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Static and seismic passive earth pressure coefficients on rigid retaining structures

Introduction

Earthquakes have the unfavorable effects of increasing active lateral earth pressures and reducing passive lateral earth pressures. Hence, the assessment of seismic lateral earth pressures or changes in lateral earth pressures as the result of an earthquake is of practical significance in most seismic designs of retaining walls. The traditional method for evaluating the effect of an earthquake on the lateral earth pressures is the so-called "pseudo-static method." This method continues to be used by consulting geotechnical engineers because it is required by the building codes; it is easy to apply and gives satisfactory results. Quasi-static analysis using the seismic coefficient concept is therefore of great practical value in many cases, although the assessment of the seismic coefficient still relies highly on past experience.

The well-known Mononobe-Okabe analysis of seismic lateral earth pressures proposed by [START_REF] Mononobe | On determination of earth pressure during earthquakes[END_REF] and [START_REF] Okabe | General theory on earth pressure and seismic stability of retaining walls and dams[END_REF] is a direct modification of the Coulomb wedge method where the earthquake effects are replaced by a quasi-static inertia force whose magnitude is computed on the basis of the seismic coefficient concept. As in the Coulomb analysis, the failure surface is assumed to be planar in the Mononobe-Okabe method, regardless of the fact that the most critical sliding surface may be curved. Similar to the Coulomb analysis, the Mononobe-Okabe analysis may underestimate the active earth pressure and overestimate the passive earth pressure. Note, however, that the Mononobe-Okabe analysis has been experimentally proved by [START_REF] Mononobe | On determination of earth pressure during earthquakes[END_REF] and [START_REF] Ishii | Lateral earth pressure in an earthquake[END_REF] to be effective in assessing the seismic active earth pressure; it is generally adopted in current practice for seismic design of rigid retaining walls. The Mononobe-Okabe solution is therefore practically acceptable at least for the active pressure case, although its applicability to the passive pressure case is somewhat in doubt.

Recent research conducted by [START_REF] Chang | Lateral earth pressures on rigid retaining walls subjected to earthquake forces[END_REF] (cf. Chen and Liu 1990) using a log-sandwich mechanism within the framework of the kinematical method in limit analysis has shown that the upper-bound solutions they obtained were practically identical to those given by the Mononobe-Okabe method for the active case. However, the passive earth pressure coefficients are seriously overestimated by the Mononobe-Okabe method; they are in most cases higher than those obtained by the upper-bound method for a logsandwich mechanism.

In this paper, the static and seismic passive earth pressure problems are investigated by the upper-bound method of limit analysis using a translational failure mechanism. This mechanism allows the slip surface to develop more freely in comparison with the log-sandwich mechanism presented by [START_REF] Chen | Limit analysis solutions of earth pressure problems[END_REF] (cf. Chen 1975 and[START_REF] Chen | Limit analysis and soil plasticity[END_REF][START_REF] Chen | Limit analysis in soil mechanics[END_REF] in the static case and by [START_REF] Chang | Lateral earth pressures on rigid retaining walls subjected to earthquake forces[END_REF] A.-H. Soubra. École Nationale Supérieure des Arts et Industries de Strasbourg, 24, Boulevard de la Victoire, 67084 Strasbourg CEDEX, France.

(cf. [START_REF] Chen | Limit analysis in soil mechanics[END_REF]) in the seismic case; hence it leads to smaller upper-bound solutions of the passive earth pressure problem.

The upper-and lower-bound theorems of limit analysis

The upper-bound theorem, which assumes a perfectly plastic soil model with an associated flow rule, states that the rate of energy dissipation in any kinematically admissible velocity field can be equated to the rate of work done by the external forces, and so enables a strict upper-bound on the true limit load to be deduced (see [START_REF] Drucker | Extended limit design theorems for continuous media[END_REF][START_REF] Chen | Limit analysis and soil plasticity[END_REF][START_REF] Salençon | An introduction to the yield design theory and its application to soil mechanics[END_REF]. A kinematically admissible velocity field is one which satisfies compatibility, the flow rule, and the velocity boundary conditions. To provide solutions that are useful in practice, the upper-bound theorem is often used in tandem with the lower-bound theorem. The latter also assumes a perfectly plastic soil model with an associated flow rule and states that any statically admissible stress field (which satisfies equilibrium and the stress boundary conditions, and nowhere violates the yield criterion) will provide a lower-bound estimate of the true limit load (see [START_REF] Drucker | Extended limit design theorems for continuous media[END_REF][START_REF] Chen | Limit analysis and soil plasticity[END_REF][START_REF] Salençon | An introduction to the yield design theory and its application to soil mechanics[END_REF]. By using these two theorems, the exact limit load can often be bracketed with an accuracy which is sufficient for design purposes.

In this paper, only the upper-bound theorem of limit analysis is applied to the static and seismic passive earth pressure problem using a kinematically admissible velocity field. It should be noted here that the upper-bound theorem gives an unsafe estimate of the passive failure load. The aim of this work is to improve the best available upper-bound solutions given by [START_REF] Chen | Limit analysis in soil mechanics[END_REF] in both the static and seismic cases.

Theoretical analysis of the seismic passive earth pressure problem

An earthquake has two possible effects on a soil-wall system. One is to increase the driving forces, and the other is to decrease the shearing resistance of the soil. The reduction in the shearing resistance of a soil during an earthquake is in effect only when the magnitude of the earthquake exceeds a certain limit and the ground conditions are favorable for such a reduction. Research conducted by [START_REF] Okamoto | Bearing capacity of sandy soil and lateral earth pressure during earthquakes[END_REF] indicated that when the average ground acceleration is larger than 0.3g, there is considerable reduction in strength for most soils. However, he claimed that in many cases the ground acceleration is less than 0.3g, and the mechanical properties of most soils do not change significantly in these cases.

The assumptions made in the analysis can be summarized as follows:

(1) Only the reduction of the passive pressures due to the increase in driving forces is investigated under seismic loading conditions. The shear strength of the soil is assumed unaffected as the result of the seismic loading. This hypothesis is currently made by consulting geotechnical engineers (see, for instance, Commission of the European Communities 1994) and it has been adopted by many investigators in the seismic stability analysis of geotechnical problems (see, for instance, [START_REF] Sarma | Seismic bearing capacity factors of shallow strip footings[END_REF][START_REF] Richards | Seismic bearing capacity and settlement of foundations[END_REF][START_REF] Budhu | Seismic bearing capacity of soils[END_REF][START_REF] Paolucci | Seismic bearing capacity of shallow strip foundations on dry soils[END_REF]andSoubra 1997, 1999).

(2) A constant seismic coefficient is assumed for the entire soil mass involved. Only the horizontal seismic coefficient K h is considered, the vertical seismic coefficient often being disregarded.

(3) A translational multiblock failure mechanism is assumed. This mechanism is a generalization of the one-block failure mechanism considered in the Mononobe-Okabe method.

(4) The soil is assumed to be an associated flow rule Coulomb material obeying the maximal work principle of Hill. However, real soils do not obey the associative flow rule, since frictional soils are found experimentally to dilate at increments considerably less than those predicted by the normality condition, that is, dilatancy angle (ψ) < angle of internal friction (φ). Recent theoretical considerations made on translational failure mechanisms [START_REF] Drescher | Limit load in translational failure mechanisms for associative and non-associative materials[END_REF][START_REF] Michalowski | Closure on 'Stability of uniformly reinforced slopes[END_REF]Shi 1995, 1996) allow one to conclude that for a nonassociative material the limit load can be obtained using the flow rule associated with a new yield condition in which φ and cohesion c are replaced by φ* and c* as follows:

[1] tan * cos sin sin sin

φ φ φ = - Ψ Ψ 1 [2] c c * cos cos sin sin = - Ψ Ψ φ φ 1
Hence, the results presented in this paper can be used for nonassociative material provided φ and c are replaced with φ* and c* calculated from eqs. [1] and [2], respectively.

(5) The angle of friction δ at the soil-structure interface is assumed to be constant. This hypothesis is in conformity with the kinematics assumed in this paper.

(6) An adhesive force P a is assumed to act at the soilstructure interface. The intensity of this force is cl (tan δ)/(tan φ), where l is the length of the structure.

(7) The velocity at the soil-structure interface is assumed tangential to the wall (see [START_REF] Chen | Limit analysis and soil plasticity[END_REF]. Other investigators (see [START_REF] Drescher | Limit load in translational failure mechanisms for associative and non-associative materials[END_REF][START_REF] Michalowski | Closure on 'Stability of uniformly reinforced slopes[END_REF] assumed that the interfacial velocity is inclined at δ to the wall to respect the normality condition. Both hypotheses lead to the same result of the limit load (see Appendix 1).

Failure mechanism

The failure mechanism is shown in Fig. 1. It is composed of a radial shear zone including n triangular rigid blocks. The angles α i and β i (i = 1, …, n) are as yet unspecified.

As shown in Fig. 2a, the wall is translating horizontally and all the triangles move as rigid bodies in directions which make an angle φ with the discontinuity lines d i (i = 1, …, n).

The velocity of each triangle is determined by the condition that the relative velocity between the triangles in contact should have a direction which forms an angle φ with the contact surface. The velocity hodographs are shown in Fig. 2b. The velocities so determined constitute a kinematically admissible velocity field.

In the present analysis, the work equation is applied to the soil mass in motion. Two another alternative approaches considering the whole soil-structure system can also be used and lead to an identical limit load (see Appendix 1).

Calculations of rate of external work

As shown in Fig. 3, the external forces contributing to the rate of external work consist of the passive earth force P pE , the adhesive force P a , the weight of the soil mass W i (i = 1,..., n) the surcharge q on the ground surface, and the different inertia forces. These inertia forces concern the soil mass and the surcharge loading.

The rate of external work for the different external forces can be easily obtained; the calculations are presented in Appendix 2.

Calculations of rate of internal energy dissipation

Since no general plastic deformation of the soil mass is permitted to occur, the energy is dissipated solely at the dis- continuity surfaces d i (i = 1, …, n) between the material at rest and the material in motion and at the discontinuity surfaces l i (i = 1, …, n -1) within the radial shear zone. The rate of energy dissipation per unit length along such velocity discontinuities can be expressed as

[3] & cos D cV = φ
where V is the velocity that makes an angle φ with the velocity discontinuity according to the associated flow rule of perfect plasticity. Calculations of the rate of energy dissipation along the different velocity discontinuities are given in Appendix 2.

Work equation

By equating the total rate of external work (eq. [B14], Appendix 2) to the total rate of internal energy dissipation (eq. [B19], Appendix 2), we have

[4] P pE = K l K q l K c l i i i i i i p E pqE pcE γ α β γ α β α β ( , ) ( , ) ( , ) 2 2 + 
+ in which the seismic passive earth pressure coefficients K p γ E , K pqE , and K pcE can be expressed in terms of the 2n -1 as yet unspecified angles α i and β i . They are given as follows:
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Numerical results

The most critical passive earth pressure coefficients can be obtained by minimization of these coefficients (eqs. [5]- [7]) with regard to the mechanism parameters. A computer program has been developed for assessing the critical static and seismic passive earth pressure coefficients. In the following sections, we present and discuss in succession (i) the static passive earth pressure coefficients K pγ , K pq , and K pc given by the present failure mechanism for K h = 0; and (ii) the seismic passive earth pressure coefficients K p γ E , K pqE , and K pcE for various values of the seismic coefficient K h .

Static passive earth pressure coefficients

Table 1 presents the K pγ factor obtained from the computer program for φ = 45°, δ / φ = 1, β / φ = 1, λ / φ = 0, K h = 0, and various values of n (the number of triangular rigid blocks).

The upper-bound solution can be improved by increasing the number of rigid blocks. The reduction in the K p γ value decreases with an increase in n and attains 0.4% for n = 14. The same trend has been observed for the coefficients K pq and K pc .

On the other hand, the results obtained from the computer program indicate that the coefficient K pc is related to the coefficient K pq0 by the following relationship (cf. theorem of corresponding states of [START_REF] Caquot | Tables de poussée et de butée[END_REF]): 

[8] K K pc pq0 = - 1 cos tan δ φ
φ = 45°, δ / φ = 1, β / φ = 1, and λ / φ = 0.
where K pq0 is the coefficient of passive earth pressures due to a surcharge loading acting normally to the ground surface. This result is to be expected, since in the present analysis an adhesive force P a = cl (tan δ)/(tan φ) is assumed to act along the soil-wall interface.

Figure 4 shows the critical slip surfaces obtained from the numerical minimization of the coefficient K pγ for φ = 45°, δ / φ = 2/3, β / φ = 1/3, λ / φ = 0, and three values of n (3, 7, and 14).

For n = 14, the critical failure mechanism is composed of a radial shear zone sandwiched between two triangular rigid wedges. The shear zone is not bounded by a log-spiral slip surface as is the case of the log-sandwich mechanism proposed by [START_REF] Chen | Limit analysis solutions of earth pressure problems[END_REF]. Thus, the present mechanism leads to smaller upper-bound solutions of the passive earth pressure coefficient K pγ . However, the coefficients K pq and K pc are identical to those given by the logsandwich mechanism, since the multiblock mechanism approaches the log-sandwich mechanism as the number of rigid blocks increases. The coefficients K pq and K pc are also almost identical to those given by L'herminier and Absi (1962) (cf. Kérisel and Absi 1990) using the slip line method, and the maximum error does not exceed 0.5%. It should be noted that the critical angular parameters (α i , β i ) obtained from the minimization of both K pq and K pc give exactly the same critical geometry.

Table 2 presents the coefficients K pγ and K pq obtained from the computer program for φ ranging from 10°to 45°a nd five values of δ / φ when β / φ = λ / φ = 0; the coefficient K pc can be calculated using eq. [8]. In Table 2 and hereafter, the results are given for n = 14, which means that the minimization procedure is made with regard to 27 angular parameters.

Comparison with Rankine's solution

For the general case of an inclined wall with a sloped backfill ( β / φ ≠ 0, λ / φ ≠ 0), the Rankine passive earth pressure coefficient K p γ is given as follows (cf. [START_REF] Costet | Cours pratique de mécanique des sols, plasticité et calcul des tassements[END_REF]):
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As is well known, this pressure is inclined at an angle α with the normal to the wall (cf. Fig. 5) irrespective of the angle of friction at the soil-wall interface, where To validate the results of the present analysis, one considers a soil-wall friction angle δ equal to the α value given by Rankine. The numerical solutions obtained from the computer program have shown that in this special case the present results are similar to the exact solutions given by Rankine (eqs.

[9] and [12]). [START_REF] Caquot | Tables de poussée et de butée[END_REF] and [START_REF] Chen | Limit analysis solutions of earth pressure problems[END_REF] As mentioned earlier, the log-sandwich mechanism proposed by [START_REF] Chen | Limit analysis solutions of earth pressure problems[END_REF] gives the exact solution solely in the case of a weightless soil. As a result, the comparison of the present solutions with solutions of other authors will be limited to the passive earth pressure coefficient K pγ .

Comparison with

There are many solutions for K pγ in the literature based on (i) the limit equilibrium method [START_REF] Janbu | Earth pressure and bearing capacity calculations by generalised procedure of slices[END_REF][START_REF] Rowe | Stress-dilatancy, earth pressures, and slopes[END_REF][START_REF] Lee | Stability analysis. Application to slopes, rigid and flexible retaining structures[END_REF][START_REF] Packshaw | Earth pressure and earth resistance[END_REF]Shields andTolunay 1972, 1973;[START_REF] Spencer | Forces on retaining walls using the method of slices[END_REF][START_REF] Rahardjo | General limit equilibrium method for lateral earth forces[END_REF][START_REF] Bilz | Earth pressure of soils with friction and cohesion[END_REF], (ii) the slip line method [START_REF] Caquot | Tables de poussée et de butée[END_REF][START_REF] Sokolovski | Statics of soil media[END_REF][START_REF] Sokolovski | Statics of soil media[END_REF][START_REF] Graham | Calculation of passive pressure in sand[END_REF][START_REF] Hettiaratchi | Boundary wedges in two-dimensional passive soil failure[END_REF]; and (iii) the limit analysis theory [START_REF] Lysmer | Limit analysis of plane problems in soil mechanics[END_REF][START_REF] Lee | A theoretical study of the pressures acting on a rigid wall by a sloping earth on rockfill[END_REF][START_REF] Chen | Limit analysis solutions of earth pressure problems[END_REF][START_REF] Basudhar | Optimal lower bound of passive earth pressure using finite elements and non-linear programming[END_REF][START_REF] Soubra | Application de la méthode variationnelle au problème de détermination des pressions passives des terres. Influence des forces d'écoulement[END_REF][START_REF] Soubra | Étude de la butée des terres en présence d'écoulement[END_REF], 1999;[START_REF] Chen | Limit analysis in soil mechanics[END_REF]. The tendency today in practice is to use the values given by [START_REF] Caquot | Tables de poussée et de butée[END_REF] (cf. Tables of [START_REF] Kérisel | Tables de poussée et de butée des terres[END_REF].

Figure 6 shows the comparison of the present solutions with those of [START_REF] Caquot | Tables de poussée et de butée[END_REF] (cf. [START_REF] Kérisel | Tables de poussée et de butée des terres[END_REF] in the case of a vertical wall and horizontal backfill (

β / φ = λ / φ = 0).
The values from the present analysis are greater than those of Caquot and Kérisel, with the maximum difference being less than 12%.

Figure 7 shows the comparison of the present solutions with those of [START_REF] Caquot | Tables de poussée et de butée[END_REF] for different values of β and λ when φ = 45°and δ / φ = 1.

As in the case of a vertical wall and a horizontal backfill, the values from the present analysis are greater than those of [START_REF] Caquot | Tables de poussée et de butée[END_REF]. The difference is not significant for small values of β / φ (≤ -0.4) and for large values of λ ( ≥ 25°); however, it attains 38% when φ = 45°, δ / φ = 1, β/φ = 1, and λ/φ = -1/3. Note that for practical configu-rations ( φ ≤ 45°, 0 ≤ δ/ φ ≤ 2/3, λ / φ = 0, β / φ ≤ 1/3) the maximum difference does not exceed 12.2%. On the other hand, rigorous upper-bound solutions are proposed in the literature by [START_REF] Chen | Limit analysis solutions of earth pressure problems[END_REF]. These authors considered six failure mechanisms and showed that the log-sandwich mechanism gives in most cases the least upper-bound solutions. The results given by the present failure mechanism and those given by the logsandwich mechanism proposed by Chen and Rosenfarb are presented in Fig. 8 in the case of φ = 45°and δ / φ = 1.

K pγ K pq φ (°) 0 1/3 1/2 2/3 1 0 1/3 1/2 2/
It is clear that the present upper-bound solutions are better than those of [START_REF] Chen | Limit analysis solutions of earth pressure problems[END_REF]; the improvement attains 21% when φ = 45°, δ / φ = 1, β / φ = 1, and λ / φ = -1/3.

Comparison with other theoretical and experimental solutions

Recently, [START_REF] Kobayashi | Laboratory experiments with an oblique passive wall and rigid plasticity solutions[END_REF] performed laboratory tests to compare the experimental passive earth pressure coefficients obtained in the case of a large wall oblique angle with those given by theoretical predictions based on the rigid plasticity theory. The passive wall was pushed into a sand mass using two different methods. Method A translates the passive wall normally with a slight shear force, whereas method B sinks the passive wall vertically with a full shear force. The relationship between the observed K pγ and tan δ is demonstrated in Fig. 9. Passive earth pressure coefficients given by the present analysis, by [START_REF] Chen | Limit analysis solutions of earth pressure problems[END_REF] (cf. Chen 1975) using the upper-bound method in limit analysis, and by [START_REF] Sokolovski | Statics of soil media[END_REF] using the slip line method are also indicated in Fig. 9.

Observed values of K pγ are smaller than the theoretical predictions for large values of δ and K pγ decreases considerably from the peak to the residual. This may be explained by the progressive failure observed along a shear band. On the other hand, the comparison with the theoretical results given by [START_REF] Chen | Limit analysis and soil plasticity[END_REF] indicates that our solution improves the best upper-bound solution given by this author. The improvement attains 20.4% when φ = 42°, tan δ = 0.9, λ = -60°, and β = 0°. The present solutions are greater than those given by [START_REF] Sokolovski | Statics of soil media[END_REF], and the difference attains 19% when φ = 42°, tan δ = 0.9, λ = -60°, and β = 0°. [START_REF] Fang | Earth pressures with sloping backfill[END_REF] presented experimental data of earth pressure acting against a vertical rigid wall which moves toward a mass of dry sand with an inclined surface. The instrumented retaining-wall facility was used to investigate the variation of earth pressure induced by the translational wall movement. Based on experimental data, it has been found that the earth pressure distributions are essentially linear at each stage of wall movement and that the wall movement S/H (where S is the horizontal wall movement and H is the wall height) required for the backfill to reach a passive state increases with an increasing backfill inclination β. The relationship between the passive earth pressure coefficient K pγ,h and backfill inclination β at a different stage of wall movement S/H is demonstrated in Fig. 10.

Figure 10 shows that K pγ,h increases with increasing sloping angle β. For large values of β, the experimental K pγ,h values occur at a large wall displacement. As an example, for β = 20°, the required wall movement is 0.46H. For an arbitrarily assumed displacement criterion (S/H = 0.2) chosen by the authors, the present results and those given by the log-spiral method proposed by [START_REF] Terzaghi | Theoretical soil mechanics[END_REF] are in fairly good agreement with the experimental data.

Seismic passive earth pressure coefficients

Earthquakes have the unfavorable effect of reducing passive earth pressures. Equation [7] shows that the coefficient K pcE is unaffected by the seismic loading. To investigate how the passive earth pressure coefficients K pγE and K pqE are affected by earthquakes, extensive numerical results based on the present failure mechanism are presented in Tables 3 and4. The passive earth pressure coefficients K pγE and K pqE decrease with an increase in K h . The reduction is more significant for looser soils with lower φ values than for denser soils with higher φ values. For example, for δ / φ = 1, the reduction of the coefficient K pγE is 16% for φ = 45°and 35% for φ = 20°when K h increases from 0 to 0.3. Finally, it should be mentioned that the seismic acceleration generated by earthquakes not only imposes extra loading on a soil mass but also shifts the sliding surface to less favorable positions.

Figure 11 shows that the critical slip surface becomes more extended as the acceleration intensity increases.

Comparison of results with existing solutions

To see the validity of the present upper-bound solution, the seismic passive earth pressure coefficients are calculated and compared with solutions given by other authors.

Chang and Chen (1982) (cf. Chen and Liu 1990) considered a log-sandwich failure mechanism and gave rigorous upper-bound solutions for the coefficient K pγE . The upperbound solutions given by the present mechanism and those given by [START_REF] Chen | Limit analysis in soil mechanics[END_REF] are presented in Fig. 12.

As in the static case, the present upper-bound solutions are better than those of [START_REF] Chen | Limit analysis in soil mechanics[END_REF]; the improvement attains 18.2% when φ = 45°, δ / φ = 1, β / φ = 1, λ / φ = 0, and K h = 0.3. Therefore, the present failure mechanism gives interesting solutions for the seismic passive earth pressure coefficients for translational wall movement. Further investi- 

(β / φ = λ / φ = 0).
gation remains necessary for the elaboration of adequate rotational failure mechanism.

Conclusions

A translational, kinematically admissible failure mechanism has been considered for the calculation of the static and seismic passive earth pressures using the upper-bound method of the limit analysis theory. The solutions presented are rigorous upper-bound solutions in the framework of the limit analysis theory. The numerical results obtained lead to the following conclusions.

For the static case, the present results for the coefficient K pq are almost identical to those given by Kérisel and Absi (1990) using the slip line method and those given by Chen and Liu (1990) using the upper-bound method in limit analysis for a log-sandwich mechanism. For the coefficient K pc , the present analysis has shown that the traditional formula given by the theorem of corresponding states [START_REF] Caquot | Tables de poussée et de butée[END_REF]) is also valid in the present analysis using the upper-bound method of the limit analysis theory. For the coefficient K pγ , the present upper-bound solutions are better than those of [START_REF] Chen | Limit analysis in soil mechanics[END_REF], since one obtains smaller upper-bound solutions; the improvement is 21% for φ = 45°, δ / φ = 1, β / φ = 1, and λ / φ = -1/3. On the other hand, the comparison between the present solutions and the currently accepted values of [START_REF] Caquot | Tables de poussée et de butée[END_REF] has shown that the maximum difference is less than 12.2% for the practical configurations (φ ≤ 45°, 0 ≤ δ/ φ ≤ 2/3, λ / φ = 0, β / φ ≤ 1/3).

For the seismic case, the present multiblock failure mechanism continues to give smaller upper-bound solutions for the coefficient K pγE than the log-sandwich mechanism; the improvement is 18.2% for φ = 45°, δ / φ = 1, β / φ = 1, λ / φ = 0, and K h = 0.3. Extensive numerical results for the present seismic passive earth pressure coefficients K pγE and K pqE are presented for practical use in geotechnical engineering. [START_REF] Chen | Limit analysis in soil mechanics[END_REF] for φ = 45°, δ / φ = 1, λ / φ = 0, and K h = 0.3. K p γ ,h horizontal component of static passive earth pressure coefficient Kp γ K pq0 static passive earth pressure coefficient due to a surcharge loading acting normally to the ground surface l wall length n number of rigid blocks in the failure mechanism P a adhesive force P p static passive force P pE seismic passive force q surcharge loading S horizontal wall movement S i area of block i V velocity along velocity discontinuity V 0 wall velocity V 0,1 relative velocity at the soil-structure interface V i velocity of block i V i,i+1 relative velocity between blocks i and i + 1 

V i+1 velocity of block i + 1 W i weight of block i & , W P P

Appendix 1

In the case of a vertical rough wall, [START_REF] Drescher | Limit load in translational failure mechanisms for associative and non-associative materials[END_REF] and more recently [START_REF] Michalowski | Closure on 'Stability of uniformly reinforced slopes[END_REF] have indicated that two different ways of incorporating the wall friction in the energy-balance equation can be found in the literature (cf. [START_REF] Chen | Limit analysis and soil plasticity[END_REF][START_REF] Mroz | Limit plasticity approach to some cases of flow of bulk solids[END_REF][START_REF] Collins | The upper-bound theorem for rigid/plastic solids to include Coulomb friction[END_REF][START_REF] Collins | A note on the interpretation of Coulomb's analysis of the thrust on a rough retaining wall in terms of the limit theorems of plasticity theory[END_REF], and that both approaches lead to an identical force P p . The aim of this appendix is to present and discuss the two approaches in the general case of an inclined rough wall. A third approach is also presented and discussed. The following three approaches consider the simple case of a single rigid block (Fig. A1) ; however, the results remain valid for a multiblock mechanism.

First approach (Chen 1975)

In the approach of Chen (1975), the velocity jump vector is assumed to be tangential to the wall (Fig. A2). The wall moves horizontally with velocity V 0 and the wedge moves with velocity V 1 . Thus, sliding on the wall surface occurs with sliding vector magnitude V 0,1 = V 1 cos ( )/ cos β λ φ λ --(see velocity hodograph), and the rate of work dissipation associated with this sliding is

[A1] & ( sin ) , D P P V 1 0 1 = + = p a δ ( sin ) cos ( ) cos P P V p a δ β λ φ λ + -- 1 
The energy dissipation rate along the failure surface is given by

[A2] & ( cos ) cos cos ( D c V l 2 1 = - φ λ β λ)
The work rates of forces P p and P a and the soil weight are 

-- - + - + --- -       P a cos ( ) cos sin sin( ) cos β λ φ λ λ β φ λ
Second approach [START_REF] Mroz | Limit plasticity approach to some cases of flow of bulk solids[END_REF][START_REF] Collins | The upper-bound theorem for rigid/plastic solids to include Coulomb friction[END_REF][START_REF] Collins | A note on the interpretation of Coulomb's analysis of the thrust on a rough retaining wall in terms of the limit theorems of plasticity theory[END_REF] In this approach, the inclination of the velocity jump V 0,1 across the wall is taken as δ (Fig. A3). The wall moves horizontally with velocity V 0 and the wedge moves with velocity V 1 (see velocity hodograph).

The rate of work dissipation along the wall is given by 

[A6] & cos cos cos ( ) cos ( ) , D PV P V 3 0 1 1 = = -- - a a δ δ β λ φ λ δ
λ φ β λ + -- - - -- -   P a cos cos ( ) cos ( ) sin sin ( ) cos ( ) δ β λ φ λ δ λ β δ φ λ δ    

Third approach (present analysis)

In this approach, the passive force P p and the adhesive force P a are considered as two external forces acting on the soil wedge which moves with velocity V 1 (Fig. A4).

The rate of work dissipation along the failure surface is given by eq. [A2]. The work rates of forces P p and P a are )

β φ δ γ λ β β φ λ β λ -- = -- - 2 2 + - + - cl P cos cos cos ( ) [cos ( )] λ φ β λ β φ a

Discussion

By simple trigonometric manipulations or by numerical calculations one can easily see that the three approaches lead strictly to the same result of P p . Hence, in the present paper the third approach is adopted in which the passive and adhesive forces are considered external forces acting on the soil wedge which moves with velocity V 1 . In this analysis, no indication is made with regard to the soil-wall velocity V 0,1 . This confirms the conclusion of Drescher and Detournay [START_REF] Mroz | Limit plasticity approach to some cases of flow of bulk solids[END_REF] and [START_REF] Collins | The upper-bound theorem for rigid/plastic solids to include Coulomb friction[END_REF][START_REF] Collins | A note on the interpretation of Coulomb's analysis of the thrust on a rough retaining wall in terms of the limit theorems of plasticity theory[END_REF]. (1993) and [START_REF] Michalowski | Closure on 'Stability of uniformly reinforced slopes[END_REF] that the hypothesis of associativeness or nonassociativeness along the soil-structure interface has no influence on the limit load.

Appendix 2

This appendix presents the rate of external work and the rate of internal energy dissipation along the different velocity discontinuities.

Geometry

For the triangular block i, the lengths l i and d i and the surface S i are given as follows: 

Velocities

From the velocity hodographs (cf. Fig. 2b), the blocks and interblocks velocities are given as follows:

[B4] V V i j j j i j= i = - - + - ∏ sin ( + 2 ) sin ( 2 ) α β φ β φ 1 1 1 [B5] V i i i i i i j j , sin( ) sin( ) 
+ + + = - + - - 1 1 1 2 β β α β φ α β φ sin ( + 2 ) sin ( 2 ) β φ j j= i V + - - ∏ 1 1 1 1

Rate of external work

The rate of external work for the failure mechanism can be calculated as follows:

(1) Rate of external work due to self-weights and inertia forces of the n triangular rigid blocks: The rate of external work due to self-weight in a rigid block is the vertical component of the velocity in that block multiplied by the weight of the block. The rate of external work due to the seismic force in a block can be obtained by the multiplication of the horizontal inertia force of that block and the corresponding horizontal velocity. By summing this rate of external work due to self-weights and inertia forces over the n triangular blocks, one obtains 

[B6] & [ ( , ) ( , )] W l f K f V i i i i soil h = + γ α β α β

Fig. 1 .

 1 Fig. 1. Failure mechanism for static and seismic passive earth pressure analyses.

Fig. 2 .

 2 Fig. 2. (a) Velocity field of the failure mechanism. (b) Velocity hodographs.

Fig. 3 .

 3 Fig. 3. Free body diagram of the failure mechanism.

  of the slip surface with the horizontal direction is given as follows:

Fig. 4 .

 4 Fig. 4. Critical slip surfaces for φ = 45°, δ / φ = 2/3, β / φ = 1/3, λ / φ = 0, and three values of n (3, 7, and 14).

Fig. 5 .

 5 Fig. 5. Rankine solution in the case of a general soil-wall system.

Fig. 6 .

 6 Fig. 6. Comparison of the coefficient K pγ from the present solution with that of Caquot and Kérisel (1948) (β / φ = λ / φ = 0).

Fig. 7 .

 7 Fig. 7. Comparison of the coefficient K pγ from the present solution with that of[START_REF] Caquot | Tables de poussée et de butée[END_REF] for different β and λ values.

Fig. 8 .

 8 Fig. 8. Comparison of the coefficient K pγ from the present solution with that of Chen and Rosenfarb (1973) for different β and λ values.

Fig. 9 .

 9 Fig. 9. Comparison of results from the present solution with other theoretical and experimental results[START_REF] Chen | Limit analysis and soil plasticity[END_REF][START_REF] Sokolovski | Statics of soil media[END_REF] Kobayashi 1998 "Methods A and B").

Fig. 10 .

 10 Fig. 10. Comparison of results from the present solution with other theoretical and experimental results (Terzaghi 1943; Fang et al. 1997) ( φ = 30.9°, δ = 19.2°, and λ = 0°).

Fig. 11 .Fig. 12 .

 1112 Fig. 11. Critical slip surfaces for φ = 20°, δ / φ = 1, β / φ = λ / φ = 0, and K h = 0 and 0.2.
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  rate of external work (eqs. [A3] and [A4]) to the rate of internal energy dissipation (eqs. [A1] and [

Fig. A1 .

 A1 Fig. A1. One block failure mechanism.

  of soil weight is given by eq. [A4]. By equating the rate of external work (eqs. [A4], [A9], and [A10]) to the rate of internal energy dissipation (eq. [A2]), one obtains [

Fig. A2 .

 A2 Fig. A2. Velocity field according to Chen (1975).

Fig. A3 .

 A3 Fig. A3. Velocity field according to[START_REF] Mroz | Limit plasticity approach to some cases of flow of bulk solids[END_REF] and[START_REF] Collins | The upper-bound theorem for rigid/plastic solids to include Coulomb friction[END_REF][START_REF] Collins | A note on the interpretation of Coulomb's analysis of the thrust on a rough retaining wall in terms of the limit theorems of plasticity theory[END_REF].

Fig. A4 .

 A4 Fig. A4. Velocity field according to the present analysis.
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  Rate of external work due to the passive force P pE and the adhesive force P a : The rate of external work due to these forces is Rate of external work due to the surcharge loading and the corresponding inertia force: This rate of external work is given of external work is the summation of these three contributions, that is, eqs. [B6], [B9], and [B11]:Rate of internal energy dissipation(1) Along linesd i (i = 1, …, n) Along the radial lines l i (i = 1, …, n-1)The total rate of energy dissipation is the summation of these two parts, that is, eqs. [B15] and [B17]:

Table 1 .

 1 K pγ values versus number of rigid blocks n for

	n	K pγ	% reduction
	2	2362.66	
	3	673.26	71.50
	4	499.92	25.75
	5	441.87	11.61
	6	414.50	6.19
	7	399.18	3.70
	8	389.68	2.38
	9	383.34	1.63
	10	378.90	1.16
	11	375.65	0.86
	12	373.21	0.65
	13	371.32	0.51
	14	369.83	0.40

Table 2 .

 2 K pγ and K pq values for φ ranging from 10°to 45°and δ / φ of 0, 1/3, 1/2, 2/3, and 1 (β / φ = λ / φ = 0).

	3	1

Table 3 .

 3 Seismic

			φ (°)						
	δ / φ	K h	15	20	25	30	35	40	45
	0	0	1.70	2.04	2.46	3.00	3.69	4.60	5.83
		0.05	1.63	1.97	2.38	2.91	3.59	4.49	5.71
		0.10	1.56	1.89	2.30	2.82	3.49	4.38	5.58
		0.15	1.47	1.80	2.21	2.73	3.39	4.27	5.46
		0.20	1.37	1.71	2.12	2.63	3.29	4.15	5.33
		0.25	1.22	1.61	2.02	2.53	3.18	4.03	5.20
		0.30	-	1.48	1.91	2.42	3.06	3.91	5.07
	1/3	0	1.89	2.39	3.08	4.05	5.48	7.70	11.35
		0.05	1.81	2.30	2.97	3.91	5.31	7.48	11.07
		0.10	1.71	2.19	2.84	3.77	5.14	7.27	10.78
		0.15	1.60	2.08	2.72	3.62	4.96	7.04	10.49
		0.20	1.47	1.95	2.58	3.47	4.78	6.81	10.19
		0.25	1.28	1.81	2.44	3.31	4.59	6.58	9.88
		0.30	-	1.64	2.28	3.13	4.39	6.33	9.57
	1/2	0	1.99	2.58	3.43	4.69	6.67	9.99	15.98
		0.05	1.89	2.47	3.29	4.53	6.46	9.70	15.57
		0.10	1.79	2.35	3.15	4.35	6.24	9.40	15.15
		0.15	1.67	2.22	3.01	4.18	6.01	9.10	14.73
		0.20	1.53	2.08	2.85	3.99	5.78	8.79	14.29
		0.25	1.32	1.92	2.68	3.79	5.54	8.48	13.85
		0.30	-	1.73	2.50	3.59	5.29	8.15	13.40
	2/3	0	2.08	2.77	3.79	5.40	8.06	12.83	22.22
		0.05	1.98	2.65	3.64	5.20	7.80	12.46	21.65
		0.10	1.87	2.52	3.48	5.00	7.53	12.08	21.06
		0.15	1.74	2.37	3.32	4.79	7.25	11.68	20.47
		0.20	1.58	2.22	3.14	4.57	6.96	11.28	19.86
		0.25	1.36	2.04	2.95	4.34	6.66	10.87	19.24
		0.30	-	1.83	2.74	4.10	6.35	10.44	18.61
	1	0	2.25	3.12	4.51	6.86	11.13	19.62	38.61
		0.05	2.13	2.98	4.33	6.61	10.76	19.05	37.61
		0.10	2.01	2.83	4.13	6.35	10.39	18.46	36.60
		0.15	1.86	2.66	3.93	6.07	9.99	17.85	35.56
		0.20	1.69	2.48	3.71	5.79	9.59	17.23	34.51
		0.25	1.44	2.28	3.47	5.49	9.17	16.60	33.43
		0.30	-	2.03	3.22	5.17	8.74	15.94	32.33

passive earth pressure coefficient K p γ E (β / φ = λ / φ = 0).

Table 4 .

 4 Seismic passive earth pressure coefficient K pqE

			φ (°)						
	δ / φ	K h	15	20	25	30	35	40	45
	0	0	1.70	2.04	2.46	3.00	3.69	4.60	5.83
		0.05	1.63	1.97	2.38	2.91	3.59	4.49	5.71
		0.10	1.56	1.89	2.30	2.82	3.49	4.38	5.58
		0.15	1.47	1.80	2.21	2.73	3.39	4.27	5.46
		0.20	1.37	1.71	2.12	2.63	3.29	4.15	5.33
		0.25	1.22	1.61	2.02	2.53	3.18	4.03	5.20
		0.30	-	1.48	1.91	2.42	3.06	3.91	5.07
	1/3	0	1.88	2.37	3.03	3.95	5.28	7.29	10.49
		0.05	1.80	2.28	2.93	3.83	5.14	7.11	10.27
		0.10	1.71	2.18	2.82	3.71	4.99	6.93	10.04
		0.15	1.60	2.07	2.70	3.57	4.84	6.75	9.81
		0.20	1.47	1.95	2.57	3.43	4.67	6.55	9.56
		0.25	1.28	1.81	2.43	3.28	4.50	6.35	9.32
		0.30	-	1.64	2.28	3.12	4.32	6.14	9.06
	1/2	0	1.96	2.52	3.30	4.44	6.17	8.92	13.62
		0.05	1.88	2.42	3.19	4.31	6.00	8.71	13.33
		0.10	1.78	2.32	3.07	4.17	5.83	8.49	13.03
		0.15	1.67	2.20	2.95	4.02	5.65	8.26	12.73
		0.20	1.53	2.07	2.81	3.86	5.46	8.02	12.42
		0.25	1.32	1.92	2.65	3.69	5.26	7.78	12.09
		0.30	-	1.73	2.48	3.51	5.05	7.52	11.76
	2/3	0	2.03	2.65	3.56	4.93	7.09	10.72	17.29
		0.05	1.94	2.56	3.45	4.78	6.90	10.47	16.93
		0.10	1.84	2.45	3.32	4.63	6.71	10.20	16.55
		0.15	1.73	2.33	3.18	4.46	6.50	9.93	16.17
		0.20	1.58	2.19	3.03	4.29	6.28	9.64	15.77
		0.25	1.36	2.03	2.86	4.10	6.05	9.35	15.36
		0.30	-	1.83	2.68	3.90	5.81	9.04	14.93
	1	0	2.13	2.87	4.00	5.81	8.86	14.42	25.55
		0.05	2.04	2.77	3.87	5.64	8.62	14.08	25.01
		0.10	1.94	2.65	3.73	5.45	8.38	13.72	24.45
		0.15	1.82	2.52	3.57	5.26	8.12	13.35	23.88
		0.20	1.66	2.37	3.40	5.05	7.85	12.97	23.29
		0.25	1.43	2.19	3.22	4.83	7.56	12.57	22.69
		0.30	-	1.98	3.01	4.59	7.26	12.16	22.06

List of symbols