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Short fiber reinforced composites have gained increasing technological importance due to their versatility
that lends them to a wide range of applications. These composites are useful because they include a
reinforcing phase in which high tensile strengths can be reached, and a matrix that allows to hold the
reinforcement and to transfer applied stress to it. It is a well-known fact that such materials can have
excellent mechanical, thermal and electrical properties that make them widely used in industry. During the
manufacture process, fibers adopt a preferential orientation that can vary significantly across the geometry.
Once the suspension is cooled or cured to make a solid composite, the fiber orientation becomes a key
feature of the final product since it affects the elastic modulus, the thermal and electrical conductivities,
and the strength of the composite material. In this work we analyzed the state-of-the-art and the recent
developments in the numerical modeling of short fiber suspensions involved in industrial flows.

1 INTRODUCTION

1.1 The Industrial Motivation

There are two main classes of composite materials depending on the field of their applica-
tions. In the first category one finds the composites dedicated to high diffusion parts in
automobile industry, packing, house ware, etc. Their price exceeds rarely few dollars per kg.
On the other hand, technical composites are widely used in sports equipment, and aerospace
and naval industries due to their specific resistance in spite of their more expensive price. In
most cases, technical composites consist of continuous fibers in a thermoset matrix, whereas
high diffusion composites are very often made of short fibers reinforced thermoplastics (e.g.
polypropylene, polyamide, etc.). In a volume average, the high diffusion composites repre-
sent the most essential part of the market. Many structural analysis studies concern high
performance composite. On the contrary, it is understandable that many research studies



on forming processing are focused on high diffusion composites for which a process opti-
mization is capital. This paper lies in this framework. Its aim is to establish the state of
the art on the numerical simulation of short fibers reinforced thermoplastics (SFRT) flows,
which are involved in short fiber composites forming processes.

There are many different forming processes for high diffusion composites. From a gen-
eral point of view, every process used in thermoplastics transformation can be adapted in
a more or less straightforward way to short fiber composites forming processes. However,
among all these processes, injection molding and extrusion are probably the most usual.
Moreover during these processes the material flows and induces a very large material de-
formation, which leads for composites, to a specific phenomenon: the fibers affect the flow
and simultaneously, the flow induces a fiber orientation. These processes turn out to be a
way to induce an anisotropy in the manufactured parts. This anisotropy is usually desired
but has to be controlled in order to optimize the mechanical properties of the final product
(fibers orientated locally in the stress directions).

Injection molding process. A typical injection molding machine is described in Figure 1.
The process is sequential: the premixed material is introduced in a granular form into the
barrel. The fusion arises because of the combined effects of electrical heating devices around
the barrel and of internal dissipation effects due to the high viscosity of thermoplastics. The
screw rotates and moves back to store the desired quantity of molten material at the head
of the screw where the injection gate is located. Then, the rotation of the screw is stopped
and the screw used as a piston, injects the material into the mold. The final part is then
obtained after cooling under pressure. This technique is used to manufacture 3D parts.

Figure 1. Injection molding machine

Extrusion process. Extrusion is used to obtain “one-dimensional” parts such as tubes,
profiles and wires. It is basically the same process as injection molding with the exception
that the process is continuous: the molten material is forced through a die and then gen-
erally cooled outside the extruder into a water bath (Figure 2). Changing the shape of the
product cross section requires only to change the die geometry. Extruders work generally
during many hours in a steady state regime.

Induced anisotropy. From a general point of view, processes concerning short fibers
suspensions involve two main common features:

• A flowing device (mold, die, etc.), which orients the fibers.

• The presence of fibers affects the material behavior and thus the flow kinematics.



Figure 2. Extrusion machine

Flow orients the fibers. To illustrate the first phenomenon from a physical point of view,
we consider the injection of a disc. In our material, the fibers have a length around 0.1
mm and a diameter around 1μm. The fibers aspect ratio defined as the ratio of the length
and diameter is equal to 100. The injection gate is located at the center of the disc on its
surface. After the molding one cuts the part along a plane containing the disc axis and one
of its diameter. If we examine the cross section with an optical microscope (see Figure 3),
a clear heterogeneity of the morphology through the thickness can be detected. The fibers
are found to be almost aligned with the flow near the upper and lower surfaces of the mold.
On the contrary in the core region, near the middle plane of the disc, fibers are found to
be mostly perpendicular to the flow. Between these two regions there is a transition zone
where fibers seem to be oriented at random without any preferential alignment.

Figure 3. Fiber orientation distribution in an injected disc: experimental mea-
surements (Meslin, 1997)

These micrographs are an experimental evidence of the above-mentioned point of the
effects of the flow kinematics on the fibers orientation. Before presenting an accurate mod-
eling of this phenomenon, it would be interesting to give a simple semi-heuristic argument
that supports these observations. Let’s consider a simple shearing flow as shown in Figure 4
(fully-developed flow through a parallel plate channel). In this case, the fibers located out
of the middle plane are subjected to a hydro-dynamical torque that induces a rotation of
the fibers. If the fibers are assumed to have a quasi-infinite aspect ratio, they will rotate
until they reach an equilibrium state in which they are fully aligned with the velocity field.
The alignment characteristic time decreases when both (i) the flow rate decreases and (ii)



the fibers are located near the middle plane. When the fibers are very close to the flow sym-
metry zones, there is namely no velocity gradient and consequently, the hydro-dynamical
torque vanishes. We can conclude that shear flows tend to align the fibers in the flow
direction.

Figure 4. Orientation process in shear flow

Lets consider now flows with an elongational component. A first example is a converging
flow. An intuitive graphic argument shows that the torque due to the velocity gradient tends
to align the fibers in the flow direction (Figure 5). On the contrary in a diverging flow, the
torque aligns the fibers perpendicularly to the flow (Figure 6).

Figure 5. Fiber orientation in convergent flow

From these qualitative conclusions, the experimental results concerning the disc micro-
graphs can be explained. In the zone near the walls the shear component is preponderant
and the fibers tend to align in the flow direction. In the core region, the shear compo-
nents almost vanish giving rise to a dominant extensional flow pattern similar to the one
found in a divergent die (the norm of the velocity decreases along the trajectories): in
this case the fibers align in the ortho-radial direction. In the transition region both the
shear and elongational components act simultaneously giving rise to a non preferential fiber
orientation.

Effects of fibers orientation on the flow. To show an experimental evidence of the influence
of fibers on the flow pattern, lets consider a contraction flow at very low Reynolds number.
Flow visualization with a planar sheet of laser light has have been achieved by Lipscomb
et al. (1988). Figure 7 shows the case of a flow without fibers, where a typical small
recirculation region can be seen. Figure 8 shows the case of the same material in which
a very small amount of fibers has been added. It is very clear from this figure that the



Figure 6. Fiber orientation in divergent flows

 

 

Figure 7. Newtonian fluid in a contraction flow (Lipscomb et al. (1988))

fibers presence strongly affects the flow. A large recirculation region appears that cannot
be explained in the framework of low Reynolds number Newtonian fluid mechanics. This
phenomenon is somehow similar to the one encountered in viscoelastic fluids and can induce
flow instabilities.

Need for prediction and control of induced anisotropy. Even if it is possible, as
outline above to predict the fiber orientation in simple flows, in flows with industrial inter-
est, this is not anymore possible: the complexity of the geometry as well as the coupling
between the flow and fiber presence and orientation makes impossible an accurate predic-
tion of the orientation. Without an accurate fiber orientation prediction it is not possible
to evaluate the mechanical properties of the conformed part. One possibility to circum-
vent this difficulty consists in the experimental measurement of the fiber orientation on
prototype pieces. However, such experimental trial-and- error approaches are known to be
very expensive because they require not only the design but also the manufacture of several
molds. Thus, the numerical simulation turns to be a very attractive solution from both
theoretical and economical points of view.



Figure 8. Short fiber suspension in a contraction flow (Lipscomb et al. (1988))

The aim of this paper lies in this framework of a need for a fully coupled modeling involv-
ing both the modeling of the materials constitutive behavior and the numerical modeling
of the resulting equations.

With a forming process, one obtains usually an orientation field which is not optimal.
The definition of an optimal criterion is in itself a rather complicated problem (limit analy-
sis, fracture mechanics, resistance in fatigue or creep ...). However, assuming that we know
the fiber orientation that we wish to obtain (stress directions), it can be possible to design
the mold and the injection process, or the die geometry in extrusion processes, in order
to fulfill the required orientation conditions. As an example, let’s consider the case of an
extruded tube (Figure 2). It can be interesting to orient the fibers on the circumferential
direction in order to reinforce the tube to internal pressure loading conditions. If we design
a die of Poiseuille’s type, the flow is dominated by shear, which aligns the fibers on the tube
axis direction (i.e. in the wrong direction from the mechanical point of view). However,
using an axisymmetric divergent die the circumferential fiber orientation is improved.

1.2 State of the Art
1.2.1 A general overview

A mathematical modeling of a short fiber suspension flow involves mainly two steps. In the
first step, one needs to derive a constitutive relation for the suspension. In the second one,
it is necessary to develop accurate numerical schemes to treat the resulting equations.

Most models of anisotropic suspensions involve averaging procedures because it is not
possible to follow the movement of each fiber in the suspension. These averaging procedures
are of two kinds. The first one is a spatial averaging (often referred to as homogenization). It
allows to derive macroscopic quantities as soon as the microscopic geometry is characterized.
The second one is statistical: because the morphology is never fully characterized with
exactitude, this method allows to derive statistical averaged macroscopic quantities from
a statistical description of the morphology (Batchelor (1970-a), (1970-b), Hinch and Leal
(1975) (1976), Meslin (1997)).

These homogenization procedures have been developed under different assumptions: the
ambient fluid is Newtonian, there is not contact between fibers, fibers are rigid, inertia and



mass terms can be neglected, etc. Strictly speaking, these hypotheses are not realistic in real
industrial situations where the matrix is visocelastic and the usually high volume fractions
induces fiber contacts. However if one is not interested with a fine stress prediction it is
admitted nowadays, that these oversimplified hypotheses allow for a reasonable prediction
of the fiber orientation if the rheological parameters are identified experimentally.

The numerical modeling involves the coupling of an elliptic problem (anisotropic ex-
tension of Stokes equations) with a hyperbolic equation governing the fiber orientation
evolution inside the suspension. Until now, there has been plane strain 2D, axisymmet-
rical or 3D plate’s type simulations in injection and extrusion processes. The 3D plate’s
type simulations are particularly interesting because many injection molding applications
involve pieces which exhibit a dimension much smaller than the others. Several commercial
codes already offer the possibility to solve the coupled problem for this type of geometries.
Their numerical predictions are in good agreement with experimental results. However,
some particular situations require real 3D calculations (small pieces or non axis-symmetric
dies). Moreover simplified analysis leads to significant errors near the boundaries (fountain
flow effect for example). Due to the hyperbolic nature of the orientation equation, slight
errors are propagated in the domain by the flow. For the moment, there are no industrial
simulation codes for these complex 3D flow geometries.

1.2.2 A more detailed overview: related works

Extensive numerical studies on the fiber suspension flows have been devoted to extrusion
flow, flow around a sphere, squeezing flow, developing flow through a channel, radial flow
between parallel disks and mold filling flow:

• Papanastasiou and Alexandrou (1987) investigated the isothermal extrusion of a non-
dilute fiber suspension in a Newtonian solvent using the Dinh-Armstrong constitutive
equation (Dinha and Armstrong (1984)). The fiber orientation was computed by
solving the orientation distribution function along selected streamlines of the complex
velocity field. Rosenberg et al. (1990) studied both planar extrusion and falling-ball
rheometry of dilute fiber suspensions in a Newtonian fluid. They used the Transversely
Isotropic Fluid (TIF) model first proposed by Ericksen (1960). The fiber orientation
was obtained by numerically integrating the evolution equation of the second-order
orientation tensor with a closure approximation along the streamlines.

• Phan-Thien and Graham simulated the squeezing flow between two circular disks of a
model suspension (Phan-Thien and Graham (1990)) and the flow past a sphere (Phan-
Thien and Graham (1991)). The suspension assumed to be a dilute and consisting of
rigid, large aspect ratio spheroids, was adequately modeled by the TIF model.

• Altan et al. (1992) investigated the developing flow and fiber orientation of a sus-
pension in a straight channel. They assumed that the orientation was planar and
used the Dinh-Armstrong model. The orientation state was obtained by comput-
ing the evolution equation of the fourth- order orientation tensor with a sixth-order
quadratic closure approximation. On the other hand, Chono and Makino (1995) used
the Dinh-Armstrong model and the evolution equation of an equivalent strain tensor
derived by Lipscomb (1986). Furthermore, Ausias et al. (1994) used the constitutive
equation developed by Lipscomb et al. (1988) and the evolution equation of the forth-
order orientation tensor with a quadratic closure approximation. They computed an
axisymmetric flow through an annular tube die by coupling with three-dimensional
orientation of fibers.



• Ranganathan and Advani (1993) studied an axisymmetric diverging radial flow be-
tween disks of non-dilute fiber suspension. They coupled a modified form of the
rheological equation given by Shaqfeh and Fredrickson (1990) with a model for the
evolution of fiber orientation which takes into account the effect of fiber-fiber interac-
tions on the fiber angular velocities. Altan and Rao (1995) developed the closed-form
solution of the three-dimensional orientation field induced by a radially diverging,
steady Newtonian flow between two parallel disks. Amhed and Alexandrou (1994)
investigated the filling of a simple two-dimensional injection molding cavity. The
Dinh-Armstrong model was used and the fiber orientation was computed by solving
the orientation distribution function along the streamlines. Chung and Kwon (1995)
predicted the transient behavior of fiber orientations together with a mold filling sim-
ulation of short-fiber suspension in arbitrary three-dimensional mold cavities. The
Dinh-Armstrong model was incorporated into the Hele-Shaw equation and the evo-
lution equation of the second-order orientation tensor was computed to obtain the
orientation of fibers.

All of the above studies are concerned with non-recirculating flows and there has been
relatively little work on fiber suspension flows including a recirculating flow as well as fiber
orientation in a recirculating flow.

• Lipscomb et al. (1988) and Chiba et al. (1990) studied the circular entry flow of
fiber suspensions in a Newtonian solvent. The TIF model was applied to suspensions
with large aspect-ratio fibers. The results obtained using this model were compared
with experimental data and the growth of the salient corner vortex was predicted
with high accuracy over the semi-dilute fiber suspension regime, although the consti-
tutive model was derived for dilute fiber suspensions. In the computations, a fiber
was assumed to align along the streamline (co-linear fiber alignment). Lipscomb et
al. (1988) stated that the continuum theory for dilute fiber suspensions that incor-
porated the orientation distribution function into the stress equation predicted the
flow field accurately. Furthermore, Baloch and Webster (1995) conducted numerical
simulations for dilute to semi-dilute fiber suspension flows in a Newtonian solvent
through various contraction and expansion geometries using the constitutive model
of Lipscomb. They adopted co-linear and orthogonal fiber alignment (the local fiber
orientation is perpendicular to the streamline) conditions and compared the simulated
results with the experimental observations of Abdul-Karem et al. (1993).

• On the other hand, the characterization of the fiber orientation in a recirculating
flow is very important from a practical view point because a recirculating flow occurs
in a complex flow which is often seen in polymer processing industries. Chang et
al. (1994) investigated the flow-induced orientation of liquid crystalline polymers
in a planar contraction, expansion and in a dimpled channel. They employed the
simplified Leslie- Ericksen equation (Ericksen (1960), Leslie (1966) (1968)) with the
high viscosity approximation and found the director orientation in a recirculating
region. Recently Chiba et al. computed the two-dimensional fiber orientation in
recirculating flows of Newtonian fluid within a slot mounted on a wall of a parallel
plate channel (Chiba et al. (1996-a), (1996-b)) and within a salient corner of an
abrupt expansion channel (Chiba et al. (1997)). They reported that steady and
almost complete orientation was achieved after several circulations of fibers along a
streamline in a recirculating flow. The fiber orientation in steady recirculating flows
was also reported by Azaiez et al. (1997), Poitou et al. (2000) and Chinesta and
Chaidron (2001).



In numerical simulations for fiber suspension flow and fiber orientation, the following
two types of strategy are well known:

I. The coupled equations of the governing equations for flow field, the constitutive equa-
tion and the evolution equation of the orientation tensor with a closure equation are
solved.

II. The coupled equations of the governing equations for flow field, the constitutive equa-
tion and the evolution equation of orientation distribution function, e.g., the Fokker-
Plank equation, are solved.

• Although a statistical orientation distribution is necessary to describe the ori-
entation dependent properties of fiber suspensions completely, direct solution of
this function, such as solution of the Fokker-Planck equation, or its construction
from the solution of numerous discrete fibers did not gain popularity because of
mathematical complexity and computational intensity. As a consequence, the
implementation of tensorial quantities such as orientation tensors found some
acceptance for microstructural characterization in the works of Hinch and Leal
(1976) on suspension rheology, Doi (1981) and Grmela and Carreau (1987) on
conformation tensor rheological model. Orientation tensors provided consider-
able advantages for numerical calculations because of their concise description
of the orientation state. The major drawback of the orientation tensors was the
requirement of a closure equation in order to approximate the higher order ten-
sors which appeared in the orientation evolution equations. Advani and Tucker
(1987) (1990), Altan et al. (1989) and Chiba and Nakamura (1995) tackled the
problems related to closure approximations.

• Akbar and Altan (1992) discussed the drawbacks of using the approach based
on orientation tensors, and proposed a statistical method which made it possible
to generate the orientation distribution function by considering large numbers
of fibers without solving the Fokker-Planck equation. Hence, the solution of
orientation fields along the streamlines in a complex flow was feasible by consid-
ering numerous fibers starting from specified initial orientations. This statistical
method was recently used by Ericsson et al. (1997) in computations of the rhe-
ology of a discontinuous fiber filled polypropylene in a squeezing flow between
parallel plates. It was shown that the statistical method gave an excellent pre-
diction of the behavior of the exact solution in simple flows using only 100 test
fibers. Furthermore, Chiba and Nakamura (1995) used the statistical method to
examine the accuracy of the quadratic closure approximation of the fourth-order
orientation tensor.

2 MECHANICAL MODELING: CONSTITUTIVE EQUATION

Two main steps allow to derive macroscopic constitutive equations for anisotropic suspen-
sions: (i) a standard homogenization procedure that leads to volume averaged quantities if
the orientation of the particles is perfectly defined, and (ii) a statistical description of the
orientation.

Volume averaged quantities. In this procedure, the basic equations are obtained with
a volume averaged procedure (Batchelor (1970-a)). Let Ω be a representative volume of
the macroscopic scale, which contains many particles located in Ωi. Let τ , �u and D denote
respectively the microscopic stress tensor, velocity vector and strain rate tensor and �n be
a normal vector to the particle boundary (Figure 9).



Figure 9. Representative volume at a macroscopic scale

For a given fiber orientation �p (unit vector aligned along the principal axis of the fiber)
in the suspension, for a Newtonian ambient fluid of viscosity η and if inertia terms can be
neglected, the corresponding macroscopic variables T, �v, and D are related by

T(�p) = −pI + 2μD(�v) +
∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p (2.1)

∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p =

1
Ω

∑
i

∮
∂Ωi

ττττττττττττττ�n ⊗ �x dx (2.2)

In the above expressions, p is the volume averaged pressure, I is the unit tensor and
∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p
represents the contribution of the particle to the averaged extra stress tensor.

Statistical average. The fiber orientation �p is given in an average sense by its probability
distribution ψ(�p) so that the macroscopic statistical averaged stress tensor (i.e. the stress
tensor used in engineering computations) is

σσσσσσσσσσσσσσ =
∫

T(�p)ψ(�p) d�p (2.3)

For most engineering applications, the exact calculation of int ψ(�p) at each point is
neither necessary nor possible. This orientations information is correct ly approximated
with the use of the second order and fourth order orientation tensors, defined as follows:

a =
∫

�p ⊗ �pψ(�p) d�p

a4 =
∫

�p ⊗ �p ⊗ �p ⊗ �pψ(�p) d�p
(2.4)

where ⊗ denotes the tensorial product.
The flow around a single particle in a Newtonian fluid gives a first approximation for

the evolution of one particle orientation. From Jeffery’s calculations (Jeffery (1922)), if λ
denotes the aspect ratio of the particle, and if ΩΩΩΩΩΩΩΩΩΩΩΩΩΩ and D are respectively the volume averaged
vorticity and strain rate tensors, then

d�p

dt
= ΩΩΩΩΩΩΩΩΩΩΩΩΩΩ�p + k{D�p − (�pTD�p)�p} (2.5)



with

k =
λ2 − 1
λ2 + 1

(2.6)

The evolution equation of the probability distribution is given by

dψ(�p)
dt

+
∂

∂�p

{
ψ(�p)

d�p

dt

}
=

∂

∂�p

{
Dr

∂ψ(�p)
∂(�p)

}
(2.7)

In the above equation, the rotary diffusion coefficient Dr which vanishes at zero shear
rates, accounts for the hydrodynamic interactions between fibers. The evolution equation
for the second order orientation tensor then becomes

δa
δt

=
da
dt

− (ΩΩΩΩΩΩΩΩΩΩΩΩΩΩa − aΩΩΩΩΩΩΩΩΩΩΩΩΩΩ) − k(Da + aD) = −2ka4 : D + Dr

(
a − Id

3

)
(2.8)

where the symbol “:” denotes the tensorial product twice contracted. This equation can be
easily obtained considering the time derivative of Eq. (2.4) taking into account Eqs. (2.5)
and (2.7).

This equation does not allow to determine the orientation tensor if the velocity field is
given, because it involves the fourth order orientation tensor a4. The evolution equation for
the fourth order tensor involves the 6th order tensor, and in general, the evolution equation
for any order moment of �p involves the next higher-order moment. Therefore, to obtain a
closed set of equations, one needs to determine a4 as a function of a. A variety of closure
approximations have been proposed to relate these two orientation tensors. Among these,
we will mention the quadratic closure approximation in which a4 is defined as:

a4 = a ⊗ a (2.9)

2.1 Explicite Calculations for
∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p

The calculation of
∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p as a function of the macroscopic velocity field �v requires to solve a
microscopic problem, which can take different forms according to the level of approximation.
To date, two major approaches have been used to determine

∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p. In the first approach based

on slender bodies theory, the stress distribution at the particles boundary is reduced to a
multipolar distribution. The Batchelor’s model (Batcherlor (1970-a)) is deduced, which has
been modified by Shaqfeh and Fredrickson (1990). All of these models can be written in
the following form ∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p = 2ηTr[D(�v)(�p ⊗ �p)]�p ⊗ �p (2.10)

In this expression, η is calculated as a function of the particles concentration and of
its aspect ratio which is assumed to be very large. The exact expression depends on the
level of approximations. The interactions between fibers are accounted for in a certain
sense, but for long or very long fibers only. A second class of models deals with ellipsoidal
or spheroidal particles. This case has been extensively studied for linear elastic materials
(Gilormini and Vernusse (1992), Mura (1982)). However, it turns out that it has not been
so much studied for suspensions, probably because Eshelby’s works (Eshelby (1957)) are
not popular in the fluid mechanics scientific community.

Suspension of spheres. The case of a suspension of non Brownian spheres is meaning-
ful because the suspension remains Newtonian (viscosity ηeq). In this case, if ϕ denotes
the volume fraction of spheres, and if there are no hydrodynamic interactions (dilute sus-



pension), the dilute approximation leads to Einstein’s formula

∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p = 5ηϕD(�v) ⇒ ηeq = η(1 + 2.5ϕ) (2.11)

To account for hydrodynamic interactions, a natural way consists of calculating
∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p by
assuming that, instead of being immersed in the ambient fluid of viscosity η, the conse-
quences of hydrodynamic interactions are summarized by placing the sphere in an ambient
fluid of viscosity ηeq (self-consistent model)

∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p = 5ηeqϕD(�v) ⇒ ηeq =

η

1 − 2.5ϕ
(2.12)

For small but non infinitesimal volume fractions, the self-consistent model allows to
derive (with a very different approach than the original one), the Batchelor’s approximation

ηeq = η(1 − 2.5ϕ + 6.25ϕ2) (2.13)

However the self-consistent model suffers from strong limitations because the equivalent
viscosity increases to infinity when ϕ = 40%. For this reasons, another approach is needed
to improve Eq. (2.12). Following Christensen (1990), we assume that the spheres are
added progressively, step by step (differential model). At each step, the suspension is
macroscopically a viscous fluid of viscosity ηeq(ϕ). We then add a quantity dϕ of spheres.
This quantity is small enough such that Einstein’s formula for dilute suspension remains
valid. The only difficulty consists in noting that the reference ambient fluid is the suspension
of volume fraction ϕ, so that the volumetric rate induced by dϕ is dϕ/(1 − ϕ)

d
∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p = 5ηeq
dϕ

1 − ϕ
D(�v) ⇒ ηeq =

η

(1 − ϕ)2.5
(2.14)

This differential model leads to an expression similar to that of Krieger and Dougherty
(1959). However, this expression is not valid when direct contact between particles are
to be considered because the global behavior of the suspension is then neither linear, nor
homogeneous. In the following, we extend Eqs. (2.12) and (2.14) to ellipsoids. Two
difficulties must then be overcome. The first is that a suspension of non spherical particles
is non Newtonian. The second is that the calculation is more technical.

Flow around an ellipsoidal particle immersed in an anisotropic suspension
Algebraic preliminary result

A linear operator on the subspace of deviatoric (traceless) tensors, which exhibit a transverse
isotropic symmetry of axis �p depends on three parameters. A basis of such operators can
be defined as A1,A2,A3:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A1 = Id − A2 −A3

A2 =
1
2

(3�p ⊗ �p − Id) ⊗ (�p ⊗ �p)

A3Q = Q(�p ⊗ �p) + (�p ⊗ �p)Q − 2Tr[Q(�p ⊗ �p)](�p ⊗ �p)

(2.15)

This basis has two interesting properties. It exhibits the direction of transverse isotropy
�p and it allows easy products because it can be checked that:

Ai : Ai = Ai and Ai : Aj = 0 if i �= j (2.16)



Jeffery’s problem in an anisotropic fluid

Jeffery derived the exact solution for the flow of a Newtonian fluid around a particle sub-
jected to homogeneous conditions at infinity. Eshelby (1957) gave an alternative technique,
which has been generalized to the case of an anisotropic surrounding matrix. His results
can be summarized as follows.

If D(�v) = M
∑∑∑∑∑∑∑∑∑∑∑∑∑∑

is the constitutive relation of the fluid:M
∑∑∑∑∑∑∑∑∑∑∑∑∑∑

= 1
2η

∑
in the isotropic

case, or more generally, M =
1
α1

A1 +
1
α2

A2 +
1
α3

A3 in the transverse isotropic case, then,

the solution to generalized Jeffery’s probem reads:

Sesh M
∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p = ϕd(v) (2.17)

where Sesh = Sesh(λ, α1, α2, α3) is the fourth order analytical Eshelby tensor which depends
on the shape of the particle and on the fluid properties only.

Approximations

Dilute case: In the dilute case, M
∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p is calculated by neglecting the particles interaction.
Eq. (2.17) is thus solved with α1 = α2 = α3 = 2η. This approximation leads to the
classical dilute approximation for spheroids and generalizes Einstein relation to spheroids
(Batcherlor (1970)).

Self consistent approach: Jeffery’s problem is solved for an ambient fluid with transverse
isotropic but unknown behavior, characterized by parameters α1, α2, α3. With the same
argument as the one that yielded to Eq. (2.12), it is possible to derive the following implicit
equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = 2η +
α1ϕ

2S1212

α2 = 2η +
α2ϕ

S3333 − S3311

α3 = 2η +
α3ϕ

2S1313

(2.18)

This set of equations is non linear but can be solved with a standard Newton Raphson
algorithm.

Differential approach: Particles are added progressively, so that at each time, one has to
deal with a dilute suspension of spheroids. However, the problem is here specific, because
the suspending fluid is a suspension, which is non Newtonian. The system to solve is similar
to equation (2.14) : ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dα1 =
α1 dϕ

(1 − ϕ)2S1212

dα2 =
α2 dϕ

(1 − ϕ)(S3333 − S3311)

dα3 =
α3 dϕ

(1 − ϕ)2S1313

(2.19)

with initial conditions: αi = 2η for ϕ = 0.



2.2 Results and Discussion

The numerical results have been obtained by computations (Meslin (1997)). In order to
compare these results with other existing theories, the stress tensor is written in a similar
form as the one introduced by Tucker (1991).

T = −pI + 2η1(D + Ns((�p ⊗ �p)D + D(�p ⊗ �p)) + NpTr((�p ⊗ �p)D(�p ⊗ �p)) (2.20)

with these notations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ns =
α3 − α1

α1

2η = α1

Np =
3(α2α1)

2α1
− 2(α3α1)

α1

(2.21)

η1 contains all the isotropic contributions to the viscosity (from both the solvent and the
particles), while anisotropic contributions of the particles are represented by Np and Ns.
However, like in the Batchelor’s dilute model, we find that for both differential and self
consistent schemes Np is always greater than Ns, even for particles of small aspect ratio.
Therefore, the anisotropic contributions by the particles are essentially described by Np.
The product η1Np is equal to the parameter η of the Shaqfeh’s model and we compare
spheroidal model to slender bodies model. Figure 10(a) shows the differences between the
dilute spheroidal approximation (Batchelor spheroid), the Dinh and Armstrong’s model
(Dinh and Armstrong (1984)), Shaqfeh and Fredrickson’s slender bodies model (Shaqfeh
and Fredrickson (1990)), and our self-consistent and differential model, for three aspect
ratios of the particles. It can be seen that even for an aspect ratio λ of 350, neither Shaqfeh
and Fredrickson’s nor Dinh and Armstrong’s model is correct because, for very low values of
,the curves are not tangent to Batchelor’s dilute approximation. This point has been already
mentioned by Ranganathan and Advani (1993), who proposed a correction which account
for the finite aspect ratio of the particles. Figures 10(b) compare the same models for
various fibers shape factors. It is to be noted that as for hard spheres models (Christensen
(1990)), the self-consistent approach overestimates the rheological parameters (this self-
consistent model evidences also a vertical asymptote for a volumic rate less than one).
The differential model and the modified Shaqfeh and fredrickson’s model for large aspect
ratio lead to similar results in the semi-dilute range. Thus, in this sense the differential
model generalizes Shaqfeh and Fredrickson’s model in accounting for an averaged interaction
between finite aspect ratio’s fibers. In particular we can apply the differential model for
prolate spheroids.

3 INJECTION MODELING

3.1 Mechanical Modeling

The flow model, which must be imposed in the domain Ωf
t occupied by the fluid at time t,

is given by the following equations:

• Equilibrium equation, which neglecting the inertia and mass terms, results in

Divσσσσσσσσσσσσσσ = �0 (3.1)

where σσσσσσσσσσσσσσ is the stress tensor.



(a) (b)

Figure 10. Models comparison

• Incompressibility condition
Div �v = 0 (3.2)

where �v is the velocity field.

• The constitutive equation for fibers with a large aspect ratio, and where the Brownian
effects are neglected, is

σσσσσσσσσσσσσσ = −pI + 2η(D + Npa4 : D) (3.3)

where p is the pressure field, I the unit tensor, D the strain rate tensor, a4 the fourth
order orientation tensor, η the suspension equivalent viscosity, Np a scalar parameter
which depends on both the fiber concentration and the fiber aspect ratio and the
symbol “:” denotes the tensorial product two times contracted, i.e. (a4 : D)ij =
a4ijkl

Dkl (sum with respect to repeated indices).



• Definition of the orientation tensors: (already defined in Eq. (2.4))
The second order orientation tensor is defined by

a =
∮
�p

�p ⊗ �pψ(�p)d�p (3.4)

where �p is the unit vector aligned on the fiber axis direction, ψ(�p) the orientation
probability function and the symbol ⊗ denotes the tensorial product, i.e. (�p⊗ �p)ij =
(�p)i(�p)j .
The fourth order orientation tensor is defined in a similar way by

a4 =
∮
�p

�p ⊗ �p ⊗ �p ⊗ �pψ(�p)d�p (3.5)

• Conservation balance of the fiber orientation distribution
If we denote by �p0 the orientation of a fiber located at time t = 0 in the point �x0,
then the orientation of this fiber at time t, when it is located in the point �x = �x(�x0, t)
, will be referred to as �p. The fiber orientation distribution at time t can be deduced
from the initial one from the following conservation balance

| �dp0|ψ0(�p0) = | �dp|ψ(�p) (3.6)

where ψ0(�p) denotes the initial fiber orientation distribution and | �dp0| an infinitesimal
solid angle defined around �p0. To clarify the notation we consider a planar fiber
distribution, where the fiber orientation can be defined by the angle ϕ with respect
to a reference axis. Thus, the previous balance can be rewritten as

dϕ0ψ0(ϕ0) = dϕψ(ϕ) (3.7)

where dϕ denotes the infinitesimal angle defined around the angle ϕ

dϕ =
(

ϕ +
dϕ

2

)
−
(

ϕ − dϕ

2

)
(3.8)

In general the initial fiber orientation distribution is known, and as we are going to
show, the final orientation �p can be computed from the initial one �p0, i.e. we can
compute the orientation angle ϕ of a fiber located at time t in the point �x, from its
initial orientation angle ϕ0. Thus, we can also compute the value of dϕ from dϕ0.
The orientation probability associated with the angle ϕ can be finally computed from

ψ(ϕ) =
dϕ0ψ0(ϕ0)

dϕ
(3.9)

• Fiber orientation transport
In order to define the relation between the final and initial orientations ϕ = ϕ(ϕ0, t)
we start by introducing Jeffery’s equation which governs the orientation evolution of
an ellipsoidal fiber immersed in a Newtonian fluid

d�p

dt
= ΩΩΩΩΩΩΩΩΩΩΩΩΩΩ�p + kD�p − k(�pTD�p)�p (3.10)



where k is a scalar parameter depending on the fiber aspect ratio λ (ratio between
the fiber length and diameter)

k =
λ2 − 1
λ2 + 1

(3.11)

and ΩΩΩΩΩΩΩΩΩΩΩΩΩΩ represents the vorticity tensor.

The solution of the Jeffery’s equation can be written by using the transport tensor
Ek , whose evolution is governed by the following linear advection equation

dEk

dt
= (ΩΩΩΩΩΩΩΩΩΩΩΩΩΩ + kD)Ek (3.12)

and satisfies the following initial condition Ek(t = 0) = I.

With the transport Ek calculated by solving the previous advection equation, the
Jeffery’s solution is given by

�p =
Ek�p0

‖Ek�p0‖ (3.13)

or

�p0 =
E−1

k �p

‖E−1
k �p‖ (3.14)

The previous equations define the flow model of a suspension of short fibers. The
rheological parameters η and Np must be identified experimentally for the high fiber con-
centration usually employed in industrial applications (only in the case of dilute suspensions
explicit expressions for both parameters exist). In the previous model we have neglected
the Brownian effects, but as discussed in other works (Meslin (1997)) the fact of considering
the fibers with an ellipsoidal shape, i.e. k �= 1 (even for k very close to the unity) induces a
continuous rotation of the fiber in the flow (even in steady shear flows). This produces an
extra-dissipation that in slender body theories are induced by the introduction of an orien-
tation diffusion term (Brownian effects). This diffusion term prevents the fully alignment
of the fiber with the flow, generating the extra-dissipation experimentally observed.

Remark: The flow model previously established can be also applied in the simulation of
steady flows, as encountered in extrusion processes. In this case special attention must be
made in the treatment of steady recirculating areas where neither the initial orientation
nor boundary conditions are defined. In this case only the periodicity of the solution can
be imposed to find the steady solution. More details concerning the numerical strategies
to compute steady solutions in steady recirculating flows can be found in Poitou et al.
(2000), Chinesta and Chaidron (2001), Chaidron and Chinesta (2002-a), (2002-b), Chiba
and Nakamura (1998) and Azaiez et al. (1997).

Boundary conditions

We denote by Ωf
t the domain occupied by the fluid at time t. The boundary of the fluid

domain which will be referred to as ∂Ωf
t can be divided in two parts. In the first part,

denoted by ∂1Ω
f
t , the velocity is assumed known, whereas in the second one, ∂2Ω

f
t , the

traction is imposed. Moreover, the boundary ∂1Ω
f
t can be divided in other two parts: the

inflow boundary Γ− (injection gate, which is considered fixed in time) and the wall bound-
aries Γ0

t where the adherence condition impose a zero velocity. In injection simulations,



the boundary ∂2Ω
f
t corresponds usually to the flow front where no tractions are imposed

by the empty part of the mold. The inflow boundary conditions are given by the injection
flow rate and by the initial fiber orientation distribution. We can summarize the boundary
conditions to impose in the flow domain at time t by:

�v(�x ∈ ∂1Ω
f
t ) =

⎧⎨
⎩

�vi �x ∈ Γ−

�0 �x ∈ Γ0
t

(3.15)

σσσσσσσσσσσσσσ�n(�x ∈ ∂2Ω
f
t ) = �0 (3.16)

ψ0(�p0)(�x ∈ Γ−) = ψi(�p0) (3.17)

3.2 Fluid Domain Evolution: Flow Front Tracking

As commented, the flow model is defined in the part of the whole domain (injection mold)
Ω occupied by the fluid at each time, t, Ωf

t . In order to update the fluid domain we are
going to introduce the fluid presence function, also known as fluid fraction function I(�x, t).
This function takes a unit value in the fluid region and it is zero in the empty domain
Ωe

t = Ω − Ωf
t :

I(�x,∈ Ω, t) =

⎧⎨
⎩

1 �x ∈ Ωf
t

0 �x ∈ Ωe
t

(3.18)

The evolution of this function is given by the following scalar and linear advection
equation

dI

dt
=

∂I

∂t
+ �v Grad I = 0 (3.19)

This equation is defined in the whole domain. The fluid presence function must verify
a boundary condition on the mold inlet (inflow boundary)

I(�x ∈ Γ−, t) = 1 (3.20)

as well as an initial condition. If we assume the mold empty at the beginning of the injection
process the initial condition is given by

I(�x ∈ Ω, t = 0) = 0 (3.21)

3.3 Numerical Modeling of the Filling Process

In the simulation of the injection process we consider a fully Eulerian description combined
with an explicit strategy, solving the flow kinematics for a given fluid domain, in which
the fiber orientation is assumed known. With the flow kinematics just computed we can
update the fluid domain as well as the fiber orientation within the new fluid domain.

This explicit strategy allows to get an accurate treatment of the equations of motion
defining an elliptic anisotropic Stokes problem (Eqs. (3.1), (3.2) and (3.3)) using a standard
velocity-pressure mixed finite element formulation, as well as of the advection equations
governing the fluid domain and fiber orientation evolutions. The hyperbolic character of
advection equations requires specific numerical techniques for its discretisation. In this pa-
per, the discontinuous finite element method (also known as Lesaint-Raviart technique) will



be applied to solve advection equations (Eqs. (3.12) and (3.19)). Moreover the integration
of both advection problems may be carried out simultaneously.

The simulation process finishes when the mould domain is full filled by the fluid, i.e.
when Ωf

t = Ω.

3.3.1 Discretisation technique: equations of motion

The discretisation of the equations of motion is carried out by means of a standard mixed
finite element technique, using a P1 + “bubble” in the velocity interpolation and P1 in
the pressure approximation. This functional approximation verifies the LBB condition
(Pironneau (1989)). In order to extend the formulation to the whole mold domain, we
impose a pseudo-behavior in the empty volume, defined by p = 0 and �v = �0 (Pichelin
and Coupez (1998)). Multiplying both variational formulations by a function of the fluid
fraction f(I) and 1 − f(I) respectively we obtain the variational formulation extended to
the whole domain:

Find �v ∈ (H1(Ω))3 and p ∈ L2(Ω) verifying the boundary conditions on ∂Ω : �v(�x ∈ Γ−) = �vi

and �v(�x ∈ ∂Ω − Γ−) = �0, such that
∫
Ω

f(I)σσσσσσσσσσσσσσ : D∗ dΩ +
∫
Ω

α(I)(1 − f(I))�v�v∗ dΩ = 0
∫
Ω

f(I)Div �vp∗ dΩ +
∫
Ω

β(I)(1 − f(I))pp∗ dΩ = 0
(3.22)

∀�v∗ ∈ (H1
0 (Ω))3 and ∀p∗ ∈ L2(Ω), and where the expression of the stress tensor is given by

the constitutive equation (3.3).
In the previous variational formulation H1(Ω) and L2(Ω) denote the usual Sobolev

and Lebesgue functional spaces and H1
0 (Ω) is the functional space of velocities in H1(Ω)

vanishing on the domain boundary ∂Ω. The election of the functions f(I), α(I) and β(I)
is a key point to obtain a numerical scheme without numerical dissipation and with a low
diffusion of the flow front. The necessity to introduce functions α(I) and β(I) follows from
the dimensional consistency requirements of both integrals in each equation.

Pichelin and Coupez (1998) considered a linear combination of both variational formu-
lations, i.e. the fluid fraction was taken as weight function, i.e. f(I) = I. Both constant
parameters α and β were considered in that work. To justify the required values of both
parameters, we consider an element Ωe which just starts its filling process. In this case the
fluid fraction in this element takes an intermediate value 0 < Ie � 1. If the parameters α
and β are too high, the over-imposition of the zero velocity condition in the empty region
or in the elements which start their filling process, tends to make the natural flow front
movement difficult. On the other hand, if the parameters α and β are too small, the equa-
tion of motion as well as the fluid incompressibility will be over-imposed in the element
Ωe in spite of the little amount of fluid existing in this element which just starts its filling
process. In this way, this pseudo-incompressibility, derived from the small values of both
parameters, retards the filling process. In the same way, the resulting flow front thickness
increases, and the localization of the flow front remains uncertain. In order to improve the
flow front localization (reducing its numerical thickness, i.e. the number of elements in the
flow direction with a fluid fraction 0 < I < 1) Coupez et al. (1999) have proposed to use
small values of both parameters combined with a local mesh adaptation without topological
changes. This mesh adaptation tends to reduce the volume of the elements located on the
flow front (0 < I < 1).



Another method able to reduce the flow front thickness was proposed by Monton (2002).
In this case the function f(I) proposed is given by

f(Ie) =
{

1 Ie ≥ Ith

0 Ie < Ith
(3.23)

where Ith represent a threshold value, close to one. The first advantage of this election
is that no combinations of the fluid flow and the pseudo-behavior variational formulations
are employed in the partially filled elements. Thus, only in the case that Ie ≥ Ith the flow
model will be enforced in the element Ωe. However, as we shall show later, a judicious
choice of the parameters α and β will is essential to enforce the mass conservation reducing
the flow front thickness to one element.

To illustrate the parameters choice, we consider a one-dimensional domain. We denote
by Ωe a generic element where a linear approximation of the velocity field is considered.
Thus, the velocity in each point of Ωe can be expressed from its nodal values ve and ve+1.
The coordinates of both nodes are xe and xe+1 (xe+1 > xe ≥ 0) respectively. We assume
the injection gate located at x = 0, where the injection velocity is enforced to a value vi.
Now, let Ie(t) < Ith be the fluid fraction existing in the element Ωe at time t. We will
assume that the element located upstream from Ωe, Ωe−1, is fully filled, i.e. Ie−1(t) = 1
and the downstream element remains empty, i.e. Ie+1(t) = 0.

Thus, at time t, with Ie−1(t) = 1, the flow equations are imposed in the element
Ωe−1. The velocity at node xe tends to the injection velocity as a direct consequence of
the fluid incompressibility and the one-dimensional flow. On the other hand, the node
xe also belongs to the element Ωe where due to the fact that Ie(t) < Ith a null velocity
is imposed, which implies the annulations of both nodal velocities, and in particular the
annulation of the velocity at node xe. An evident conflict appears because each element
containing the node xe tends to impose a different value of the velocity at this node. Due to
the continuity assumed in the velocity interpolation the resulting velocity in this node will
be an intermediate value between the injection velocity (required by the flow equations)
and a null velocity (required by the pseudo-behavior). Therefore, the extended variational
formulation to the whole domain, as has been presented until now, affects the natural flow
front movement. To avoid these undesired effects one possibility consists in a clever choice
of the parameters α and β (Monton (2002)). The main idea is to enforce the imposition of
the flow equations with respect to the pseudo-behavior model. If we consider the following
parameters

α(Ie) =
{

1 Ie = 0
εα Ie > 0 (3.24)

and
β(Ie) =

{
1 Ie = 0
εβ Ie > 0 (3.25)

where εα and εβ are two constants small enough, the nodal velocity at node xe is dominated
by the flow equations imposed in the element Ωe−1 (the contribution of the pseudo-behavior
imposed in the element Ωe(0 < Ie < Ith), and consequently affected by the constants εα and
εβ is negligible). Thus the velocity at node xe approaches the exact value (the injection
velocity). The velocity at node xe+1 will be null due to the imposition of the pseudo-
behavior (null velocity) in all the elements containing this node.

Remark. A similar and alternative possibility consists in assembling only the contributions
of elements whose fluid fractions are higher that the threshold value, i.e. Ie > Ith. The
main problem of this technique is the fact that in the global equations system, the rows



related to the nodes which are connected only to empty elements remain null. In order
to avoid the matrix singularity we can proceed to modify the system adding, for example,
a unit value in the diagonal component of each null row. This solution is equivalent to
imposing zero velocities and pressures in the nodes within the empty region. We notice
that this technique is very close to the standard control volume technique widely used in
the simulation of injection processes.

The proposed strategy reduces the flow front thickness to one element with a great ac-
curacy in the mass conservation. However, the exact flow front position remains uncertain,
which makes difficult, for example, the imposition of surface tension. In the simulation of
usual polymers or molten composites forming processes (injection, extrusion, etc.) the sur-
face tension can be neglected and the proposed strategy brings accurate results. Polymer
processes involving multiphase such as gas assisted injection, or multi-materials flows such
as co-injection and co- extrusion, require an interface tracking. Our strategy can be general-
ized for the treatment of these problems by the introduction of a presence function for each
material and for each phase. The evolution of these presence functions can be computed
by solving the corresponding advection equations governing their evolutions. However, as
commented previously, the interface location remains lightly uncertain. Another strategy
able to treat accurately interface problems is the level set method (Sussman et al. (1994)).
This technique uses a level function φ whose zero value determines the interface position.
The evolution of this function is given by the following linear advection equation

∂φ

∂t
+ �uGradφ = 0 (3.26)

where �u is an arbitrary velocity field which must coincide with the material velocity �v on
the interface at time t, and which will denoted from now on by Γi(t):

�u(�x ∈ Γi(t), t) = �v(�x ∈ Γi(t), t) (3.27)

It is easy to verify that the solution of Eq. (3.26) allows to update the interface. Thus,
if we assume that the level function at time t, φ(�x, t), as well as the flow kinematics �v(�x, t)
are known, then the interface at this time is given by

Γi(t) = {�x/φ(�x, t) = 0} (3.28)

The solution of Eq. (3.26) allows to compute the level function at time t + Δt, φ(�x, t +
Δt), from which we can update the interface position

Γi(t + Δt) = {�x/φ(�x, t + Δt) = 0} (3.29)

In the above equation, Δt is the time step used in the time discretisation of Eq. (3.26)
that we will describe in detail more latter. The main difficulty of this technique is that the
quality of function φ(�x, t) is degraded during the process simulation. Thus, the slope of the
level function can develop into very high or very small values. In both cases a significant
error can appear in the interface updating described in the previous paragraphs. In order
to reduce these numerical errors some researchers proposed to modify at each iteration the
level function in order to obtain a unit slope in the flow direction on the interface. To this
purpose, and knowing the level function at time t, we need to solve the following non linear
advection equation

∂φ̄

∂t
+ sgn(φ)

Grad φ̄

‖Grad φ̄‖Grad φ̄ = sgn(φ) (3.30)



where the function φ̄ coincides with φ along the interface, i.e.

φ̄(�x ∈ Γi(t), t) = φ(�x ∈ Γi(t), t) (3.31)

and it has an unit slope on the interface in the flow direction.
The numerical treatment of non linear advection equations is a difficult matter. How-

ever the main difficulty in the use of the level set strategy is the necessity of having an
accurate velocity description on the interface. To attain this accuracy, the consideration of
an incompressible pseudo fluid filling the empty region of the mould is a good alternative.
Thus, usually, a virtual incompressible fluid, with a very low viscosity (a gas for example),
is assumed to occupy the empty region of the mold. In this case, a continuous velocity
field is obtained, which allows an accurate determination of the velocity on the interface.
However, the fact of using an incompressible pseudo fluid enforces the disposition of some
holes on the mold walls to evacuate this pseudo fluid, allowing the flow front movement of
the injected fluid. When an evacuation hole is reached by the fluid, we need to obstruct
the hole to avoid fluid losses. On the other hand, if the fluid reaches a region without
holes, the incompressibility of the pseudo fluid makes impossible the filling of this region.
The optimal holes position, their number, opening control, etc. require some additional
considerations. Another difficulty results from the low viscosity of the pseudo fluid which
generates boundary layers in the velocity field in the neighboring of the walls due to the
adherence (stick) boundary condition characteristic of the viscous fluids. Some researchers
propose the substitution of the stick boundary condition by a slip boundary condition in
the region occupied by the pseudo fluid. In this case, an adequate control in the imposition
of the boundary conditions is required. Some references concerning the use of the level set
techniques in the context of polymer injection forming processes can be found in VerWeyst
et al. (1999). However, works concerning the efficient treatment of the numerical difficulties
previously described are rare.

For all these considerations and without a precise interface location requirement, we
have preferred to use the extended variational formulation coupled with a fluid presence
function description.

3.3.2 Discretisation technique: advection equations

In this section we will describe an accurate numerical treatment of the advection equations.
In order to alleviate the notation we consider the linear and scalar advection equation
governing the evolution of the fluid presence function I

dI

dt
=

∂I

∂t
+ �v Grad I = 0 (3.32)

Taking into account the fluid incompressibility, Div �v = 0, Eq (3.32) can be rewritten
in the form

dI

dt
=

∂I

∂t
+ Div(�vI) = 0 (3.33)

Now, we can consider the integral conservation form related to the previous differential
equation

∫
Ωe

∂I

∂t
dΩ +

∫
∂Ωe

Div(�vI) dΩ = 0 (3.34)



for any subdomain, that we can identify with the elements Ωe of a finite element mesh.
Using the divergence theorem, the previous equation becomes∫

ΩE

∂I

∂t
dΩ +

∫
∂Ωe

�v�nI dS = 0 (3.35)

where ∂Ωe denotes the boundary of Ωe, and �n is the outwards unit vector defined on the
element boundary. The element boundary can be divided in two parts: ∂Ωe

+ through which
the flow leaves the element Ωe (i.e. the part of the element boundary verifying the relation
�v�n > 0); and the inflow element boundary ∂Ωe−, though which the fluid is coming to the
element Ωe (verifying �v�n < 0). Thus, the mass balance results∫

ΩE

∂I

∂t
dΩ +

∫
∂Ω+

−

�v�nI dS +
∫

∂Ωe
+

�v�nI dS = 0 (3.36)

Now we can introduce a constant approximation of the fluid fraction I into each element.
In this case the fluid fraction is not defined in the element boundary, and the flow coming
in the element Ωe is approximated taking into account the fluid fraction existing in the
upstream element Ωe−, Ie−. In the same way, the outflow will depend on the fluid fraction
existing in the element Ωe. Thus, the previous equation can be written as

∂Ie

∂t
|Ωe| =

∑
i

qe−
i Ie−

i − qe+Ie (3.37)

where |Ωe| is the volume of the element Ωe, qe =
∫

∂Ωe
+

�v�n dS, qeIe represents the flow rate

leaving the element Ωe, and
∑
i

qe−
i Ie−

i denotes the flow coming to the element Ωe from

all the upstream elements (Ie−
i representing the fluid fraction existing in each upstream

element).
Now, we are going to treat the time derivative. The Taylor’s expansion of Ie(t + Δt) is

Ie(t + Δt) = Ie(t) +
∂Ie

∂t

∣∣∣∣∣
t

Δt +
1
2

∂2Ie

∂t2

∣∣∣∣∣
t

(Δt)2 + · · · (3.38)

If we consider a first order explicit scheme, the fluid fraction actualization results

Ie(t + Δt) ≈ Ie(t) +
∂Ie

∂t

∣∣∣∣∣
t

Δt = Ie(t) +

∑
i

qe−
i − qeIe

|Ωe| Δt (3.39)

Remark. Higher order discretization schemes can be obtained directly from the Taylor’s
expansion which requires higher order derivatives of the fluid fraction. For their evaluation
we can proceed by derivation of the mass balance

∂pI

∂tp
+ Div

(
�v

∂ p−1I

∂t p−1

)
= 0 (3.40)

Thus, operating as before we obtain

∂pIe

∂tp
|Ωe| =

∑
i

qe−
i

∂ p−1Ie−
i

∂t p−1
− qe+ ∂ p−1Ie

∂t p−1
(3.41)



and the fluid fraction updating results

Ie(t + Δt) ≈ Ie(t) +

∑
i

qe−
i Ie−

i − qeIe

|Ωe| Δt + · · · + 1
n!

∑
i

qe−
i

∂nIe−
i

∂tn
− qe ∂nIe

∂tn

|Ωe| (Δt)n (3.42)

The treatment of the others advection equations is carried out in a similar way. The main
difficulty found using this Eulerian integration strategy is related to field initializations.
Thus, when an element Ωe starts its filling process at time t, the fluid fraction at this time
is well defined (Ie(t) = 0). However, if we assume a general field T whose evolution is
governed by a similar advection equation

dT

dt
=

∂T

∂t
+ �v GradT = 0 (3.43)

its value in the empty elements cannot be defined. In this case the field updating given
by Eq. (3.40) remains indeterminate. A solution to this problem is proposed in Chinesta,
Mabrouki and Ramon (2002), that in spite of its Eulerian character, avoid the necessity of
a field initialization. In this case, when an element starts its filling process, the upstream
element value governs the element updating. In this form, the proposed technique seems
not longer to Lagrangian techniques, such as the method of characteristics.

3.4 Numerical Results and Experimental Validation

Rectangular plates of 10×10×1 cm. have been injected using PA 6-6 reinforced with short
glass fibers. The viscosity and the parameter Np were identified using rheological devices
and techniques proposed in Meslin et al. (1998), (1999). With these values the numerical
model was solved and a prediction of the fiber orientation was obtained. Figure 11 shows
a schematic of the injected pieces and two optical micrographs taken on the section shown
in the figure. A good agreement between experimental and numerical results is obtained.
In the graphical representation of the fiber orientation we have depicted the eigenvector
associated with the higher eigenvalue, that represents the most probable fiber orientation.
We can see that as expected the fibers are aligned in the flow direction in the regions of
high shear rates, and in the ortho-radial direction in the neighboring of the middle plane,
where a high elongation is found. Figure 12 depicts a filling sequence, as well as different
views of the filling process of a 3D structural piece. We would like to point out the flow
symmetry during the filling, in spite of the anisotropic viscosity, that usually gives rise to
asymmetric flows. The less confined is the flow, the more relevant is this anisotropic effect
(see for example Figures 12 and 14).

4 NUMERICAL SIMULATION AND OBSERVATION OF FIBER SUSPEN-
SION FLOW AND FIBER ORIENTATION THROUGH A COMPLEX
CHANNEL

4.1 Introduction

Suspensions of rodlike particles in either Newtonian or non-Newtonian fluids are often
encountered in both engineering and, physical and biological sciences. The characterization
of the flow or the fiber orientation in a short fiber suspension is of particular interest in
current polymer processing research. When fibers form a flow-induced orientation state,
fiber suspension exhibits anisotropy. Therefore, the addition of short fibers to a Newtonian
liquid can drastically change the flow kinematics even at very low concentrations and in
recent years the importance of coupling flow field and fiber orientation has been recognized.



Figure 11. Experimental validation of the fiber orientation distribution in injected
plates

Figure 12. Mold filling simulation of a 3D structural piece

Furthermore, an orientation evolution model and a rheological constitutive equation that
relates the stress in fiber suspensions to the orientation state are required and should be
solved simultaneously to understand and describe the fiber suspension flows under certain
conditions.

This section describes “fiber suspension flow and fiber orientation through a complex
channel” on the basis of both numerical simulation and visualizations of flow and fiber ori-
entation. Fiber suspensions focused in this article are rigid fiber suspensions in Newtonian
liquids. The contents of this section consists of four subsections as follows:

1. Entry flow of dilute fiber suspensions through a circular contraction (Chiba et al.
(1994-b)):
Comparison between flow predictions using co-linear alignment of fibers and flow
visualizations are presented.



Figure 13. Fiber orientation evolution during the filling process of a 3D structural piece

2. Discussion on a quadratic closure approximation using a statistical scheme (Chiba
and Nakamura (1995)):
Examination of a quadratic closure approximation and the usefulness of a statistical
scheme are described.

3. Analysis of fiber orientation in a recirculating flow (Chiba and Nakamura (1998)):
Computations and observations of fiber alignment in a recirculating flow within a
salient corner of a 1:4 backward-facing step channel are compared.

4. Numerical solution of fiber suspension flow through a rectangular channel (Chiba et
al. (2001)):
Flow and stress fields, which were computed by coupling flow kinematics with fiber
orientation distribution, are discussed for the planar orientation of fibers and for the
three-dimensional orientation case.



Figure 14. Schematic diagram of the fiber orientations in a fluid element flowing
along a streamline

4.2 Entry Flow of Dilute Fiber Suspension Through a Circular Contraction
4.2.1 Governing equations

The motion of an incompressible material is governed by mass and momentum conservation
laws:

Div �v = 0 (4.1)

ρ d�v/dt = −Grad p + Div ττττττττττττττ (4.2)

where �v is the velocity vector, ρ is the density of fluid, p is the isotropic pressure, ττττττττττττττ is the
extra stress tensor and d/dt denotes the material derivative.

The continuum theory for dilute suspensions of rigid, high aspect-ratio particles devel-
oped by Lipscomb et al. (1988) is used in order to account for the presence of fibers on the
stress field. The extra stress may be written as

ττττττττττττττ = 2ηD + φμD : a4 (4.3)

where η is the viscosity of the suspending Newtonian fluid, D is the deformation rate tensor,
φ is the volume fraction of fibers, μ is a material constant and a4 denotes the fourth-order
orientation tensor, defined by Eq. (3.5).

The orientations of fibers in a fluid element, which flows along a streamline, can be
distributed as illustrated in Figure 14. In the limit of high aspect-ratio of fibers, μ reduces
to

μ =
ηλ2

ln(λ)
(4.4)

where λ is the fiber aspect ratio (length to diameter ratio).
The computations of fiber suspension flows through a 4:1 circular contraction (contrac-

tion ratio β = 4) were carried out under a co-linear alignment approximation: fibers are
assumed to be fully aligned with the streamlines. Therefore, the extra stress of the sus-
pension could be simply determined from the direction of the tangent to the streamline
at the location of a single fiber, i.e. the orientation unit vector �p = �v/‖�v‖ and therefore,
it is not necessary to solve for the orientation distribution of fibers. The interactions of
the flow field and planar fiber orientation fields were studied. For the computations, the
single parameter in the extra stress equation, φμ/η = φλ2/ ln(λ), was varied, which can



be determined completely by the volume fraction and aspect ratio of the fibers, φ and λ,
respectively. It is called the fiber parameter.

4.2.2 Change of the flow patterns

The circular tube used in the flow visualizations of fiber suspension was 32 mm in diameter
and 500 mm in length with a 4:1 contraction. The test fluids were seeded with polystyrene
particles smaller than 0.1 mm in diameter and planar sheet of light illuminated the flow in
the central plane of the tube.

The two kinds of vinylon fibers used were VF1 of diameter d = 13μm and length l = 3
mm resulting in an aspect ratio λ = 231, and VF2 of diameter d = 11μm and length l = 1
mm leading to λ = 94. These fibers were suspended in 65 wt% corn syrup/water solution
of viscosity was η = 0.08 Pa·s at 16.5 oC.

The computed streamlines and observed flow patterns at low Reynolds number are
shown in Figure 15 for a Newtonian fluid and the fiber suspension with φμ/η = 8. The
photograph on the right-hand side in Figure 15(b) is the flow pattern for VF1 suspension.
The most obvious result is that the salient corner vortex significantly grows for the fiber
suspension, despite the fact that φμ/η = 8 corresponds to a very low volume fraction
of fibers, 0.082 % for VF1 suspension. Even for large growth of the corner vortex, the
vortex boundary and streamlines in the main flow become rather straight for rigid fiber
suspensions. These flow patterns present striking contrast to the wine-glass shaped flow
patterns with the convex vortex boundary in flexible molecule systems, such as polymer
solutions (see Figure 6 in Chiba et al. (1994-b)).

 

Figure 15. Computed streamlines and observed flow patterns through a 4:1 circular
contraction at low Reynolds number; (a) Newtonian fluid; (b) fiber
suspension with φμ/η = 8

Furthermore, Figure 16 shows the fiber parameter φμ/η vs. the non-dimensional vortex
length L∗

v, where L∗
v is defined as the ratio of the vortex length to the upstream tube

diameter Lv/d. The salient corner vortex increases with an increase in φμ/η, i.e. the
corner vortex grows as the volume fraction and/or aspect ratio of fibers increase. This
trend is in good agreement with the observations and computations. On the other hand, it
can be supposed that the difference of the vortex length between VF1 and VF2 suspensions



Figure 16. Comparison of vortex enhancement in a 4:1 circular entry flow of fiber suspension
between computations and visualizations at Re = 1; computations (solid line);
visualizations for VF1 suspensions (solid line with triangle); visualizations for
VF2 suspensions (solid line with circle)

is mainly due to the difference of the fiber concentration distribution in a tube: depletion
region of fibers near the tube wall, especially within the salient corner vortex, becomes wider
for suspensions of the longer fibers, VF1. In the computations, the fibers are assumed to be
uniformly distributed, but in the experiments their distribution is not homogeneous, and
the growth of the salient corner vortex strongly depends on the concentration distribution
of fibers. One may also suspect that the fiber-fiber and fiber-wall interactions are significant
within the corner vortex region, and can affect the flow dynamics.

The effect of the Reynolds number on the vortex length can be clearly seen in Figure 17.
The vortex length is almost independent of the Reynolds number under Re less than 0.1,
and decreases as the Reynolds number is further increased in rigid fiber suspension flows:
the main flow pushes down the salient corner vortex toward the corner and streamlines in
the main flow become concave due to fluid inertia (see Figure8 in Chiba et al. (1994-b)).

4.2.3 Stress distributions

Figure 18 shows the distribution of T ∗
zz − T ∗

rr (extra-stress tensor components) at low
Reynolds number: (a) is the distribution in Newtonian flow and (b) is the distribution
in the flow of fiber suspension with φμ/η = 8. Where the z-axis and r-axis are the center-
line and radial directions, respectively, furthermore, the stress components are normalized
such that T ∗

ij = Tij/(2ηU/D). In entry flow, the fluid element is largely stretched along the
centerline as the contraction inlet is approached, and T ∗

zz −T ∗
rr reaches its maximum at the

immediate upstream region of the contraction inlet for both Newtonian and fiber suspension
flows. However, the maximum value of T ∗

zz − T ∗
rr in the Newtonian flow is about 200, while

it is approximately 700 in the fiber flow. The addition of short fibers to a Newtonian liquid
can drastically change the normal stress difference field even at very low concentrations.
On the other hand, the shear stress field in fiber suspension flows was similar to that in



Figure 17. Computed results for the dependence of vortex length on the Reynolds
number in a 4:1 circular entry flow of fiber suspension

Newtonian case (see Figures 13 and 14 in Chiba et al. (1994)).

4.2.4 Conclusions

Numerical simulations and observations were presented for the flow of dilute suspensions
of rigid, high aspect-ratio fibers in Newtonian fluids through a 4:1 circular contraction.
The most obvious result is that, for the fiber suspension, the salient corner vortex grows
significantly and the normal stress difference T ∗

zz − T ∗
rr increases a lot even at a very low

volume fraction. Furthermore, the main flow patterns become nearly conical and the corner
vortex length is almost independent of flow rate for flows of rigid fiber suspensions with
Reynolds numbers less than 0.1. These results present striking contrast to those for flexible
molecule systems.

4.3 Discussion on a Quadratic Closure Approximation Using a Statistical scheme
4.3.1 Governing equations

The evolution equation of the orientation unit vector �p for a fiber in a Newtonian flow can
be described by the Jeffery equation (Eq. (3.10)) under the following assumptions: (i) the
fiber may be represented by an ellipsoid of revolution; (ii) the velocity field is only locally
perturbed by the motion of the fiber; (iii) the flow far from the fiber is homogeneous on a
length scale that is large compared to the fiber dimensions; (iv) the motion is sufficiently
slow that inertia forces are negligible; and (v) the fiber translates with the fluid velocity

d�p

dt
= ΩΩΩΩΩΩΩΩΩΩΩΩΩΩ�p + k(D − �pTD�p)�p (4.5)

The parameter k is given by

k = (λ2 − 1)/(λ2 + 1) (4.6)



Figure 18. Distribution of the normal stress difference T ∗
zz − T ∗

rr in a 4:1 circular
entry flow at Re = 0.01. (a) Newtonian fluid; (b) fiber suspension with
φμ/η = 8

where λ is the fiber aspect ratio. The second-order orientation tensor a defined by Eq.
(3.4) is a suitable and concise way of describing the orientation distribution of fibers

a =
∮

�p ⊗ �pψ(�p)d�p (4.7)

then the orientation state can be illustrated using an orientation ellipse shown in Figure
19(b). The eigenvalues and the eigenvectors of a give the lengths and directions of the two
major axes of the ellipse, and also the eigenvalues indicate the degree of orientation along
these directions. a is symmetric and its trace is equal to unity.

On the other hand, the evolution equation of the second-order orientation tensor can
be written as

da/dt = ΩΩΩΩΩΩΩΩΩΩΩΩΩΩa − aΩΩΩΩΩΩΩΩΩΩΩΩΩΩ + κ(Da + aD − 2D : a4) (4.8)

This equation involves the fourth-order orientation tensor a4, then a closure equation is
required to approximate a4 using a. We used a quadratic closure approximation given by

a4 = a ⊗ a (4.9)

In this section planar orientation of fibers in a developing flow of a Newtonian fluid
through a parallel plate channel was analyzed by two methods to examine the performance
of a quadratic closure approximation: the first method is a solution of the evolution equa-
tion of the second-order orientation tensor with a quadratic closure equation. The material



derivative d/dt in Eq. (4.8) corresponds to the partial derivative ∂/∂t in a Lagrangian
sense, then the evolution equations of the components of a may be written as

∂a11

∂t
= 2Ω12 + a12 + 2k(D11a11 + D12a12 − D11a

2
11 − 2D12a11a12 − D22a11a22) (4.10)

∂a12

∂t
= Ω12(a22 − a11) + k(D12 − 2D11a11a12 − 4D12a

2
12 − 2D22a12a22) (4.11)

The second method is a statistical scheme: orientation of a large number of fibers
(N = 3600) with aspect ratio λ = 5 and 50, with specified initial angles, could be evaluated
by computing the Jeffery equation along the streamlines using a 4th-order Runge-Kutta
method. Then, the components of a could be calculated by Eq. (4.12). In this equation
the orientation angle β is an angle between the x-axis and the fiber axis which is measured
counterclockwise.

a11 =
N∑

i=1

cos2 βi/N

a12 =
N∑

i=1

sin βi cos βi/N

(4.12)

We examined the effect of the number of fibers used in the statistical scheme on the
orientation distribution of fibers for planar orientation (Chiba and Nakamura (1994-a))
and it was found that the number of fibers of 1800 or more was appropriate. Furthermore,
the orientation distribution function of fibers and the preferred angle of fiber orientation
calculated using the statistical scheme for a simple shear flow were in good agreement with
known analytical results (Akbar and Altan (1992)), indicating the accuracy of the statistical
scheme. In this section the number of fibers was N = 3, 600 with aspect ratio λ = 5 and
50, and the initial orientation was isotropic.

4.3.2 Performance of a quadratic closure approximation

The evolution of the orientation distribution function and the orientation ellipses for λ =
5 along Ψ = −0.9 streamline in a developing flow are shown in Figure 19 in order to
easily understand the relation between the orientation distribution function and orientation
ellipse. In the computations of a developing flow of Newtonian fluids the streamfunction Ψ
was set equal to 0 on the centerline and -1.0 at the lower wall. In Figure 19(b) isotropic
orientation (drawn by a circle) at the inlet changes into highly aligned state as the fibers
flow downstream, and almost complete alignment (unit straight line) parallel to the channel
wall can be seen at t = 4.0. Then the preferred angle of fibers becomes negative, and the
orientation ellipse begins to flip over. The flip-over phenomenon of the orientation ellipse
can be often observed for small aspect-ratio fibers.

Next the performance of a quadratic closure approximation is examined by comparison
of a calculated using the statistical scheme with that obtained by the evolution equation
of a with a quadratic closure equation. In Figure 20 solid lines with symbol represent the
results computed from the statistical scheme and broken lines from the evolution equation
of a. Fluid velocity has relatively large width-direction (y-direction) component near the
channel wall within the inlet region, thus fibers firstly begin to align in the y-direction
and the value of a11 decreases from 0.5 in Figure 20(b). Then alignment in the direction
parallel to the wall (x-direction) becomes gradually dominant, and the value of a11 starts
to increase. This trend becomes more pronounced as the channel wall is approached. On
the other hand, the alignment in the x-direction becomes better within a region near the



(a) 

(b) 

Figure 19. Evolution of the orientation distribution function of fibers and the corresponding
orientation ellipse λ = 5 for along ψ = −0.9 streamline in a developing Newtonian
flow; (a) orientation distribution function; (b) orientation ellipse

centerline owing to the acceleration of fluid velocity in the x-direction in Figure 20(a). The
above trend in the variation of a is in good agreement with the statistical scheme and
the evolution equation of a. However, the quantitative agreement of the variation of a
becomes limited. Predictions of fiber orientation in a developing flow through a parallel
plate channel may clearly indicate that the much simpler quadratic closure approximation
performs well when the fibers are highly aligned, however it is neither suitable for almost
isotropic orientation state nor for a rapid change in fiber orientation which is caused by a
significant change in fluid velocity observed within the inlet region in a developing flow or
flip-over phenomenon.

The variations of the fiber orientation in a developing flow regime can be clearly seen in
Figure 21: the orientation ellipse begins to align in the x-direction after counterclockwise
rotation at the immediate downstream region of the inlet near the channel wall, while the
orientation ellipse aligns well along the centerline. Furthermore, Figure 21 can exhibit the
performance of a quadratic closure approximation.



Figure 20. Comparison between the components of the second-order orientation tensor
a11, a12 computed from the evolution equation of a with a quadratic closure ap-
proximation (broken lines) and those computed by a statistical scheme (solid lines
with symbols) for λ = 50 along (a) ψ = −0.1; (b) ψ = −0.9 streamlines in a de-
veloping Newtonian flow

4.3.3 Conclusions

In this section the planar orientation of fibers in a developing flow of a Newtonian fluid
through a parallel plate channel was analyzed in order to examine the performance of a
quadratic closure approximation, and comparison of the variations of a calculated from the
statistical scheme with the solutions of the evolution equation of a with a quadratic closure
approximation was also presented.



(a) 

(b) 

Figure 21. Evolution of orientation ellipse in a developing Newtonian flow for λ = 50. (a)
orientation ellipses computed from the evolution equation of a with a quadratic
closure approximation; (b) orientation ellipses computed by a statistical scheme

A quadratic closure approximation performs well when the fibers are highly aligned,
however it is neither suitable for disturbed orientation state nor for a rapid change in fiber
orientation which is caused by a significant change in fluid velocity or flip-over phenomenon.
These results were confirmed in a simple shear flow using the solutions of the orientation
distribution function by Advani and Tucker (1987), (1990). Furthermore, it was found
that the statistical scheme is very useful and feasible method to analyze the orientation
distribution of fibers in fiber suspension flow.

4.4 Analysis of Fiber Orientation in a Recirculating Flow
4.4.1 Computations of fiber orientation

The characterization of the fiber orientation in a recirculating flow is very important from a
practical point of view. Therefore, we investigated in this work the planar fiber orientation
in a recirculating flow within a salient corner of a 1:4 backward-facing step channel using
both numerical simulations and fiber orientation observations. The fundamental and im-
portant results were obtained, which are necessary to rigorously compute fiber suspension
flows through a complex channel.

We used the statistical scheme in the computations of fiber orientation: orientations of
N = 1800 fibers with aspect ratio λ = 5 and 10000 (k ≈ 1), could be evaluated from an
isotropic initial orientation along streamlines as described in subsection 4.3.

Computations of fiber orientation in a recirculating flow were continued until a fluid
element containing many fibers made about 10 rounds along a streamline in order to exam-
ine the existence of the steady orientation state. In the present work the Reynolds number
was defined in the downstream channel as Re = ρUH/η.



4.4.2 Observations of fiber orientation

Orientation visualization experiments of large aspect-ratio fibers were carried out in New-
tonian flows. Figure 22 is a schematic diagram of a backward-facing step channel used in
the experiments.

Vinylon fibers of d = 10.6 μm in diameter, l = 3 mm in length (λ = 283) were suspended
in 63 wt% corn syrup/water solution with volume fraction of φ = 2 × 10−5. The viscosity
of the Newtonian solvent is η = 0.0463 Pa·s at 16.8◦C. In this case the flow fields were
almost the same as those for the solvent because the fiber parameter φμ/η = 0.28 was very
small. The observation plane was the middle of the channel height and a planar sheet of
light illuminated the fibers in this plane.

Figure 22. Schematic diagram of the fiber orientation visualization setup

4.4.3 Fiber orientation in a recirculating flow

Figures 23 and 24 show fiber orientation state along three streamlines in a recirculating
flow at Re = 15 for λ = 10000 and 5, respectively, using the orientation ellipse. Figures
23(a) and 24(a) shows the orientation state at the first circulation and Figures 23(b) and
24(b) the steady orientation state. It can be seen clearly that fiber orientation changes from
random orientation (circle) at the initial position to complete orientation (straight line) as
fibers move along the streamline: steady and complete orientation state can be achieved
for both aspect ratios. Fibers are subjected to periodic flow field during circulation along
the streamlines and they eventually reach complete orientation state, which means that all
fibers in a fluid element align completely in one direction.

The effect of the aspect ratio is as follows: for large aspect-ratio fibers, all fibers align
completely along the streamlines (co-linear alignment) in Figure 23(b). This result can be
also observed in the experiments as shown in Figure 25. In this figure both fibers, which were
obtained from two photographs at steady orientation state, and computed streamlines in a
Newtonian flow are drawn. On the other hand, the preferred angle of fibers lies obliquely
to the streamlines for small aspect-ratio fibers in Figure 24(b). This fiber orientation arises
from flip-over phenomenon.



(a) 

(b) 

Figure 23. Evolution of orientation ellipse along ψ = 1.01, 1.05, 1.08 streamlines
in a recirculating flow within a salient corner of a 1:4 backward-facing
step channel at Re = 15, for λ = 10000. (a) at the first circulation; (b)
at the steady orientation state. The value of the streamfunction on the
vortex boundary is ψ = 1.0

The degree of orientation in the preferred direction can be indicated by the maximum
eigenvalue of a. Figure 26 shows the evolution of the maximum eigenvalue for small aspect-
ratio fiber: the value of 0.5 expresses random orientation and the value of unity means the
complete orientation in one direction. The values along three streamlines approach unity
after starting from 0.5. Furthermore, it takes longer to reach the value of unity in the
region near the vortex center. We can also confirm in the experiments that alignment of
fibers with the streamlines becomes a little worse in the inner region near the vortex center
(Figure 25).

In Figure 26 an oscillating orientation order parameter (maximum eigenvalue) can be
clearly observed along ψ∗ = 1.08 streamline for λ = 5. This is due to flip-over of individual
fibers in a small fluid element because this streamline has a small curvature radius, then
fibers tend to flip over. This phenomenon could be also observed for large aspect-ratio fibers.
On the other hand, a dip in orientation order parameter which is seen along ψ∗ = 1.01
streamline approximately at t∗ = 7 in Figure 26 is caused by the flip-over which occurs
along the vertical channel wall near the re-entrant corner shown in Figure 24(a).



(a) 

(b) 

Figure 24. Evolution of orientation ellipse along ψ = 1.01, 1.05, 1.08 streamlines
in a recirculating flow within a salient corner of a 1:4 backward-facing
step channel at Re = 15, for λ = 5. (a) at the first circulation; (b) at
the steady orientation state. The value of the streamfunction on the
vortex boundary is ψ = 1.0

4.4.4 Conclusions

The following conclusion could be obtained from the computations and observations of
fiber orientation: in a recirculating flow, for large aspect-ratio fibers both experiments and
computations indicated that all fibers aligned completely along the streamlines. While,
for small aspect-ratio fibers the computations predicted that complete alignment could be
achieved, but the preferred angle lay obliquely to the streamlines.

Consequently, when we compute rigorously complex flows of fiber suspensions by cou-
pling flow field with fiber orientation, co-linear alignment of fibers is valid for large aspect-
ratio fibers in a recirculating flow. While the preferred angles do not coincide with the
streamlines in a recirculating flow for small aspect-ratio fibers, so these angles have to be
determined from the steady orientation of a single fiber. In this case we do not need to
use the statistical scheme because of complete alignment of fibers, then the computational
efficiency is greatly enhanced.



Figure 25. Observed fiber orientation state and computed streamlines in a recirculat-
ing flow within a salient corner of a 1:4 backward-facing step channel at
Re = 14.9

Figure 26. Evolution of orientation order parameter in a recirculating flow within a
salient corner of a 1:4 backward-facing step channel at Re = 15, for λ = 5



4.5 Numerical Solution of Fiber Suspension Flow Through a Rectangular Chan-
nel

The coupled flow kinematics and fiber orientation distribution were computed to study the
development of fiber suspension flows through a parallel plate channel. Fibers can align in
three-dimensional way even in two-dimensional flows. In this work, therefore, we computed
the two- dimensional flows of suspensions with high aspect-ratio fibers in a Newtonian
fluid for planar and three-dimensional fiber orientation distributions. In this subsection
comparison of flow field, fiber orientation and stress distribution between for the planar
orientation of fibers and for the three-dimensional case will be described.

4.5.1 Solution procedure

We will briefly explain the solution procedure. The continuity and momentum equations for
the flow are Eq. (4.1) and Eq. (4.2), respectively, while the extra stress for the fiber suspen-
sion is determined using Eq.(4.3). All equations were written in terms of non-dimensional
variables using the channel width H and the mean fluid velocity U as the reference parame-
ters. Subsequently, the Reynolds number was defined as Re = ρUH/η. The computational
domain was x∗ = 0 to 10 in the flow direction and y∗ = 0 to 0.5 in the width direction (a
lower half part of the channel).

The development of the flow field and planar/three-dimensional fiber orientation field
was studied for the initial parabolic velocity profile and isotropic orientation at the channel
inlet. In the present study, the statistical scheme was employed. In the computations, k
was set equal to unity.

The components of the fourth-order orientation tensor a4 can be calculated by Eq.
(4.13) for the planar orientation and by Eq. (4.14) for the three-dimensional orientation of
fibers

a1111 =
N∑

i=1

cos4 βi/N, a1112 =
N∑

i=1

cos3 βi sin βi/N

a1122 =
N∑

i=1
cos2 βi sin2 βi/N, a1222 =

N∑
i=1

cos βi sin3 βi/N

a2222 =
N∑

i=1
sin4 βi/N

(4.13)

and

a1111 =
N∑

i=1

sin4 θi cos4 βi/N, a1112 =
N∑

i=1

sin4 θi cos3 βi sin βi/N,

a1122 =
N∑

i=1
sin4 θi cos2 βi sin2 βi/N, a1222 =

N∑
i=1

sin4 θi cos βi sin3 βi/N

a2222 =
N∑

i=1
sin4 θi sin4 βi/N

(4.14)

where β is an angle between the x-axis and the projection of the fiber in the flow plane
(x − y plane), and θ is an angle between the z-axis and the fiber.

As already described in section 4.3, the number of fibers of 1800 or more was appropriate
for planar orientation. However, in the present computations the number of fibers was
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Figure 27. Effect of number of fibers on the component of the fourth-order orien-
tation tensor a1111 for the three-dimensional orientation of fibers in a
developing flow of fiber suspension through a parallel plate channel at
Re = 10, for φμ/η = 10

N = 180 because of the limitation of computational time. On the other hand Figure 27
shows the effect of number of fibers on a1111 for the three-dimensional orientation of fibers:
the number of segmentations between 0 and 90◦ in the θ direction were varied from Ns = 9
to Ns = 90. In this case, the total number of fibers was varied from 202 to 20,582. The
values of a1111 for Ns = 30 to 90 are in good agreement. Then, Ns was set equal to 30
(N = 2277) in the computations.

4.5.2 Velocity profile and fiber orientation

Comparison of centerline velocity profile between the planar orientation and the three-
dimensional orientation case is shown in Figure 28. The centerline velocity profile for
fiber suspensions can change most significantly from the Newtonian case at the location of
approximately x∗ = 0.9 ∼ 0.975. However, the effect of the addition of short fibers to a
Newtonian solvent on the centerline velocity profile gradually disappears as the downstream
region is approached. Figure 28 shows clearly that the present computational domain,
length of 10, is not long enough for the flow to develop fully. However, we can easily suppose
that the flow kinematics for fiber suspensions finally become identical to the Newtonian
flow in a channel long enough to reach a fully-developed flow. This phenomenon is due to
complete alignment of fibers parallel to the channel wall in the fully-developed flow regime.

The degree of isotropy of fiber orientation at the inlet is stronger for the three-dimensional
orientation case than for planar one, therefore, Figure 28 shows clearly that the deviations
of the centerline velocity profile for fiber suspension from Newtonian counterpart become
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less significant for the three-dimensional orientation of fibers. However, the entrance region
necessary for the flow to fully develop becomes longer for the three-dimensional orientation
of fibers.

This result is confirmed by comparing of the evolution of a1111 between the three-
dimensional orientation and the planar orientation of fibers (Figure 29). The value of a1111

becomes smaller for the three-dimensional orientation case.
Figure 29 shows the variations of a1111 in the width direction. At the inlet the orientation

of fibers is isotropic except parallel alignment at the channel wall, thus a1111 = 3/8 for the
planar orientation and a1111 = 1/5 for the three-dimensional orientation. Fibers align
gradually in the x direction as they flow down to the exit of the channel. Therefore,
a1111 approaches unity within almost all region near the exit. However, a long distance
is necessary for fibers to change their orientations from isotropic distribution to complete
alignment in the region near the centerline owing to low velocity gradient.

The effects of the fiber parameter on the profiles of the x component of velocity u∗ in
the width direction can be seen in Figure 30. As the addition of short fibers to Newto-
nian liquids, the velocity profile changes from the parabolic profile to a more plug-like one
because fibers tend to align in the x direction and the flow drag is reduced as the wall is
approached. For the planar orientation, the velocity profile becomes more plug-like than
that for the three-dimensional orientation of fibers, because the degree of isotropy for the
planar orientation is weaker than that for the three- dimensional orientation case.

4.5.3 Stress distribution in fiber suspension flow

Finally, the shear stress T ∗
xy and the normal stress difference T ∗

xx−T ∗
yy are illustrated within

0 ≤ x∗ ≤ 2 in Figures 31 and 32, respectively. The non-dimensional stress is defined as
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T ∗
ij = Tij/(ηU/H). In the fully developed Newtonian flow of the channel T ∗

xy is varied
linearly from 6 at the wall to 0 at the centerline in the width direction, while T ∗

xx − T ∗
yy

becomes zero. In contrast, complex distribution of stress components for fiber suspensions
are remarkably observed in the region near the inlet owing to the orientation distribution
of fibers. Both T ∗

xy and T ∗
xx − T ∗

yy increase significantly from the values for Newtonian flow
in the inlet near the wall. Furthermore, the negative value of T ∗

xx − T ∗
yy becomes larger

in the inlet region near the centerline: deceleration of a fluid element produces a large
compression along the centerline near the inlet, while an extension takes place near the
wall and T ∗

xx − T ∗
yy becomes large.

The effect of the three-dimensional orientation of fibers on the stress field are as follows:
the degree of isotropy for the three-dimensional orientation is stronger than that for the
planar orientation case, then, the variations of the stresses for the three-dimensional ori-
entation of fibers are less significant than those for the planar case, such as the maximum
values of T ∗

xy are 14.4 and 11.1 for the planar and three-dimensional orientation, respec-
tively. Furthermore, The maximum and minimum values of T ∗

xx − T ∗
yy are 13.9, -3.44 and

10.2, -1.82, respectively.

4.5.4 Conclusions

We studied the development of two-dimensional fiber suspension flows through a rectangular
channel by solving the coupled flow kinematics and fiber orientation distribution for the
planar and three-dimensional orientation of fibers. A fully-developed flow with a parabolic
velocity profile and isotropic fiber orientation were specified at the inlet of the channel.
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The anisotropic characteristics of fiber orientations and stress field for fiber suspensions
were remarkably observed in the region near the inlet. As a result, the flow kinematics and
stress field for fiber suspensions changed more significantly from the Newtonian counterpart
in the region near the inlet. These results arise from the fact that a parabolic velocity profile
was given at the inlet of the channel. However, the effect of the addition of short fibers
gradually disappeared as the downstream region was approached.

The degree of isotropy for the three-dimensional orientation is stronger than that for
the planar orientation case near the inlet, then, the velocity profile in the width direction
became more plug- like and also the variations of the stresses were more significant for the
planar orientation of fibers.

4.6 Concluding Remarks

Fiber suspension flow and fiber orientation through a complex channel on the basis of
both numerical simulation and visualizations of flow and fiber orientation were described
in this section. We focused on the case of rigid fiber suspensions in Newtonian liquids,
and examined four particular topics: (1) Entry flow of dilute fiber suspensions through a
circular contraction; (2) Discussion on a quadratic closure approximation using a statistical
scheme; (3) Analysis of fiber orientation in a recirculating flow; (4) Numerical solution of
fiber suspension flow through a rectangular channel.

The most obvious result in an entry flow of fiber suspensions is that the salient corner
vortex significantly grows and also the normal stress difference largely increases for fiber
suspensions as compared to Newtonian fluid even at a very low volume fraction of fibers.

A statistical scheme was confirmed to be a very useful and feasible method to analyze
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Figure 31. Distribution of the shear stress T ∗
xy in a developing flow of fiber suspen-

sion through a parallel plate channel at Re = 10, for φμ/η = 10; (a) for
the planar orientation, the maximum value and the location are 14.4
(0.025, 0.025); (b) for the three-dimensional orientation, 11.1 (0.025,
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accurately the orientation distribution in fiber suspension flow. In the statistical scheme
the orientations of large numbers of fibers are evaluated from computation of the Jeffery
equation along the streamlines instead of direct solutions of the orientation distribution
function of fibers or the evolution equation of the orientation tensor with a closure equation.
We, therefore, used the statistical scheme to examine the performance of a quadratic closure
approximation, investigated the fiber orientations in a recirculating flow and computed
fiber suspension flows through a rectangular channel by coupling flow kinematics and fiber
orientation distribution.

1. A quadratic closure approximation performs well when the fibers are highly aligned,
however it is neither suitable for disturbed orientation state nor for a rapid change in
fiber orientation.

2. In a recirculating flow, all fibers align completely along the streamlines (co-linear
alignment) for large aspect-ratio fibers, while complete alignment can be achieved
but the preferred angle lies obliquely to the streamlines for small aspect-ratio case.

3. The flow kinematics and stress field for fiber suspensions in a developing flow through
a parallel plate channel change more significantly from the Newtonian counterpart in
the region near the inlet. These results arise from a parabolic velocity profile specified
at the inlet of the channel.

On the other hand, the future works on fiber suspension flows are as follows: the inter-
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actions of both fiber-fiber and fiber-wall are key factors for concentrated fiber suspensions.
We, therefore, have to evaluate the interactions for future computations of fiber suspension
flows. Furthermore, from a practical point of view the importance of fiber orientations
in viscoelastic flows has been recognized. Ait-Kadi and Grmela (1994) and Azaiez (1996)
proposed the constitutive equation for fiber suspension in polymeric liquids and computed
steady and transient shear flow properties. Contribution of the interaction between fibers
and polymer molecules to the stress of fiber suspension was taken into account in their con-
stitutive equation, however effect of polymer molecules on the evolution of fiber orientation
remains an open question.

5 EFFECTS OF FIBER ADDITIVES ON FLOW INSTABILITIES AND THE
DEVELOPMENT OF TURBULENCE

It is well known that spectacular reduction in turbulent friction can be obtained through
the addition of small amounts of polymers, polyelectrolytes, surfactants or rigid particles.
This phenomenon, commonly termed as drag reduction, is a resurging subject of research
which is gaining a lot of interest. The early reviews by Hoyt (1972) and Berman (1978)
have documented a large number of experimental observations that bear evidence to the
great potential of such additives in reducing turbulent effects.

Most of the exiting studies are devoted to polymer additives that have been the subject
of extensive theoretical and experimental investigations (See Lumley 1969 and the recent



review by Tiederman 1990). However, in spite of the large amount of studies dealing with
polymer flows, the exact mechanism of drag reduction is still unclear. In particular, the role
of stress anisotropy due to polymer extension versus elasticity, in the mechanism of drag
reduction is still an ongoing subject of controversy. De Gennes (1990) and Joseph (1990),
among other authors, suggest that elasticity is the main factor behind drag reduction by
polymer additives. Other authors maintain that the main mechanism for drag reduction
in polymers is associated with the anisotropy arising from the particular orientation of the
polymer chains once they are fully stretched (Landahl 1973, Hinch 1977 and Draad and
Hulsen 1995). Experiments by Sasaki (1991a,b) involving the use of polymers in combina-
tion with different types of solvents suggest that the anisotropy associated with a rod- like
behaviour of the additives is essential for the drag reduction.

Studies of the effects of fiber additives on the stability and the development of turbulent
flows are rather limited. Unlike their polymer counterpart, fiber additives have received
very limited attention, and most of the early studies have been carried out to address spe-
cific problems encountered in practical industrial processes, and therefore were published
in specialized journals associated with certain industries such as the pulp paper or textiles.
However, these early studies showed clearly that fiber additives can induce drag reduc-
tion effects that are as spectacular as those obtained by polymer additives. Furthermore,
it became apparent from these studies that fiber additives present a number of practical
advantages over polymer additives. Indeed, fibers have the advantage of higher resistance
to chemical and mechanical degradation that makes them more adapted to practical ap-
plications. Furthermore, fiber additives are more easily recoverable from the suspending
fluid and their size and shape are more easily controllable. These practical advantages of
fiber additives, added to their strong potential for reducing flow resistance, make them an
excellent drag reducing agent.

More recently, there seems to be a resurgent interest in studying flows of fiber suspen-
sions and their role in drag reduction. This interest can be attributed in part to recent
suggestions that polymer and fiber additives affect the flow turbulence in the same way.
Indeed, few similarities reported in some experimental studies involving polymer and fiber
additives, and the fact that polymer chains undergoing strong strains may act hydrody-
namically like solid particles, has led many authors to speculate that these two additives
modify flow instabilities in a similar manner (Landahl 1973, Virk and Wagger 1990, and
Draad and Hulsen 1995). Unfortunately there is still no clear proof that the effects of these
two additives on flow turbulence are the same, and it is suspected that they may involve
fundamentally different mechanisms. Indeed there are many reasons why the analogies be-
tween polymer and fiber additives should not be taken too far. First, rigid particles lack the
flexibility that polymer chains usually have and which may have important hydrodynamic
effects. Second, it is not obvious that a stretched polymer chain can retain its conformation
without degradation, and therefore behave exactly like a long rigid particle. Furthermore,
it is known that in general, for a given additive concentration, polymers tend to induce
stronger drag reduction effects than their solid particle counterparts. These differences are
confirmed by drag reduction measurements reported by Lee, Vaseleski and Metzner (1974)
for pipe flows, that show that the combined use of polymers and fibers leads to much larger
drag reduction effects than what is usually obtained with either additive alone. Further-
more, laser-Doppler anemometry measurements by McComb and Chan (1979) indicate that
effects of fibers on the turbulent structures in a pipe flow were fundamentally different from
those of polymer additives.

This section of the present review is devoted to examining the role of fiber additives
in changing the mechanisms of instability and development of the full turbulent regime in
a wide variety of flows encountered in nature and industry. Because of the brevity of this
section, the literature cited is subjectively limited though it covers most relevant studies.



We will first review studies dealing with pipe flows. Then we will focus on the effect of fiber
additives on the centrifugal instability in Taylor-Couette flows. Finally, we will examine
the special case of free shear flows.

5.1 Pipe Flows

It has been known that the presence of fibers in pipe and channel flows can result in a
large reduction of the frictional drag. This effect is usually measured by the drag reduction
defined as:

Dr =
fw − fs

fw
(5.1)

where fw and fs are the friction factors of the suspending fluid in the absence of fibers and
the suspension, respectively. The friction factor is defined as

f =
τ

ρv2

2

(5.2)

where τ is the shear stress, v the bulk flow velocity and ρ the density of the suspending
fluid.

As mentioned earlier, most of the existing literature dealing with drag reduction by
additives has mainly focused on the use of polymer additives particularly in wall-bounded
flows, due to their importance in many technological processes (see for example Pinho
and Whitelaw 1990, and Tiederman 1990). On the other hand, the use of fiber additives
as potential drag reducing agents remains very limited. Nevertheless, ancient and recent
experimental studies show conclusively that fibers can be a very effective drag reducing
agent in a wide variety of flows.

Among the earliest studies dealing with the flow of fiber suspension, we will mention
the works of Daily and Bugliarello (1961) and Arranaga (1970) and Ellis (1970). These
experimental studies allowed to examine the effects of fiber additives on the flow dynamics
in pipe flows. The characterization of the flow resistance revealed that the friction factor is
a monotonically decreasing function of the Reynolds number determined using the viscosity
of the suspending fluid (water). Furthermore, the authors identified three flow regimes in
which the fibers have a distinctive effect on the flow. In the first regime that develops at low
flow rates, the flow consists of a central core where most of the fibers are located, surrounded
by an annulus consisting of an almost fiber-free suspending fluid. The examination of the
velocity profiles shows that most of the velocity gradient occurs in the peripheral annulus.
In this regime, the presence of fibers in the flow results in stronger flow resistance, and
the friction factor increases with the fiber concentration and aspect ratio. In the transition
regime, fibers start to be separated from the plug flow in the central core and the velocity
gradients near the wall become less steep. In this regime the friction factor can be lower
than that for pure water. Finally, in the turbulent regime the plug is broken and fibers are
spread throughout the pipe. The friction coefficient is less than that for the pure carrier
fluid, and varies little with the Reynolds number.

Mean velocity profile measurements were conducted by Mih and Parker (1967), who
noticed that a plug core flow forms in the center of the pipe due to the presence of fibers.
It was also observed that the diameter of the plug core decreases with decreasing fiber
concentration and increasing velocity.

Pirih and Swanson (1972) used hot film anemometry to study the effects of small rigid
particles on the turbulent structures in pipe flows. It was reported that unlike pure water
flows which exhibit an abrupt increase in the friction factor as the flow becomes turbulent,
suspension flows resulted in a smooth transitional behavior with a continuously decreasing



friction factor. The authors studied also the turbulence intensity and compared the longi-
tudinal energy spectra for fiber suspensions and pure water in pipe flows. It was found that
for the same flow velocity, suspension flows develop larger eddies and more stable turbulent
structures than pure water flows.

Vaseleski & Metzner (1974) conducted a series of experimental studies to determine
the effects of fiber additives on turbulent pipe flows. They found that turbulent friction
effects were reduced as the fiber aspect-ratio or volume fraction is increased. A subsequent
study by Kale and Metzner (1976) showed that drag reduction due to fiber additives is a
wall region phenomenon. The effects of the fibers are confined to the region of the flow
close to the pipe wall where eddies are mainly of dissipative type and form a viscous zone
of flow turbulence. This result was confirmed by Sharma et al. (1978) who studied drag
reduction effects resulting from the injection of fibers in the flow. The authors used two
modes of injection where the fibers where either injected close to the pipe wall or near
the centerline. It was found that the boundary injection leads to stronger drag reduction
effects in turbulent pipe flows than the centerline injection. This study also suggests that
adding fibers through injection into the flow leads to stronger drag reduction effects than the
traditional approach using premixed suspensions, and that using the injection technique,
strong drag reduction effects can be obtained even with a trace quantity of fibers.

A study by McComb and Chan (1979) who investigated a pipe flow of a 300 wppm
suspension of high aspect ratio asbestos fibers, allowed to measure the streamwise veloc-
ity profiles over cross sections of the pipe using LDA. It was reported that due to fibers
degradation, the drag reduction effects decreased and reached levels comparable to those
of polymer additives. It was concluded that due to degradation, there is a transition from
fiber-like effect where the drag reduction effects are strong and the streamwise intensity
are below that of the solute alone to a polymer-like behaviour with increased streamwise
intensity and weaker drag reduction. These results were further expanded in a study that
presents measurements of the streamwise and circumferential velocities as well as the energy
spectra of the flow (McComb and Chan 1985).

5.2 Taylor Flow

A Taylor-Couette flow develops between two coaxial circular cylinders of radii R1 and
R2(R2 > R1), rotating about the common axis with angular velocities ω1 and ω2. This
type of flow is of special interest from both fundamental and practical points of view.

In the case where the outer cylinder is fixed, a circular Couette flow develops at low
Reynolds number. As Re is increased, a transition is observed at a critical Rec wherein
toroidal counter-rotating cells separated by transversal planes develop. This flow is known
as the Taylor vortex flow. At an even higher critical value of the Reynolds number, the
horizontal cells become wavy, this is the wavy Taylor vortex flow. Other flow transitions
can be observed at higher Reynolds number, such as the modulated wavy Taylor vortices,
but the flow quickly becomes turbulent. It is worth noting that the above transitions can
be also observed under a wide range of conditions when both cylinders are rotating whether
in the same sense or in opposite senses.

The first attempts to analyze the stability of a Taylor-Couette flow in the presence
of particle additives used a theory of incompressible anisotropic fluids proposed by Erick-
sen (1960) to describe the flow. The objective of these studies was to determine whether
the presence of fiber additives reduces or enhances the instability of the flow. The main
weakness of these studies lays in the constitutive model used to determine the fiber orien-
tation and its contribution to the total stress. Indeed, due to the mathematical complexity
in describing the fiber orientation, most studies have used the fiber-aligned assumption
to determine the local fiber orientation. In this approach, it is assumed that the fibers
are everywhere aligned with the streamlines such that the fiber contribution to the bulk



stress is directly expressed in terms of the velocity field instead of solving explicitly for
the orientation distribution. However, because of the inevitable presence of hydrodynamic
interactions, it is a truism to say that the orientation of the fibers will not be necessarily
along the streamlines everywhere in the flow.

The earliest studies of the stability of the circular Couette flow are attributed to Leslie
(1964) and Ericksen (1966), who examined the flow using the small gap limit where R1/R2 ≈
1 and focused on non-Brownian particles.

Pilipenko et al. (1981) used the Ericksen model to investigate the flow stability of a
suspension of weakly Brownian slender fibers in the gap between two coaxial cylinders.
These authors used linear stability analysis and experimental measurements to determine
the drag reduction effects due to fiber additives. It was found that in the small gap limit,
the addition of fibers to the flow has a destabilizing effect and leads to a decrease in the
critical Taylor number at which the secondary flow develops.

Nsom (1994-a) conducted a linear stability analysis of the Taylor-Couette flow occurring
between two concentric cylinders in the presence of stiff macroscopic fibers. Unlike previous
studies that used the small gap approximation, this analysis considered the situation of
wide-gap geometry to account for the macroscopic nature of the fibers, and examined
the dilute and semi-concentrated regimes. For the latter regime, the author modified the
Ericksen model using the formulation proposed by Shaqfeh et al. (1990) to account for
fiber-fiber interactions. It was found that the presence of fibers does not affect the critical
wave-number, but does lead to larger critical Taylor numbers when the fiber aspect-ratio
or volume fraction are increased. In a subsequent study, Nsom (1994-b) computed the drag
reduction for the Taylor-vortex flow for dilute and semi-dilute fiber suspensions. It was
found that for dilute suspensions, the drag reduction increases with the aspect ratio for a
given cylinder radii ratio. In the case of semi-dilute suspensions, it was reported that the
drag reduction increases with the volume fraction for a given cylinder radii ratio and fiber
density.

A similar study was conducted for the Dean flow occurring in a curved channel under a
pressure gradient (Nsom, 1996). The results of the analysis were similar to those obtained
for the Taylor-Couette flow, suggesting that an increase in the fiber aspect-ratio or volume
fraction tends to reduce the flow instability.

A more recent study by Gupta et al. (2001) investigated the linear stability of rigid
non-Brownian fibers in a Taylor-Couette flow. These authors determined explicitly the
fiber orientation by using a constitutive model based on orientation tensors in conjunction
with the hybrid closure. It was found that the presence of fibers in the flow reduces the
flow instability, and that the critical Reynolds number increases with increasing inter-
fiber interaction coefficient, volume fraction or aspect ratio. This suppression of the flow
instability was attributed to the development of negative first normal stress difference that
result in a state of compression of fluid elements in the radial direction. Furthermore,
an analysis of the budget of the disturbance kinetic energy revealed that the orientation
perturbation plays a dissipative role in the flow.

5.3 Free Shear Flows

Free shear flows such as mixing layers, jets and wakes differ from the previously mentioned
wall bounded flows in that they have an inflectional mean velocity profile, and hence are
subject to inviscid instabilities. These flows are encountered in a wide variety of natural
and technological systems and it is important to understand the mechanisms governing the
process of transition to turbulence in order to predict, and if possible control the evolution
of such flows.

All existing experimental investigations of free shear flows with additives, whether vis-
coelastic substances or rigid particles, bear evidence to the great potential of such additives



to reduce these flows instability. However, in spite of the overwhelming experimental and
theoretical evidence for drag reduction by such additives, the physical mechanisms respon-
sible for this phenomenon are not completely understood and remain a subject of debate.

The stability of this class of flows in the presence of fiber additives has been the subject
of a very limited number of studies. The experimental visualizations of a jet flow by
Filipsson et al. (1977) represent one of the few experiments devoted to the study of the
stability of free shear flows in the presence of particle additives. The authors reported that
the addition of a small amount of fibers (asbestos) led to drastic changes in the flow that
translated in an enhancement of large-scale turbulent structures and a modulation of the
turbulence by the suppression of small-scale structures. It was also observed that similar
trends were obtained when a polymer (Polyox WSR-301) was added to the flow, which led
the authors to speculate that the polymer and fiber additives modify the Kelvin-Helmholtz
instability in a similar manner.

Yang et al. (1990) examined the spatial and temporal stability of a gaseous mixing
layer in the presence of rigid spherical particles. It was found that the presence of particles
decreases the amplification rate of the perturbation therefore reducing the instability of the
flow. It was reported that the reduction of the flow instability is stronger for higher particle
loading, and that the maximum growth rate decreased almost linearly with the particle
loading.

Recently, Azaiez (2000a) conducted temporal linear stability analyses of a liquid mix-
ing layer flow in the presence of elongated rigid particles. The author used a formulation
based on moments of the probability distribution function to determine the particle orien-
tation, and extended the classical linear stability theory to derive modified Orr-Sommerfeld
equation. To determine the expression of the fourth-order orientation tensor, hybrid and
quadratic closure approximations for 2D orientation were use:

Quadratic : aijkl = aijakl

Linear : aijkl =
det(a)

6
(δijδkl + δikδjl + δilδjk) +

1
3
(aijakl + aikajl + ailajk)

Hibrid : aijkl = faijakl + (1 − f)bijkl

bijkl = − 1
24

(δijδkl + δikδjl + δilδjk)+

+
1
6
(aijδkl + aikδjl + ailδjk + aklδij + ajlδik + ajkδil)

f = 1 − 4 det (a)

(5.3)

The linear stability analysis used a tanh base state velocity profile, and the components
of the orientation tensors were determined accordingly (Azaiez, 2000-a). The temporal
stability of the flow was investigated using the classical normal mode analysis (Drazin and
Reid, 1987): The base flow is perturbed by infinitesimal disturbances, whose evolution is
examined by linearizing the governing equation about the base state. The perturbations
are decomposed into Fourier modes as follows:

ω(x, y, t) = ω0(y) + ω′(x, y, t) = ω0(y) + ω∗(y)ei(ax−σt)

a(x, y, t) = a0 + a′(x, y, t) = a0 + a∗(y)ei(ax−σt)
(5.4)



If the disturbance is found to grow with time Im(σ) > 0, the flow is considered stable
while the flow is regarded as stable if the perturbation is damped Im(σ) < 0. A zero
growth rate, Im(σ) = 0, corresponds to a neutrally stable flow. This approach allows
to transform the original set of partial differential equations in to an ordinary differential
eigenvalue problem. Three different methods were used to solve the linearized problem
with the appropriate boundary conditions. The first one consisted of an iterative method
based on orthogonal shooting which has been described in details in the paper of Azaiez
and Homsy (1994). The second method is based on a multiple shooting technique (Ascher
et al. 1988). In this method, one divides the whole interval by a mesh into N sub-intervals
and shoots in each interval. The final result is obtained from the different solutions in
the sub-intervals by imposing matching conditions at the shooting points. This method is
very useful when the problem has both rapidly decaying and rapidly growing solutions. In
the third method, we solved the linearized vorticity and fiber orientation equations using
the finite difference method. The ordinary differential equations are transformed into a set
of finite difference equations and lead to a generalized eigenvalue problem A · �x = λB�x,
which was solved using a standard QR algorithm (Azaiez 2000-a). For all three methods,
the accuracy of the results was tested by refining the mesh and varying the width of the
domain in the transverse direction.

This study revealed that an increase in the fiber aspect-ratio, volume fraction or hydro-
dynamic interaction coefficient leads to a strong attenuation of the flow instability. Both
the maximum growth rate of the disturbance and the spectrum of unstable wavenumbers
are reduced are reduced. It also showed that the stabilizing effects arise from the orientation
diffusion due to hydrodynamic interactions, and not from the anisotropy induced by the
presence of fibers in the flow, as speculated before. An examination of the budget equation
for the rate of production of entropy, revealed that the main factor behind the reduction of
the flow instability is associated with the fiber shear stress disturbance. This disturbance is
important when hydrodynamic interactions are included in the flow, and acts as a dissipa-
tive term as the fibers tend to deviate from the fully aligned anisotropic orientation. It was
also concluded that fiber models based on the assumption that particles are fully aligned
with the flow and therefore ignore any misalignment induced by hydrodynamic interaction,
will fail to capture the main physics of the flow.

In a subsequent study, we investigated the dependence of the results of the stability
analysis of the previous study on the nature of the closure approximation, as well as the
effects of fiber off-plane orientation (Azaiez, 2000-b). In particular, the stability analysis
was undertaken using a 3D hybrid closure approximation :

Hibrid (3D) : aijkl = faijakl + (1 − f)bijkl

bijkl = − 1
35

(δijδkl + δikδjl + δilδjk)+

+
1
7
(aijδkl + aikδjl + ailδjk + aklδij + ajlδik + ajkδil)

f = 1 − 27 det(a)

(5.5)

It was found that accounting for off-plane orientation by using the 3D hybrid closure
approximation leads to substantially different instability characteristics. In particular, the
flow was considerably less unstable than its planar counterpart. Furthermore, the flow
dynamics were fundamentally different in the 2D and 3D cases. In the case of a 2D ori-
entation, the shear stress disturbances tend to enhance the flow stability while the normal



stress disturbances act towards increasing the instability. On the other hand, for a 3D
orientation both shear and normal components of the stress disturbance act as a stabilizing
factor in the flow. This fundamental difference between the 2D and 3D configurations was
attributed to the differences in the resulting orientation distributions.
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