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Spatial and spectral superconvergence of discontinuous Galerkin
method for hyperbolic problems
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In this paper, we analyze the spatial and spectral superconvergence properties of one-dimensional hyperbolic conservation law by
a discontinuous Galerkin (DG) method. The analyses combine classical mathematical arguments with MATLAB experiments. Some
properties of the DG schemes are discovered using discrete Fourier analyses: superconvergence of the numerical wave numbers,
Radau structure of the X spatial error.
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1. Introduction

The discontinuous Galerkin method (DGM or DG method) has become a very popular numerical technique for
solving hyperbolic conservation laws [5]. Some remarkable numerical properties of the DGM scheme have been
demonstrated in an abundant literature. The method has been proven to be highly accurate, spectrally and spatially:

e Spectral superconvergence: Super-accuracy of numerical wave numbers was conjectured in [6] and subsequently
proved in [2].

e Spatial superconvergence: Superconvergence at Radau points [4,7,1], strong superconvergence at downwind points
[3] and Radau structure of the spatial error [7].

The aim of this work is to present those results in a comprehensive manner such that they become accessible to a wider
community than the one of mathematicians. We propose here a unified way that allows to discover both spatial and
spectral superconvergence properties of DGM’s using simple MATLAB experiments. When necessary, we add to the
discrete analysis some parts of mathematical proofs that highlight the discussion. In the following, we do not assume
any specific choice for the numerical fluxes: upwind or not.

* Corresponding author. Department of Civil Engineering, Université Catholique de Louvain, Place du Levant 1, 1348 Louvain-la-Neuve, Belgium.
E-mail address: remacle@gce.ucl.ac.be (J.-F. Remacle).



At the end, we try to give some reasonable answers to questions that naturally come out like:

e Is it useful to apply upwind numerical fluxes, why not using centered ones?

e On a DGM scheme that use polynomial order p on a mesh of size &, the L? norm of the error is of order #”*! while
the error on numerical wave numbers converges like #2772, What is the rate of convergence to consider?

e What is the structure of the spatial error of the DGM scheme and are the jumps of the solution of any importance in
the post processing (e.g. for error analysis)?

2. Discontinuous Galerkin space discretization in one dimension

Let us consider the following model problem. Being (x, t) € (0, 1) x (0, T), find u(x, ¢) solution of
O,u + c0,u =0, (1
with initial condition
u(x, 0) =uo(x), 2

and periodic boundary conditions. This is a very simple model problem for an hyperbolic PDE. In (1), c is a positive
number. Waves travel from left to right, in the positive x direction. We assume that time integration is exact and analyze
the spatial and spectral discretization errors.

We consider a partition of the space (0, 1) in N segments of size Ax = 1/N. In each element, we discretize in
space the unknown using Legendre polynomials of orders less or equal to p. For that, we consider a reference segment

¢ € (—1, 1) and the unknown u* in segment k going from x* = (k — 1) /N to x**! = k/N is approximated as
k - k W1=C gl
ut(x (), 1) = Z Pi(Ouf (1),  with x(&) =x* — tyT 3)

i=0

Fig. 1 shows the one dimensional discretization.
The Legendre polynomials we are using here have the following properties. They are orthogonal in (—1, 1) i.e. the
mass matrix

Mpg = / 2024 de= b @)
is diagonal.
Legendre polynomials have known values at & = +1:
Zpy(=)=(=DP and 2,(1)=1. 5)
This property allows us to state that
P . P
W (x(=1), 0= (=D'uf(t) and u*(x(1),0)=Y uf (). 6)
i=0 i=0
,,y,l o 74_:k7 1 /"k "k+l ,r;k+2 o :V+l

Fig. 1. One-dimensional discretization.



For our further computations, the following integral is of importance

1
Dy :/_19’/,,% d¢

First, we have that D, =0 if p <g because Legendre polynomial of order p is orthogonal to any polynomial of lower
order and the derivative of Legendre polynomial of order p is a polynomial of order p — 1.
The other case p > g is computed using integration by parts

1 1
D,,q=/ y};,%df:—/ PpPydé+ 2,21 = —Dgp +2,2,1,
—1 -1 ———
=0
=1— (=D, 7

The elements of D, are then equal to 0 or 2, regardless of polynomial orders.
We construct the discontinuous Galerkin formulation 5(u¥, v) of our problem, by multiplying (1) by a test function
v(x), integrating the result over a segment k, and using the divergence theorem to obtain:

xkt1 ok

b(uk,v)sz Gtuk(x,t)v(x)dx—fk cuk (x, Hd,v(x) dx + [culx, Hu()*=5 =0 V. ®)

.X)Ck

At the interface between two elements, i.e. the end points x* and x**1 the flux vector f = cu(x,t) is not uniquely
defined and a flux formula has to be supplied to complete the discretization process. At any interface point x*, we
define the following consistent approximation of the flux

ia(xk, 1) = K ) (10— uF K ), )

where p is the upwind parameter (¢ = 1 means a full upwind scheme and ¢ = 0.5 means a centered scheme). Eq. (8)
for element k can be rewritten as:

k+1 k+1

bk, v) = /X atuk(x, Hv(x)dx — /x cuf(x, )0, v(x)dx
Xk Xk
+ca (N Do — ca(KF, HvF) =0 . (10)

A second integration by parts of the second term of (10) leads to the standard Lesaint and Raviart [8] DG form:

k+1 xk+1

bw*, v) = fk G,uk(x, Hv(x)dx + /k caxuk(x, Hv(x)dx + uc[uk(xk, 1) — K, D)

X

+ (1 = el aF n —uf G e =0 v, 11)

Next, if we consider expansion (3) for the numerical discretization of the unknown uk (x, 1) and if we choose Legendre
polynomials 2; up to order j < p as test functions v(x), the discrete variational formulation becomes:

14 14
b (Z ut 2, 9,) = Z <6,u{?(z)Ax[1f P dx +cuk(t)/ dx>

i=0 i=0

P
+ Y pelZi(=Duf (1) — 2 (Dul = 012;(=1)

i=0

p
+ Y (= welZi(=Du T (6) = 2;(Huf )12, (1) =0, j=0,...,p. (12)
i=0



In (12) and for k = 1, the periodic boundary condition is imposed by stating that u® = u™ . If we call
Aij= (D" Bjj=(=1) and I; =1,
then (12), i.e. the discrete discontinuous Galerkin formulation on segment k, can be written in matrix form as:
Ax_ ¢ k k—1 k+1
Taui (OMij + (Dij + puAij — (1 = lij)ui (t) — pBiju; () + (1 = @) Bjiu; (1) = 0. 13)

If u is a column vector of size N x (p + 1) that contains all unknowns of every segment, the discontinuous Galerkin
formulation can be written in a more compact form

¢ M-!
ou= —A—XM Lu,

with M = diag(M, ..., M) a block diagonal matrix whose condition number grows like 2p + 1 and

(DT + A — (1 — ) (1-w8 —uBT
—uBT (DT 4+ pA — (1 = i)
L= ,
(1-wB —uBT (DT +pA — (1 — )

a sparse matrix.

3. Fourier analysis

Fourier analysis consider wave-like solutions
u(x’ t) — Re(ce2iﬂ(kx—fl+i0'[))’

where C is a complex constant, k is the wave number, f the frequency and ¢ is the damping parameter. The term
“wave number” refers to the number of complete wave cycles that exist in one meter of linear space. Wave number k
is dimensional: it is the inverse of a distance. The frequency fis dimensional too (inverse of a time). It is the number
of complete wave cycles that are completed in one second.

Substituting in (1), we have the dispersion relation and no damping:

f=ck and o=0.

The speed of the waves is ¢ and the solution is neither amplified nor damped. If Ax is the mesh size and £ is the
dimensional wave number, we define a non-dimensional wave number as k;, = kAx. The non-dimensional wave
number kj, is interpreted as a wave number where the length measure is taken as the mesh size Ax. For example, a
non-dimensional wave number of kj, = % correspond to a wave length 5Ax i.e. of five element sizes.

We consider the semi-discrete form of the model problem (1):

du+Au=0, with A= ML (14)

We seek how accurately the DGM scheme, i.e. A, is able to approach the 0, operator.

It is easy to compute the spectrum of A for different values of p, N and p using MATLAB. We compute AV = VD
where D is a diagonal matrix, D;; is the ith complex eigenvalue of A and where the ith column of V is the corresponding
ith eigenvector of A.

Fig. 2 shows the distribution of the discrete eigenvalues of the DGM space operator. The mesh was made of N =10
equally spaced segments. On the left Fig. 2(a), we have chosen an upwind discretization of the fluxes and in the right
Fig. 2(b) a centered scheme.
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Fig. 2. Plot of the numerical eigenvalues for the DGM operator: (a) full upwind scheme (¢ = 1); and (b) centered scheme (1 = 0.5).

The centered scheme seems not to produce any numerical dissipation. This can be easily shown. In order to prove
the L? stability of the DGM, we sum Eq. (11) over all elements and integrate it in time from 7 = 0 to T':

T N
B(uk,uk):/ > bk, uk)de
0

k=1

1 N okt c N T
=—Z/ uk(x,T)z—uk(x,O)zdx——Z/ uk (x5, 0?2 — Tk 2 de
2o 2o
N T
+eX [Citat o+ - o et et 0 - et e
0
k=1

1 2 1 2
= S IeE2 = 51O 2,
1\ < [T
+C(,u——)2/ W k) —uF R )2 de =0, (15)
2 k=170

Clearly, the scheme is L2 stable if and only if the sign of c is the same as the sign of u — % Taking u = % leads to a
scheme that exactly conserves the L% norm of the solution (no numerical dissipation). The full upwind scheme consists
in choosing p = (1 + sign(c))/2. In Eq. (15), we observe that the dissipation mechanism involved in the DG scheme
is produced by the solution jumps.

The eigenfunction u; (x) is constructed using the DGM interpolant:

N
u;(x) =Re Z«@j(x)vji
j=0

The eigenfunctions u; (x) are an approximation of the exact eigenfunctions U; (x) of the space operator. Those can be
written in the following form:

ui(x) ~ U;(x) = cosmkix + ¢;),

where k; is the wave number of the mode.
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Fig. 3. Representation of nine normed eigenvectors of A corresponding to different non-dimensional wave numbers kAx.

In order to find the corresponding wave number k; and the phase angle ¢;, we first perform a fast Fourier transform
(FFT) of each numerical mode u; (x). We use the Fourier spectrum to determine the wave number k; of the mode: it
corresponds to the maximum in the energy spectrum. The corresponding phase angle ¢; is also given by the FFT: it is
the angle of the corresponding complex Fourier coefficient.

Fig. 3 shows some of the eigenvectors of the DGM discretization. The mesh is equally spaced with N =5, p =4 and
1= 1. We see that the eigenmodes corresponding to small wave numbers are well resolved, they are close to cosine
functions. Higher order modes are unresolved and jumps of increasing size are appearing at inter-element boundaries.
Those will be damped in time (see Eq. (15)). Actually, Ainsworth showed in [2] that the number of resolved waves
grows like 2p 4 1. The resolved wave numbers are then such that: The resolved wave numbers corresponds to relatively
small kA i.e. kh that are such that 2p + 1 > (2nkAx) + OkkAx)'3.} In our example, the resolved wave numbers are
the ones such that kAx < 1.43 — O(kh)'/3.

Now what happens with the non-resolved waves? We show in the next example that according to the used spatial
scheme, those non-resolved waves behave differently. We advect a step function located at x = 0.5 with a uniform
velocity to the right without any limiter. The mesh is made of N = 50 equally spaced segments. The step contains thus
a very large range of wave numbers. We see in Fig. 4 that the upwind scheme dissipate the non-resolved waves while
the centered scheme keep them alive. Those non-dissipated resolved waves pollute the solution. Note that the centered
scheme produces spurious undamped waves that travel in the wrong direction while the upwind scheme obviously only
produce waves that go from left to right. The use of an upwind scheme does not avoid the presence of oscillations. The
remaining overshoots that are present at high times, when all unresolved modes are damped, correspond to resolved
modes that are present in the initial solution. Those modes are going at the right speed so that they do only perturb the
solution at the vicinity of the discontinuity (the solution is perfectly constant away from the discontinuity). A limiter
should be able to take care of those oscillations.

UIn Ainsworth’s paper, wave numbers are defined differently i.e. they refer to the number of cycles in 27 meters of linear space.
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Fig. 4. Advection of a step function with upwind scheme (top) and centered scheme (bottom) (N = 50).

We now look on how the DGM scheme is able to approximate eigenvalues and eigenfunctions of the space operator.
Look at eigenfunctions will tell us about space accuracy of the DGM scheme. Looking at eigenvalues will tell us about
spectral accuracy of the DGM scheme.

3.1. Spectral accuracy

The dispersion error usually defines how accurately the scheme is able to predict numerical wave speeds. In other
words, the dispersion error of mode i is

Egisp = 2mk; — Im(D;;). (16)

The dissipation error usually defines how accurately the scheme is able to predict numerical damping. The dissipation
error is the error in the real part of the eigenvalues Dj;:

Egiss = Re(D;;). )

For the solution of the wave equation, the exact dissipation is null and all eigenvalues should all be on the imaginary
axis.

It has been conjectured [6] and subsequently proved [2] that the numerical eigenvalues D;; are superconvergent:
the dispersion error is accurate to (kh)2p *3 and the dissipation error accurate to (kh)2” *2. This means that numerical
wave numbers are converging more rapidly that the actual formal accuracy of the DGM (O (h)? +h, Fig. 5 illustrates
the superconvergence of numerical wave numbers with N = 15, p =4 and a full upwind scheme u = 1.

Note that the same kind of plots can be done for the centered case. In this case, there is no dissipation error. Dispersion
errors are also superconvergent in the centered case.

3.2. Spatial accuracy

In this section, we look at the spatial accuracy of the DGM scheme. We look on how the scheme is able to provide
an accurate approximation of the real eigenfunctions U; (x). We define the pointwise spatial error of mode i

ei(x) =u;(x) — U;(x).
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Fig. 6. Spatial error as a function of the non-dimensional wave number kAx. Convergence order is p + 1.

The L2 norm of the error for mode i (wave number k;) is computed as

1
E?:/ eiz(x)dx.
0

Fig. 6 plots spatial errors E as a function of adimensional wave numbers kAx. The convergence rates are ((kAx)” +1
This is consistent with classical interpolation theory : approximating a function using polynomials of order p produces
truncation error of order p + 1.
In Fig. 7, we plot the function e; (x) for different k;’s in the case N =5, p =4 and for two values of u. The existence
of a structure for the DGM spatial error appears very clearly for ¢ = 1: error shapes are similar for all modes and for
all elements. For other values of p, the spatial structure disappears.
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Fig. 7. Spatial error e(x) of the first eigenvectors corresponding to wave numbers 1/Ax =0.2 for different values of u: (a) centered scheme (u=0.5);
and (b) upwind scheme (1 = 1.0).

In order to find out the analytical form of the structure of the DG spatial error, we build the error functional. Taking
into account that the exact solution u(x, t) is smooth, we have for one element:

k+1

b(Ui,gj)Z/ (atUi—i—Cain)vdX:O Vj. (18)
ok

Now, we assume that the solution is exact outside the element. Then, we can compute the local error functional in the
upwind case. For doing so, we take the difference between Eq. (11) with =1 and v(x) = 2, and Eq. (18). We also

assume that we have the exact solution at the downwind end, i.e. uf_l (xk) ~ U; (x*) and get finally:
1
b(ek, 2;) = f (Axd,ef + c0:€)P; A + cef (=1, 2;(—=1) =0 V. (19)
-1

We further assume that the leading term of the local discretization error is a polynomial of order p + 1, i.e. ef.‘ &=
af’p+l.§‘2p+1 (&) + O(Ax)P*2. The error Eq. (19) becomes, for the leading term:

1
/laéﬂwlﬂjdé—i—,@pﬂe@ﬂ_l=O Vj. (20)

It is easy to show, using (7), that #,41 = #p41 — &), verifies (20) and is equal to 0 at £ = 1. Moreover, it is
possible to prove [1] that the remaining terms of the error, up to 2p are also Radau polynomials. For example,
ei(x) — aj pr1Rpy1 = ai p12Rpi2 + @(kAx)”+3. This means that the downwind points are superconvergent at
order (kAx)?Pt1.

A more general result is the following one: the flux value u defined by Eq. (9) is always more accurate than left or
right values. Let us define, respectively, the global upwind and the Riemann error for the ith eigenvector:

N N
EP =) w6 Ui E =) laa") - Uiahl.
k=1 k=1

Fig. 8 shows the behavior of these indicators with a centered and an upwind scheme. In the upwind case, downwind
values (E™®) are superconvergent at order (kAx)?P+! and upwind values (E"P¥) are converging at the same rate
(kAx)? *1 as the DGM spatial error. Therefore, jumps of the solution at nodes uk (%, 1) —u* =1 (xk, 1) are a good image
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Fig. 8. Global upwind and Riemann error as a function of the non-dimensional wave number kAx computed respectively with an upwind and a
centered scheme.

of the local error that exists at upwind points:

N N
T= " luf ) —uf T =D ) — Ui F) + Ui by — )|
k=1 k=1
N
<Y uf R = Ui+ e ) = i)
k=1

= E""Y 4+ EM = 0(kAx)PT.

In the centered case, E"® is a measure of the error on solution averages at nodes. Clearly, averages are better than left
or right values but are not converging better. In the centered scheme, jumps are not useful for computing local errors.
This is absolutely consistent with the L? stability result (15). In the centered case, jumps of the solution are not the
cause of numerical dissipation.

4. Conclusion

In this paper, we presented a simple approach to study discontinuous Galerkin schemes using simple MATLAB
experiments. Both the error on numerical wave numbers and on numerical wave shapes were studied.
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One of the aim of the paper was to justify the choice of the upwind scheme vs. the centered scheme. We showed that
the upwind scheme was the best choice for two major reasons:

e upwind schemes allow to dissipate non-resolved modes while being super accurate on resolved ones;
e upwind schemes lead to an interesting structure of the spatial error: jumps are an image of the local discretization
error.

In some further work, we will focus on the extension of the technique to 2D problems and to systems.
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