
HAL Id: hal-01007317
https://hal.science/hal-01007317

Submitted on 9 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability of incompressible formulations enriched with
X-FEM

Grégory Legrain, Nicolas Moes, Antonio Huerta

To cite this version:
Grégory Legrain, Nicolas Moes, Antonio Huerta. Stability of incompressible formulations enriched
with X-FEM. Computer Methods in Applied Mechanics and Engineering, 2008, 197 (21 24), pp.1835-
1849. �10.1016/j.cma.2007.08.032�. �hal-01007317�

https://hal.science/hal-01007317
https://hal.archives-ouvertes.fr


Stability of incompressible formulations enriched with X-FEM

G. Legrain a, N. Moës a,*, A. Huerta b
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Abstract

The treatment of (near-)incompressibility is a major concern for applications involving rubber-like materials, or when important plas-
tic flows occurs as in forming processes. The use of mixed finite element methods is known to prevent the locking of the finite element
approximation in the incompressible limit. However, it also introduces a critical condition for the stability of the formulation, called the
inf–sup or LBB condition. Recently, the finite element method has evolved with the introduction of the partition of unity method. The
eXtended Finite Element Method (X-FEM) uses the partition of unity method to remove the need to mesh physical surfaces or to re-
mesh them as they evolve. The enrichment of the displacement field makes it possible to treat surfaces of discontinuity inside finite
elements. In this paper, some strategies are proposed for the enrichment of low order mixed finite element approximations in the incom-
pressible setting. The case of holes, material interfaces and cracks are considered. Numerical examples show that for well chosen enrich-
ment strategies, the finite element convergence rate is preserved and the inf–sup condition is passed.

Keywords: Mixed formulation; X-FEM; Partition of unity; Inf–sup condition; Incompressibility; Holes; Inclusions; Fracture mechanics
1. Introduction

Displacement-based finite element methods are nowa-
days abundantly used in engineering analysis. Indeed, they
can solve a wide variety of problems, and have now been
deeply mathematically investigated. However, there still
exists two main drawbacks for these methods. First, the
treatment of incompressible or nearly incompressible prob-
lems necessitates the use of adapted formulations. If not,
incompressibility constraint locks the approximation, lead-
ing for instance to non-physical displacement or pressure
fields. Second, the generation and especially the update of
the mesh in complex 3D settings for evolving boundaries
such as cracks, material interfaces and voids still lacks
robustness, and involves important human effort.

Several techniques have been developed to respond to
the locking issue. For instance, the selective-reduced-inte-
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gration procedures [1–3] or the Bbar approach of Hughes
[4] in which the volumetric part of the strain tensor is eval-
uated at the center of the element. Another way to avoid
locking is to enhance the strain tensor in order to enlarge
the space on which the minimization is performed, and
meet the divergence-free condition (enhanced assumed
strain methods, see [5–9]).

Here, we will focus on low order two-field mixed finite
element methods. The incompressibility constraint is weak-
ened by the introduction of the pressure field. This allevi-
ates locking at the price of additional pressure unknowns.
However, mixed finite element methods are not stable in
all cases, some of them showing spurious pressure oscilla-
tions if displacement and pressure spaces are not chosen
carefully. To be stable, a mixed formulation must verify
consistency, ellipticity and the so called inf–sup (or LBB)
condition. The latter is a severe condition which depends
on the connection between the displacement and pressure
approximation spaces. Stable mixed formulations can be
obtained by stabilizing non-stable formulations with the
use of parameters whose values may depend on the
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Fig. 1. The model problem.
problem at hand. Otherwise, one has to work with approx-
imation spaces which pass the inf–sup condition. To prove
that a displacement–pressure pair satisfies the inf–sup con-
dition is not a trivial task. However, a numerical test has
been proposed by Brezzi and Fortin [10] and by Chapelle
and Bathe [11], in order to draw a prediction on the fulfil-
ment of the inf–sup. This test proved to be useful for the
study of the stability of various mixed elements [12].

The second drawback of classical finite element methods
(evolving boundaries) has been overcome by the develop-
ment of alternative methods such as meshless methods in
which the connectivity between the nodes is no longer
obtained by the mesh, but by domains of influence which
can be split by the boundaries. Moreover, the approxima-
tion basis can be enriched with functions coming from the
a priori knowledge of the local character of the solution
of the problem. Note that in the incompressible limit, mesh-
less methods are now known to lock [13,14] as classical
finite elements. Thus, some strategies have been developed
to circumvent this issue [13,15]. Apart from mixing meshless
methods and finite elements [16] another alternative to over-
come the re-meshing issue in finite elements is to use parti-
tion of unity finite element methods which are based on the
partition of unity concept introduced by Babuška and
Melenk [17], and first employed in the context of the mesh-
less method by Oden and Duarte [18,19]. Among the class
of partition of unity finite element methods, the Generalized
Finite Element Method (GFEM) and the eXtended Finite
Element Method (X-FEM) are the most advanced. The
GFEM was introduced by Strouboulis et al. [20–23] and
was applied to the simulation of problems with complex
micro-structures. The method was further extended to
employ the idea of mesh-based numerically constructed
handbook functions by Strouboulis et al. [24,25].

The X-FEM allows to model cracks, material inclusions
and holes on non-conforming meshes, when used with
proper enrichment of the finite element approximation. It
has been applied to a wide variety of problems in fracture
mechanics (2D [26–28], 3D [29–31], plates [32,33], cohesive
zone modeling [34,35], dynamic fracture [36], non-linear
fracture mechanics [37–39]), and in the study of heteroge-
nous media (holes [40,41], material inclusions [41,42] and
multiple phase flows [43]).

Here, we focus on the application of this method to
mixed formulations for the treatment of holes, material
inclusions and cracks in the incompressible limit. Bbar or
selective-reduced formulations are not considered, because
they do not seem to generalize easily to enriched displace-
ment fields. The main contribution of this paper is the
design of enrichment strategies for the pressure and dis-
placement fields, so that it leads to a stable formulation.
The enrichment of mixed finite element approximations
has already been used by Dolbow et al. [33] and Areias
et al. [39] for fracture mechanics in plates and shells, and
by Wagner et al. [44] for rigid particles in Stokes flow. How-
ever, the stability and the convergence of these approaches
was not studied. The latest work concerning volumetric
incompressibility was proposed by Dolbow and Devan
[37]. In this paper, the authors focus on the application of
the enhanced assumed strain method to X-FEM in large
strain. This approach seems to lead to a stable low order
formulation in the case of nearly incompressible non-linear
fracture mechanics. However, the stability of the method
was not shown, and the influence of the near-tip enrichment
was not studied. More precisely, it is not clear whether the
near-tip enrichment could make this approach unstable, as
the construction of an orthogonal enhanced strain field
becomes difficult with non-polynomial functions.

The paper is organized as follows: first, the governing
equations of incompressible linear elasticity are recalled.
The conditions for the stability of mixed formulations are
also reviewed. Next, some strategies are proposed to keep
the stability of enriched finite elements. The case of holes,
material interfaces and 2D cracks are presented. Finally, in
a last section the stability of these strategies is investigated.

2. Governing equations

In this section, we focus on the design of stable mixed
formulations for the treatment of incompressible elasticity
under the assumption of small strain and displacement.
First, the equations governing incompressible linear elastic-
ity are recalled. Then the inf–sup condition is presented
together with a numerical test.

2.1. Incompressible elasticity

We consider the static response of an elastic body (see
Fig. 1) which occupies a bounded domain X 2 R2 with a
sufficiently smooth boundary oX which is split into two dis-
joint parts: oXu where displacements are prescribed
(Dirichlet boundary conditions) and oXT where tractions
are prescribed (Neumann boundary conditions). The body
is initially in an undeformed, unstressed state. The govern-
ing equations are

divrþ b ¼ 0 on X;

e ¼ 1
2
ðruþruTÞ onX;

r � n ¼ Td on oXT ;

uðxÞ ¼ ud on oXu;

r ¼ C : e on X;

8>>>>>>><
>>>>>>>:

ð1Þ



Fig. 2. The model problem with material interfaces.
where r is the Cauchy stress tensor, b is the load per unit

volume, ud is the prescribed displacement field, Td are the
prescribed tractions, n is the outward unit normal to the
boundary oX, e is the linearized strain tensor and C is the

fourth order elasticity tensor which must be bounded, i.e.

Cijkl 2 L1ðXÞ i; j; k; l ¼ 1; 2; 3: ð2Þ

In the case of a linear isotropic elastic material, the consti-
tutive equation can be written as

r ¼ jeVðuÞI þ 2leDðuÞ in X; ð3Þ

where eV is the volumetric strain (eVðuÞ ¼ div u), j is the
bulk modulus,

j ¼ E
3ð1� 2mÞ ð4Þ

and eD is the deviatoric strain operator:

eD ¼ e� eV

3
I : ð5Þ

When the material tends to incompressibility, the bulk
modulus tends to infinity. This means that eV must tend
to zero (the displacement field must be divergence-free in
the incompressible limit).

eV ¼ divðuÞ ! 0 as m! 0:5: ð6Þ
The strong form (1) is equivalent to the stationarity of a
displacement potential P:

PðuÞ ¼ 1

2

Z
X

eðuÞ : C : eðuÞdX�
Z

X
u � bdX�

Z
oXt

u � Td dC:

ð7Þ
In order to model incompressible or almost incompressible
problems, a two field principle is considered by introducing
a second variable (the hydrostatic pressure p) in the poten-
tial (7):

p ¼ �jeVðuÞ ¼ �
1

3
TrðrÞ: ð8Þ

When j increases, the volumetric strain eV decreases and
becomes very small. For total incompressibility, the bulk
modulus is infinite, the volumetric strain is zero, and the
pressure remains finite (of the order of the applied bound-
ary tractions). The stress tensor is then expressed as

r ¼ �pI þ 2leD in X: ð9Þ

The solution of the governing differential equations (1) now
involves two variables: the displacement field and the pres-
sure field. Writing the two fields variational principle, the
total potential for the u� p formulation is expressed as

vðu;pÞ ¼ 1

2

Z
X
eDðuÞ : C : eDðuÞdX�

Z
X

u � bdX

�
Z

oXt

u �Td dC� 1

2

Z
X

p2

j
dX�

Z
X

peVðuÞdX: ð10Þ

Invoking the stationarity of vðu; pÞ with respect to the two
independent variables u and p, we obtain
Z
X

eDðdvÞ : C : eDðuÞdX�
Z

X
peVðdvÞdX ¼ RðdvÞ; ð11Þ

�
Z

X

p
j
þ eVðuÞ

� �
dp dX ¼ 0; ð12Þ

where RðdvÞ represents the virtual work of the external
loads. In the case of two perfectly bounded materials (see
Fig. 2), each phase of the body must satisfy (1) in addition
to continuity conditions:

sut ¼ 0 on oX2 ð13Þ
srt � n2 ¼ 0 on oX2; ð14Þ

where the jump operator s � t is defined along the interface,
oX2, as svt ¼ v1 � v2. Remark that (14) does not imply that
the pressure is continuous across the interface.

2.2. Stability of mixed formulations

2.2.1. Analytical condition for stability – the inf–sup

condition

The discretization of Eq. (11) leads to a finite element
system in the form (see Section 3):

Kuu Kup

KT
up

1
j Kpp

 !
u

p

� �
¼

f

0

� �
ð15Þ

In order to be regular in the full range of j, the kernel of
the Kup matrix must be zero (as well of course as appropri-
ate removal of the rigid modes).

More precisely, the displacement and pressure interpola-
tions must satisfy the Ladyzhenskaya–Babuška–Brezzi
compatibility condition [10], also known as the LBB (or
inf–sup) condition. This condition states that the displace-
ment and pressure spaces cannot be chosen separately. To
ensure solvability, a necessary but not sufficient condition
for the uniqueness of u and p is that

dimQh
6 dimVh; ð16Þ

where Qh and Vh are respectively the pressure and displace-
ment finite element spaces. The sufficient condition linking
these spaces (inf–sup or LBB condition) expresses as

The existence of a stable finite element approximate solu-

tion ðuh; phÞ depends on choosing a pair of spaces Vh and Qh

such that the following condition holds:
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Fig. 3. The Mini element (left) and T6T3 element (right).
inf
qh2Qh

sup
vh2Vh

R
X qhdivvh dX

kvhk1kqhk0

P b > 0; ð17Þ

where k � k1 and k � k0 indicates H 1 and L2 norms, respec-
tively, and b is independent of the mesh size h. If the inf–
sup compatibility condition is satisfied, then there exists a
unique uh 2Vh and a ph 2 Qh (determined up to an arbi-
trary constant in the case of purely Dirichlet boundary
conditions).

2.2.2. Numerical assessment of the inf–sup condition

As seen before, the prediction of the stability of a mixed
formulation involves the fulfilment of the inf–sup criterion.
This criterion is however impossible to prove for practical sit-
uations. This is why the numerical evaluation of the inf–sup
condition has received considerable attention [11,10]. This
numerical evaluation, although not equivalent to the analyt-
ical inf–sup, gives indications on whether (17) is fulfilled or
not for a given set of finite element discretizations. The
numerical inf–sup test is based on the following theorem.

Proposition 1. Let Muu and Mpp be the mass matrices

associated to the scalar products of Vh and Qh respectively

and let lmin be the smallest non-zero eigenvalue defined by the

following eigenproblem:

KT
upM�1

uu Kupq ¼ l2Mppq ð18Þ

then the value of b is simply lmin.

The proof can be found in [45] or [10]. The numerical test
proposed in [11] consists in testing a particular formulation
by calculating b using meshes of increasing refinement. On
the basis of three or four results it can be predicted whether
the inf–sup value is probably bounded from underneath or,
on the contrary, goes down to zero when the mesh is refined.
The reliability of this test is demonstrated on several exam-
ples of elements for incompressible elasticity problems in
[11]. In the following section this test is used to check the
behavior of proposed enrichment strategies. However, we
follow [11] and use only Suu ¼

R
Xru : rudX instead of

Muu in (18). In order to perform the numerical inf–sup test,
a sequence of successive refined meshes is considered. The
objective is to monitor the inf–sup values, b, when h

decreases. If a steady decrease in log(b) is observed when
h goes to zero, the element is predicted to violate the inf–
sup condition and said to fail the numerical test. But, if
the log(b) value is stable as the number of elements
increases, the test is numerically passed.

3. X-FEM discretization

3.1. Displacement field

With classical finite elements, the approximation of a
vector field u on an element Xe is written as

uðxÞjXe
¼
Xnu

a¼1

uaNa
uðxÞ; ð19Þ
where nu is the number of coefficients describing the
approximation of the displacement over the element, ua is
the ath coefficient of this approximation and Na

u is the vec-
torial shape function associated to the coefficient ua. Within
the partition of unity, the approximation is enriched as

uðxÞjXe
¼
Xnu

a¼1

Na
u ua þ

Xnenr

b¼1

aa
b/

u
bðxÞ

 !
; ð20Þ

where nenr is the number of enrichment modes, aa
b is the

additional dof associated to dof a and /u
b stands for the

bth scalar enrichment function. The number and the
expression of the enrichment functions vary with the prob-
lem to model. The expression of this enrichment function
will be recalled for holes, inclusions and fracture mechanics
in the next sections.

3.2. Pressure field

Using the same scheme, the pressure approximation is
written as

pðxÞjXe
¼
Xnp

a¼1

N a
p pa þ aa/pðxÞð Þ; ð21Þ

where np is the number of coefficients describing the
approximation over the element, pa is the ath coefficient
of this approximation and N a

p is the scalar shape function
associated to the coefficient pa, aa is the additional dof asso-
ciated to dof a and /p stands for the scalar pressure enrich-
ment function. The key issue is the combined choice of
enrichment functions /u and /p such that the whole en-
riched approximation (displacement and pressure) passes
the inf–sup condition.

3.3. Stable mixed finite elements

In this work, we shall enrich two stable mixed finite ele-
ments: the Mini element introduced by Arnold et al. [46]
and the T 6T 3 which is a robust and classical mixed element
(see Fig. 3). The Mini is composed of a linear displacement
field plus a bubble function and linear pressure field (Pþ1 ; P 1

element), and the T 6T 3 of a quadratic displacement field
and a linear pressure field (P 2; P 1 element).

The theoretical convergence rates of these elements are,
respectively, in OðhÞ (for both pressure and displacement)
for the Mini [46], and Oðh2Þ (for both pressure and dis-
placement) for the T 6T 3 [47] in the corresponding norms.



4. Stability of mixed formulations enriched with X-FEM

4.1. The case of holes

The strategy for treating holes within the X-FEM con-
sists in an integration of the weak form only in the non-
void parts of the elements (see [40,41]). Moreover, the
nodes for which the support is completely in the void are
eliminated. In the incompressible setting, it is natural to
follow the same strategy. No enrichment will be used,
and the weak form will be integrated in the body only.

The stability of this strategy is evaluated by considering
convergence studies under total incompressibility, and
numerical evaluation of the inf–sup. It will be considered
as stable if the theoretical convergence rate is obtained,
and if the numerical inf–sup test is passed.
4.1.1. Convergence study

Consider an infinite plate with a traction-free circular
hole under uniaxial tension. The exact solution of this
problem is given in [41]. We consider a square domain of
edge length 2 with a circular hole of radius a ¼ 0:4 at its
center. The exact tractions are imposed on the boundaries
of the domain and rigid body modes are prevented. The
Poisson’s ratio is set to 0.5 (total incompressibility), and
the Young’s modulus to 1.0. In addition, plane strain con-
ditions are assumed. The sequence of meshes that we con-
sider for the convergence study are unstructured and do
not match the hole boundary (see Fig. 4a). The displace-
ment error is measured using the energy norm error defined
Eq. (22), and the error on the pressure is computed using
the L2 norm (23)

eu ¼

R
XðeDðuhÞ � eDðuÞÞ : C : ðeDðuhÞ � eDðuÞÞdX

� �1=2

R
X eDðuÞ : C : eDðuÞdX

� �1=2

ð22Þ

ep ¼

R
Xðph � pÞ2dX

� �1=2

R
X p2 dX

� �1=2
ð23Þ
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Fig. 4. (a) Sample mesh for the convergence study an
The convergence study is performed using both Mini and
T6T3 elements, and the results are presented in Fig. 5 for
both pressure and displacement. As seen on Fig. 5, the con-
vergence rate of both displacement and pressure are similar
to the theoretical one. This demonstrates that the X-FEM
strategy for the treatment of holes preserves the conver-
gence properties of Mini and T6T3 elements.

4.1.2. Numerical inf–sup test

Convergence study was a first step to assess the behavior
of the X-FEM strategy for holes. The evaluation of the
fulfilment of the inf–sup condition is another approach
for the verification. We follow the work of Chapelle and
Bathe [11] described in Section 2.2.2, and consider the
problem presented in Fig. 6a. It is composed of a square
of length 2, with a hole of radius 0.4 at its center. The
square has its bottom and left edges blocked, and a pres-
sure is applied on the upper edge. The inf–sup value is
approximated using gradually refined structured triangular
meshes-like the sample mesh shown in Fig. 4b. Mini and
T6T3 formulations are considered herein. The evolution
of the numerical inf–sup value is plotted in Fig. 6b with
respect to the element size. As seen on this figure, the
numerical inf–sup value is stable for both Mini and T6T3
formulations.

Remark. The resolution of the eigenvalue problem was
performed using Lapack’s generalized Schur decomposi-
tion routine [48].
4.2. Material inclusions

The treatment of material inclusion in a compressible
media has been treated in various contributions (see for
example [41,42]). In this paper, we focus on the enrichment
strategy proposed by Moës et al. in [42] because this enrich-
ment function preserves the finite element convergence rate
(observed numerically), this ‘‘ridge” function is expressed
as

/uðxÞ ¼
X

a

jnajN aðxÞ �
X

a

naN aðxÞ
�����

����� ð24Þ
-1 -0.5 0 0.5 1
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0
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Z

d (b) sample mesh for the numerical inf–sup test.
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Fig. 6. Inf–sup evaluation for holes: (a) model problem and (b) evolution of the numerical inf–sup.
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Fig. 5. Convergence study, incompressible plate with a hole. Left: Mini, right: T6T3.
where ni is the signed-distance function to the interface
evaluated at the vertex of node i (see Fig. 7 for the example
of a plate with a circular inclusion).

Two types of enrichment are considered for the pressure:

� A discontinuous enrichment (heaviside).
� A ridge function enrichment (by analogy with the strat-

egy of enrichment of the displacement field).
Z

Y
X

RIDGE

0.101 0.2020

Fig. 7. Illustration of the ridge function for the case of a square plate with
a circular inclusion in its center.
Remark. Following [26], the quadrature rule is modified
for the elements that are crossed by the inclusion. The
partitioning of these elements and the increase in the
number of Gauss points yield a sufficiently accurate
integration of the weak form. More precisely, the degree
of the functions to be integrated is one degree higher in the
elements fully or partially enriched: the degree of the gauss
integration is raised in these elements, using formulas
derived by Cowper [49].



Table 1
Approximation spaces (R: ridge enrichment, H: heaviside enrichment)

Displacement Pressure Formulation
no.

Convergence rate
(disp./pressure)

Inf–
sup
test

FEM-T6T3

P 2 P 1 1 �1.5a/1.5 PASS

FEM-Mini

Pþ1 P 1 2 �1/1 PASS

X-FEM-Mini

Pþ1 � Pþ1 � R P 1 � P 1 � R 3 �1/1 PASS
Pþ1 � P 1 � R P 1 � P 1 � R 4 �1/1 PASS
Pþ1 � Pþ1 � R P 1 � P 1 � H 5 �1/–b PASSb

Pþ1 � P 1 � R P 1 � P 1 � H 6 �1/–b PASSb

X-FEM-T6T3

P 2 � P 2 � R P 1 � P 1 � R 7 �1.5a/1.5 PASS
P 2 � P 1 � R P 1 � P 1 � R 8 �1.5a/1.5 PASS
P 2 � P 2 � R P 1 � P 1 � H 9 �1.5a/–b PASSb

P 2 � P 1 � R P 1 � P 1 � H 10 �1.5a/–b PASSb

a Straight edge triangle elements.
b The inf–sup parameter is oscillatory and the pressure convergence is

non-monotonous.
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The stability of these enriched elements is compared to
the stability of the initial ones. The finite element computa-
tion of incompressible two phase media will be handled
considering Mini and T6T3 elements. The X-FEM strate-
gies considered are presented in Table 1.

The comparison of these strategies is performed as in the
previous section with convergence studies and numerical
inf–sup tests.
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Fig. 9. Analytical pressure.
4.2.1. Convergence studies (curved interface)

Consider the example presented in Fig. 8a. It is com-
posed of two perfectly bounded incompressible materials
with shear modulus l1 and l2. The first material is held
fixed at radius r ¼ a and the interface between the two
materials is located at radius r ¼ b. The structure is sub-
T

T
T

T

T

T

T

TRigid

a
c

b

a

Fig. 8. (a) Shear-based example and (b) mesh used for the convergence
jected to body forces b1 and b2 in X1 and X2, respectively,
and tractions are enforced at radius r ¼ c. The analytical
pressure is depicted in Fig. 9, and detailed in Appendix
A. The results of the convergence study for the mini ele-
ment are presented in Fig. 10, and a typical computational
mesh in shown in Fig. 8b. The energy norm error on the
displacement exhibits a rate of convergence in OðhÞ inde-
pendently of the enrichment strategy. This means that con-
cerning the displacement, the theoretical rate of
convergence is preserved with all the strategies. Now, the
convergence of the pressure field is considered because it
is a strong indicator of the performance of a mixed formu-
lation. Fig. 10 shows that formulations 2 and 3 give the the-
oretical convergence rates. Concerning formulation 5, the
convergence rate is degraded when the mesh is refined. In
fact, this comes from very localized pressure modes which
degrade the error when the material interface crosses ele-
ments near their edges.

In Fig. 11 shows the case where only the linear part
of the approximation space is enriched. As seen on this
figure, the rate of convergence is also degraded for the
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study (note that the external radius of the mesh is smaller than c).
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Fig. 13. Rate of convergence for the problem Fig. 8, linear part enriched
(T6T3-based element).
heaviside-based enrichment when the mesh is refined. How-
ever, with ridge-based enrichment, it maintains the optimal
convergence rate for both pressure and displacement.

Finally, the case of quadratic T6T3-based elements is
considered in Fig. 12. The rate of convergence is Oðh3=2Þ
for the pressure and slightly slower for the displacement
(even with meshed domains). It is consistent with theory
[50, p. 119]: the optimal convergence rate for curved
domains discretized with triangles (straight edges) elements
is Oðh3=2Þ. The conclusions remain similar when only the
linear part of the displacement is enriched (see Fig. 13).
As seen in these first numerical examples, the enrichment
of both pressure and displacement with the ridge function
gives the theoretical convergence rates for the Mini ele-
ment. In this example with T6T3 elements, the optimal rate
of convergence is limited by the geometry of the problem,
and not by the enrichment functions that are considered.
Finally, we have seen that not enriching the bubble func-
tion gives similar results with lesser degrees of freedom.
As a conclusion, it seems that the Mini element enriched
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Fig. 11. Rate of convergence for the problem Fig. 8, only the linear part
of the mini element is enriched.
with the ridge gives good results for total incompressibility
(and thus also for almost incompressible materials).

4.2.2. Convergence studies (straight interface)

We have built another numerical example composed of
a square of length 2 (see Fig. 14) which is composed of two
materials 1 and 2 of shear modulus respectively l1 and l2

(the case of total incompressibility is considered). The body
is subjected to surface tractions T on its boundary, and
body forces respectively b1 and b2 in 1 and 2. The stress,
strain and pressure fields are given in Appendix B, none
of them being in the finite element approximation space.
Finally, we set l1 ¼ 1=3 and l2 ¼ 10=3. A convergence
study is performed, and the results are given in Fig. 15.
We can see that T6T3 and Mini enrichment-based strate-
gies have the same rate of convergence than finite elements,
which is optimal. This shows that ridge-based enrichment
seems to have a stable behaviour in the incompressible
limit.



Fig. 14. Bimaterial problem with straight interface.
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4.2.3. Numerical inf–sup test

We have applied the numerical inf–sup test to all the
examples used in the convergence study (both curved and
straight interface). For the sake of simplicity, we choose
here to show results of a simpler example because all the
other examples present the same behaviour.

This problem, presented in Fig. 16, has been adapted
from [11]. It represents a square composed of two different
materials subjected to a constant pressure on its top face.
The position of the interface between the two materials is
parametrized by the parameter d. First, d is set to zero
and the numerical inf–sup is evaluated. In this case, the
interface is located at the center of the square and of the
elements (the sequence of mesh has an odd number of ele-
ments per side). As seen in Fig. 17, the inf–sup value
remains stable during refinement for all interpolation
spaces.

Next, d is set to 0.1. As the interface is unsymmetrical, it
will be close to the element edges at some steps of refine-
ment. In Fig. 18, the evolution of the inf–sup parameter
is now completely modified:

� For ridge-based enrichment (formulations 3 and 7), no
degradation on the inf–sup is observed, the value is sta-
ble during refinement.
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� Concerning the heaviside-based enrichment (formula-
tions 5 and 9), the value of the inf–sup degrades strongly
when the element edges approach the discontinuity (for
1=N ! 0:1 or 1=N ! 0:033333).

To study this aspect, another inf–sup test is performed
with a sequence of meshes built such that the material
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terface: left, FEM; right, X-FEM.
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Fig. 18. Evaluation of the inf–sup (d ¼ 0:1).
interface always crosses the elements at 90% of their height.
The results correspond to the curves labeled ‘‘Pþ1 � Pþ1 � R,
P 1 � P 1 � H (90%)” and ‘‘P 2 � P 2 � R, P 1 � P 1 � H (90%)”
in Fig. 18.

These curves are completely stable: this means that the
inf–sup condition is fulfilled even with heaviside enrich-
ment, but that the inf–sup parameter depends on how close
the material discontinuity is to the edge of the elements.
This dependency does not occurs for the ridge enrichment:
results match the previous one. Similar results are obtained
if only the linear part of the approximation space is
enriched (see Fig. 19).

The dependence of the inf–sup parameter on d and the
non-monotonic convergence of heaviside-based enrich-
ments (formulations 5 and 9) leads us to avoid these strat-
egies to enrich the pressure.
0.1 1
0.0001

0.001

0.01

0.1

Fig. 19. Evaluation of the inf–sup (linear part enriched), problem 2
(R = 0.1).
4.2.4. Conclusion for material interfaces

The results presented in this section are summarized in
Table 1. Strategies involving the enrichment of both dis-
placement and pressure with the ridge function are the
most effective since they pass the inf–sup test, and are not
influenced by the mesh topology. On the contrary heavi-
side-based strategies, although satisfying the inf–sup condi-
tion, produce results which depend on the mesh topology.
These strategies should not be considered. The formula-
tions where only the linear part of the displacement is
enriched (nos. 4 and 8) with the ridge are interesting, since
less degrees of freedom are involved in the approximation.
This should be important in the context of an extension to
three dimensional studies.

Remark. The degradation of the convergence rate should
be expected given the oscillations of the inf–sup parameter.
This stems from the fact that the constant in the a priori
error estimates depends on this parameter.
4.3. Incompressible fracture mechanics

The resolution of compressible fracture mechanics prob-
lems has been extensively studied in the context of the X-
FEM for both 2D [51,26,52,40,32] and 3D fracture
mechanics [29,30]. The most common enrichment strategy
consists in using the asymptotic displacement field as an
enrichment for the displacement finite element approxima-
tion. In the context of incompressible media, the analytical
asymptotic displacement field (Westergaard solution) is
shown to be identical to the limit of the compressible
one. The asymptotic evolution of the pressure field can
be obtained also using the Westergaard solution

pðr; hÞ ¼ 2KI

3
ffiffiffiffiffiffiffi
2pr
p cos

h
2

� �
þ 2KII

3
ffiffiffiffiffiffiffi
2pr
p sin

h
2

� �
; ð25Þ

/u ¼
ffiffi
r
p

sin
h
2

� �
;
ffiffi
r
p

cos
h
2

� �
;
ffiffi
r
p

sin
h
2

� �
sinðhÞ;




r cos
h
2

� �
sinðhÞ

r �
: ð26Þ

We use these expressions as an enrichment for the pressure
field in the near-tip region. Thus, the enrichment basis for
the pressure is expressed as

/p
I ¼ 1ffiffi

r
p cos h

2

� �
;

/p
II ¼ 1ffiffi

r
p sin h

2

� �
:

(
ð27Þ

Note that a classical heaviside enrichment is considered for
both pressure and displacement for nodes whose support is
fully cut by the crack, and that only the Mini element is
considered hereunder.

Remark. The elements that are crossed by the crack are
partitioned, and the number of Gauss points is increased
for the elements that are enriched with near-tip functions.
In this case, a degenerated quadrangular Gauss quadrature
is used.
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4.3.1. Convergence study

Consider a domain X ¼ ½�1; 1� 	 ½�1; 1� under tension
(see Fig. 20). The tensions applied on the boundary of
the domain are related to the exact tensions in an infinite
cracked body under mixed mode (using the Westesgaard
solution with KI ¼ 1:0, KII ¼ 1:0). A sequence of gradu-
ally refined meshes is considered. Those meshes are built
so that the crack passes always through the elements.
Two types of meshes are considered: the first one is pre-
sented in Fig. 20 where the crack tip is located on an ele-
ment’s edge, and the second one (see Fig. 20) where it
finishes inside an element. Two enrichment strategies are
also considered for the near-tip region: first, the topolog-
ical enrichment where only the nodes whose support
contains the crack are enriched, and the so-called
‘geometrical’ enrichment introduced by Bechet et al. [53]
where all the nodes which lie in a circle (of radius 0.1
here) are enriched with crack tip fields. The authors have
shown that the convergence rate was improving from
Oðh1=2Þ to OðhÞ with the use of this enrichment (for a
given benchmark). The convergence study are presented
in Fig. 21 for the first mesh, and Fig. 22 for the second.
As seen in Fig. 21, the convergence rate for both displace-
ment and pressure are in Oðh1=2Þ for the topological
enrichment, as expected. The influence of the enrichment
is clearly drawn, as it shifts downward the displacement
and pressure error curves. For a geometrical enrichment,
we obtain results similar to [53], i.e. an improvement of
the convergence rate up to OðhÞ for both pressure and dis-
placement. In this particular case, we obtain a slightly
better convergence rate for the pressure. The conclusions
are similar for the second mesh.

Note that the case where only the displacement field is
enriched has been considered and has shown that the influ-
ence of the pressure enrichment is small when dealing with
topological enrichment (changes of the initial value of the
curve), whereas it is huge when dealing with the geometri-
cal enrichment (degradation of both initial value and con-
vergence rate). This is why, the geometrical enrichment of
both pressure and displacement field is the more effective
way to model incompressible fracture mechanics. Finally,
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Fig. 20. Domain of interest, mesh no. 1 (left), me
the case where the enrichment is applied only to the linear
part of the approximation is considered in Fig. 23. The rate
of convergence is shown to be preserved, while degrees of
freedom are saved.
Z

Y

X

TExact

TExact

xact
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4.3.2. Numerical inf–sup test

The evaluation of the inf–sup condition is performed by
considering a single edge notched plate of side length 2.0. A
pressure is applied on the upper face, bottom and left faces
are held fixed. This loading case is much more drastic for
the inf–sup test than the one depicted in Fig. 20. The crack
tip is located at (0.1,0.05), so that its relative position to the
mesh will change during refinement (see Fig. 24). The evo-
lution of the smallest eigenvalue of the inf–sup problem is
plotted in Fig. 25 for 5 cases of figure: topological enrich-
ment, geometrical enrichment (radius 0.4), classical FEM,
topological enrichment (linear part enriched), geometrical
enrichment (linear part enriched). The evolution of the
eigenvalue tends to a finite value for all curves, showing
that the inf–sup condition seems to be fulfilled for both
of them.
4.3.3. Conclusion for fracture mechanics

We have seen that the enrichment of both displacement
and pressure fields with their asymptotic expressions leads
to a stable mixed formulation. Moreover, the use of the
geometrical enrichment leads to an improved convergence
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Fig. 24. Fracture inf–sup problem.
rate, similar to the compressible case. Finally, degrees of
freedom can be saved by only enriching the linear part of
the approximation.

5. Conclusion

Some strategies for enriching existing mixed finite ele-
ment methods have been presented. These strategies are
natural extensions of the displacement-based X-FEM,
and are shown to preserve the classical finite element con-
vergence rate. The stability of these strategies has been
shown through the numerical inf–sup test. However, we
experienced also ‘‘loss” of convergence due to curved
boundaries. The construction and the validation of qua-
dratic elements which should give back the Oðh2Þ conver-
gence will be the subject of a forthcoming paper. The
method should also be applied to finite strain mechanics,
as the fulfilment of the inf–sup condition seems to be a pre-
requisite to build efficient large strain formulations [54].



Appendix A. Analytical solution for curved interface

We did construct a specific analytical solution to inves-
tigate the convergence of the X-FEM. It represents two
perfectly bounded rings made from different materials
(see Fig. 8). The loading is chosen such that

b1rðrÞ ¼ 3W 3c2 þ 2W 2cþ W 1; ðA:1Þ
b2rðrÞ ¼ 3V 3c2 þ 2V 2cþ V 1; ðA:2Þ
T r ¼ W 3c3 þ W 2c2 þ W 1cþ W 0; ðA:3Þ

T h ¼ �2
l1l2a2b2

c
ð�a2l1c2 þ a2l2c2 � l2b2c2 þ a2b2l1Þ:

ðA:4Þ

Under these boundary conditions, the stress field compo-
nents are

r1
rr ¼ �ðW 3r3 þ W 2r2 þ W 1r þ W 0Þ; ðA:5Þ

r1
hh ¼ r1

rr; ðA:6Þ

r1
rh ¼

�2l1l2ca2b2

ð�a2l1c2 þ a2l2c2 � l2b2c2 þ a2b2l1Þr2
; ðA:7Þ

r2
rr ¼ � V 3r3 þ V 2r2 þ V 1r þ V 0

� �
; ðA:8Þ

r2
hh ¼ r2

rr; ðA:9Þ

r2
rh ¼

�2l1l2ca2b2

ð�a2l1c2 þ a2l2c2 � l2b2c2 þ a2b2l1Þr2
: ðA:10Þ

The displacement field components are

u1
hðrÞ ¼ �

cb2l2ðr2 � a2Þ
ð�a2l1c2 þ a2l2c2 � l2b2c2 þ a2b2l1Þr

; ðA:11Þ

u1
r ðrÞ ¼ 0; ðA:12Þ

u2
hðrÞ ¼ �c

�r2a2l2 þ r2a2l1 þ r2l2b2 � a2b2l1

ð�a2l1c2 þ a2l2c2 � l2b2c2 þ a2b2l1Þr
; ðA:13Þ

u2
r ðrÞ ¼ 0: ðA:14Þ
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Fig. B.1. Bimaterial problem with straight in
And the pressure distribution is

p1ðrÞ ¼ W 3r3 þ W 2r2 þ W 1r þ W 0; ðA:15Þ

p2ðrÞ ¼ V 3r3 þ V 2r2 þ V 1r þ V 0: ðA:16Þ

Moreover, in the example Section 4.2.1, we have
considered:

l1 ¼ 1=3; l2 ¼ 10=3;

a ¼ 0:4; b ¼ 1:0; c ¼ 2:0;

W 3 ¼ �10:0; W 2 ¼ 20:0; W 1 ¼ �5:0; W 0 ¼ �10:0:

V 3 ¼ 0:0; V 2 ¼ �10:0; V 1 ¼ 5:0; V 0 ¼ 0:0:
Appendix B. Analytical solution for a straight interface

The problem (see Fig. 14) is built so that the interface
between the two materials is straight. The loading is chosen
such that

b1x ¼ 6l1x ðB:1Þ
b1y ¼ �6l1y � 2l2 þ 3y2 ðB:2Þ
b2x ¼ �24l2x ðB:3Þ
b2y ¼ 24l2y � 2l2 þ 6y2 ðB:4Þ
T 1x ¼ 6l1x ðB:5Þ
T 1y ¼ �6l1y � 2l2 þ 3y2 ðB:6Þ
T 2x ¼ �24l2x ðB:7Þ
T 2y ¼ 24l2y � 2l2 þ 6y2 ðB:8Þ

Under these boundary conditions, the stress field compo-
nents are

r1 ¼
2l1 �3y2� 2l2y

l1

� �
� y3 l1 � 6yþ 2l2

l1

� �
xþ 2

� �
l1ð�ð6y þ 2l2=l1Þxþ 2Þ 2l1 3y2þ 2l2y

l1

� �
� y3

0
B@

1
CA;
ðB:9Þ
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r2¼
2l2 12y2�2yð Þ�2y3 l2 �ð�24yþ2Þxþ2l1

l2

� �
l2 �ð�24yþ2Þxþ2l1

l2

� �
2l2ð�12y2þ2yÞ�2y3

0
B@

1
CA:

ðB:10Þ

The displacement field is (see Figs. B.1, B.2)

u1x ¼ � 3y2 þ 2
l2

l1

y
� �

xþ 2y � 1 ðB:11Þ

u1y ¼ y3 þ l2

l1

y2 � 1 ðB:12Þ

u2x ¼ 12y2 � 2y
� �

xþ 2
l1

l2

y � 1 ðB:13Þ

u2y ¼ �4y3 þ y2 � 1 ðB:14Þ
And the pressure evolution is (see Fig. B.3)

p1 ¼ y3; ðB:15Þ
p2 ¼ 2y3: ðB:16Þ
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[53] E. Béchet, H. Minnebo, N. Moës, B. Burgardt, Improved implemen-
tation and robustness study of the X-FEM for stress analysis around
cracks, Int. J. Numer. Methods Engrg. 64 (8) (2005) 1033–1056.

[54] D. Pantuso, K.J. Bathe, On the stability of mixed finite elements in
large strain analysis of incompressible solids, Finite Elem. Anal. Des.
28 (1997) 83–104.

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/

	Stability of incompressible formulations enriched with X-FEM
	Introduction
	Governing equations
	Incompressible elasticity
	Stability of mixed formulations
	Analytical condition for stability - the inf-sup condition
	Numerical assessment of the inf-sup condition


	X-FEM discretization
	Displacement field
	Pressure field
	Stable mixed finite elements

	Stability of mixed formulations enriched with X-FEM
	The case of holes
	Convergence study
	Numerical inf-sup test

	Material inclusions
	Convergence studies (curved interface)
	Convergence studies (straight interface)
	Numerical inf-sup test
	Conclusion for material interfaces

	Incompressible fracture mechanics
	Convergence study
	Numerical inf-sup test
	Conclusion for fracture mechanics


	Conclusion
	Analytical solution for curved interface
	Analytical solution for a straight interface
	References


