to a stress-free macroscopic state. It is assumed that no macro or mesoscopic plastic 

deformation takes place during this process. Hence, from o 1 = 0 = C 1 
.. (E

1
- M 1oT J, the 

macroscopic strain can be written as : 

(11) 

Taking into account the condition (11) in (1) reduces the mesoscopic strains to: 

(12) 

For each temperature increment oT, (8-9) will provide the required macroscopic elastic stiffness and 

Coefficients of Thermal Expansion from the knowledge of the single-crystal elastic and thermal 

properties. The remaining unknown interaction tensor is then deduced from C1 according to (5). The 

mechanical state of each grain can be completely characterized for each oT through (12). 

1.2 Derivation of SC modeling for the simulation of pseudo-macroscopic CTE. Our purpose is 

to find an expression for the CTE of a phase embedded in a multi phase material, according to the 

classical SC model introduced in section 1-1. Let us consider the case of a (a+~) two-phases 

material. a-phase elastic and thermal properties will be supposed to be perfectly identified, whereas 

~-phase CTE are the unknowns. In this paper, the pseudo-macroscopic elastic stiffness of the ~­

phase will be assumed to be known from the literature or previously determined according to the 

method given by Freour et al. in [4]. 
Introducing the volume fractions f" and fl, the average stress relations (6-7) may be rewritten as a 

function of the pseudo-macroscopic values. Then, taking account of (3) and ( 11) yields the relation : 

(13) 

Thus, p CTE tensor satisfies : 

M P = --.!:_ep-1 ea a _ !:._ep-1 ea Ma _1_ p 
fPOT .. ..& fP .. .. + OT& (14) 
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While 13 CTE remain unknown, the main difficulty is that the pseudo-macroscopic strain in 13 could 

not be evaluated from the classical method described in the second part and involving the 

application of(7) consecutively to (12). Our basic hypothesis on the macroscopic stress raises more 

convenient simplifications. Let us integrate (11) in the strain average relation (7). &"and &Pare 

linked through the following formula: fa&a +fP&P = &1 = M 1oT. 

The expression obtained for & P yields the following simplified form for MP : 

M P = !:_ Lp-1 e"- I] (-1 ") -1 M 1
- !:..ep-

1 
ea M" fP ~ .. .. oT & + fP fP . . .. (15) 

The values taken by MP components should not depend on any state variable as the pseudo­

macroscopic strain or the temperature. It will be demonstrated in the following that (15) satisfies 

this criterion. Let us develop the mesoscopic strain in a given a-grain (12). The pseudo-

macroscopic strain in a results from the average relation (7), so that the ratio -
1
-&" will be 

oT 
expressed as follows : 

This ratio only depends on the constants describing the thermo-mechanical properties of the 

material. Thus, according to (16) any state variable is excluded from expression (15) obtained for 

the pseudo-macroscopic CTE of l3. Once f', f3, c''", C''", eP, e 1
, M\ m" and M" known, e.g. from 

measurements or calculation, one will easily calculate the pseudo-macroscopic CTE of any given 13-
phase owing to (15) and (16). In consequence, in spite of the assumptions concerning the 

macroscopic so licitation considered for the needs of the demonstration, these forms are general and 

will be satisfied whatever the mechanical state of the system. 
Now, the case of the pseudo-macroscopic elastic stiffuesses and CTE should be carefully examined. 

In theory, (10) demonstrate the potential existence of a deviation between the elastic stiffuess of a 

phase embedded in a multiphase material and the corresponding single-phase stiffness. This point 
has been developed in [4]. In fact, in most cases, it was numerically justified that pseudo­

macroscopic elastic stiffnesses could be identified with the single phase elasticity constants. 

However, a priori, it is not possible to predict anything about the question of pseudo-macroscopic 

CTE. Thus, we will discuss about this point in the following section. 

2. Application of Se model to the study of pseudo-macroscopic eTE 

2.1 Analysis of the deviation between pseudo-macroscopic and single-phase eTE. In order to 

quantify the deviation between pure single-phases CTE and the corresponding values for the same 

phase when it is embedded in a multiphase material, it is first necessary to express the relation 

ruling thermo-elastic interactions existing between a phase and the polycrystalline matrix. 

Considering the case of a-phase, and according to ( 4 ), it comes : 

(17) 

In the case when the material is not subjected to any macroscopic stress, the integration of the 

conditions (2, 3, 11) in ( 17), followed by basic tensorial calculations, lead to a simplified form for 

the CTE of a given a-phase embedded in a multi phase material : 

M a = _1_&a + _1_ea-1 .. e' .. R' .. &"- e"-1 .. e' .. R I .. M' 
oT oT 

(18) 
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It should be remembered that equation ( 16) yields the simplification of the state variables, so that 

Ma only depends on the thermal and mechanical constants of the material. SC formalism 
demonstrates that the average CTE of a given phase should not be the same in a pure single-phase 
material and in a multiphase polycrystal, due to the interphase interactions revealed by the terms 
C1

, R1 and M1 which depend on the thermo-elastic properties of the others phases constituting the 

structure. 
Equation (18) was applied to several two-phases material chosen to evaluate the influence on 
pseudo-macroscopic CTE of the listed parameters : single crystal elastic anisotropy, single crystal 
thermal expansion anisotropy, heterogeneities of single-phase elastic stiffnesses, and 
heterogeneities of single-phase CTE. Results are detailed in table 1. In most cases, pseudo­
macroscopic CTE deviates from the single-phases values from less than 1%. In consequence, in 
spite of the expression demonstrated in (18), numerical computations justifies the identification of 
pseudo-macroscopic CTE to single-phase CTE. 

Single-crystal Single-crystal Single-phase elastic 
Maximum deviation 

Material Considered Elastic CTE stiffness 
Single-phase CTE between single-phase CTE 

phase Anisotropy anisotropy heterogeneity heterogeneity and the corresponding 
pseudo-macroscopic CTE 

Zr-Ti 
a-Zr Weak Medium 

Weak Strong 
1.2% 

a-Ti Weak Weak « 1% 

Fe-Cu a-Fe Medium None Medium Weak 
<<1% 

Cu Strong None << 1% 

Al-Zn AI Weak None Strong Strong 
<<I% 

Zn Strong Strong 2.4% 
. . . 

Table 1 : QualitatiVe and quantitatiVe study of the deviation between pseudo-macroscopic and smgle-phase CTE • 

This additional assumption implies to neglect interphase interactions. As a matter of fact, it has two 
major consequences. Firstly, the model reduces to the very classical "one inclusion per phase" SC 
model. Secondly this hypothesis provides the knowledge of the remaining unknowns in (15). 

Hence, this assumption should be considered as an enhancement of the model, because it ensures 

the possibility to characterize the thermal properties of a phase embedded in a two-phase material 
through (15). Nevertheless, the validity of the additional hypothesis should be checked a posteriori. 

2.2 Determination of SiC CTE from experiments performed on a two-phases MMC. Silicon 
Carbide (SiC) is extremely difficult to obtain in satisfying single-phase samples. 

45 SiC CTE (SC rrodet) 

40 
. -••-At erE (rreasured) 

• At-SiC 11/MC CTE (rreasured) 

35 - . - . -SiC CTE (rreasured at 773 K) 

10 

5 ' . --.- . 

398 498 598 698 
Temperature [KJ 

798 898 

Sintered samples include porosities which 
could be considered as a strongly 
heterogeneous secondary phase, due to its 
infinite compliance. Several papers 
demonstrate the main effects of the porosity 
on the mechanical behaviour of an extensive 
variety materials : concrete, metals and so on 
[ 15-17]. In terms of thermal expansion, it is 
almost sure that the average behaviour of a 
hypothetical bulk SiC polycrystal would not 
be the same than the one of a mixture SiC­
porosities. In consequence, the study of SiC 
CTE should be preferably achieved on a non­
porous two-phase sample, according to the 
formalism previously developed in this work. 

Figure 2: Predicted and experimental (14) evolution ofthe CTE in a 50 vol.% SiC,! AI MMC. 
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Analysis of the evolution of the CTE of Also% vo1-SiC5o% vol and pure aluminium polycrystals are 
available in the literature [14]. The required data has been introduced in SC simulation scheme as 
detailed in the previous section. Figure 2 illustrates the curves obtained at macroscopic and pseudo­
macroscopic scales in the composite. A horizontal line corresponding to SiC CTE measured around 
773 K is given as a comparison [18]. 
SC model predicts values in good accordance with the experiments in a wide temperature range 
[648 K-848 K]. Moreover, the results agrees with some conventional properties attributed to 
ceramics e. g. : a weak variation of their CTE with the temperature. 
This study confirms the validity of approaches coupling experiments to self-consistent models in 
order to characterize the thermal expansion of phases embedded in two-phases polycrystals. 

Conclusions 

Thermo-elastic self-consistent scale transition formalism was extended to the case of two-phases 
materials in a more convenient way. The solution developed takes into account the pseudo­
macroscopic scale which figures the average properties of the different phases constituting the 
material. An additional assumption was considered. Theory predicts that pseudo-macroscopic 
Coefficients of Thermal Expansions may deviate from the single-phase corresponding values. 
Numerical computations justifies, however, the identification of these tensors. This hypothesis 
provides an original method for the characterization of the CTE of a phase embedded in a two­
phase material. This method implies the coupling of experimental techniques and SC scale 
transition modeling. It was checked through the determination of the CTE of the Silicon Carbide 
included in aluminium based matrix. The simulations agree with values previously published in the 
literature. This work raises several perspectives. In further studies, SC model will be formulated in 
order to express the CTE of a phase directly from the pseudo-macroscopic strains measured on the 
diffracting volume of the material. XRD being extremely sensitive to texture effects, this alternative 
approach should be more pertinent to treat the case of rolled samples, for example. 
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