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This paper deals with the analysis of fracture characteristics of concrete at very early ages.
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1. Introduction

At early ages, cracks can occur in concrete due to the autogenous/drying shrinkage and thermal deformations. As the
strength is relatively low, induced tensile stresses may cause premature deterioration which can affect seriously the integrity
of the concrete structures. So, the evolution of the early age strength and fracture properties of concrete should be evaluated.

The fracture energy is one of the most important fracture characteristics of concrete. Determination of the evolution of
the fracture characteristics at early ages has been already investigated by some authors [1–5]. Based on the three-point
bending test or the wedge splitting test, the fracture energy could be evaluated directly from the load–displacement curves
according to the RILEM’s recommendation, or indirectly, by numerical inverse analysis. When using inverse analysis, exper-
imental results are approximated by repeated numerical simulations. To this end, a function to describe concrete softening is
needed. Discrete models (fictitious crack model [6]) or smeared crack models are often used for modelling tensile softening
behaviour of concrete. These models require a stress-crack opening relationship. The area under the tensile softening curve
described by this relationship determines the specific fracture energy. The softening curve could be approximated by a
bilinear [2,4], tetra-linear [7] or multi-linear curves [8].

As defined by the RILEM technical committee, the specific fracture energy measurement is based on the load–
displacement (P � d) curve and expressed as
Gf ¼
1

bðW � aÞ

Z
P@d ð1Þ



Nomenclature

a perturbation
b parameter for the compression damage law
v chi-squared error criterion
d crack opening displacement
c the biaxiality ratio
rij stress tensor components
~rij effective stress tensor components
efr fracture strain
eij strain tensor components
n a hardening–softening variable
a�1 transition length
Aelem finite element area
B parameter of the damage evolution law
Cijkl elastic stiffness tensor components
E Young’s modulus
ft tensile strength
GF size independent fracture energy
Gf RILEM specific fracture energy
gf local specific fracture energy
h characteristic length
J Jacobian matrix
Z weighted matrix
r nominal stress
n internal variable
a initial crack length
b specimen thickness
d damage variable
W specimen width
w crack opening displacement
where b is the specimen thickness, W its width in the crack direction and a the initial notch or crack length. The RILEM en-
ergy definition is based on Hillerborg’s fictitious crack model. So, the motivation of the RILEM was to provide a constant
parameter Gf representing the area under the tensile softening curve supposed unique. However, as it is widely agreed, size
effect on the RILEM Gf exists [9,10]. Gf depends not only on the specimens sizes W but also on the crack length a even if W is
constant. There is a size/ligament effect on Gf [11–13]. Eq. (1) gives only an average value where the fracture energy is as-
sumed to be uniform over the crack length.

A number of authors have tried to explain the size/ligament effect on Gf. Hu and Wittman [14] proposed a Gf curve con-
cept where the specific fracture energy is assumed to vary along the crack path. This local specific fracture energy is function
of crack length (gf(a)) and the experimentally determined Gf(a)
gf ðaÞ ¼ Gf ðaÞ � ðW � aÞdGf ðaÞ
da

ð2Þ
where Gf(a) represents the crack length-dependent fracture energy or the specific fracture energy (measured by testing con-
crete specimens of fixed size but different crack length). A bilinear distribution of the local fracture energy along the crack
path is therefore proposed. Duan et al. [15,12,10] proposed also a bilinear fracture energy distribution where Gf is function of
the specimen width (Fig. 1)
gf ¼
GF W � a > a�1
g0 þ W�a

a�1
ðGF � g0Þ W � a 6 a�1

(
ð3Þ
When performing inverse analysis, the r � dw curve (representing the fracture energy) is searched by fitting P-d and/or
P-CMOD curves. However, due to boundary effects, the r � dw relation in the FPZ (Fracture Process Zone) varies along the
crack because the hFPZ (the Fracture Process Zone height) decreases when the crack approaches the back boundary. Inverse
analysis obtained without considering boundary effect, implies a constant r � dw relation along the crack path. If the inverse
analysis is performed with a model that does not take into account boundaries effects, the solution we proposed is to fit only
a part of the P-d (or P-CMOD) curves where the distribution of the local fracture energy is supposed uniform. In this region
(the inner zone), a good estimation of the size-independent fracture energy (GF) could be obtained.
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Fig. 1. Bilinear fracture energy distribution [10].
The objective of the present study is to contribute to the identification of the fracture characteristics of concrete at very
early ages (especially the evolution of the fracture energy) using inverse analysis. Experimentally, three-point bending tests
are performed on rectangular notched beams specimens at ages between 12 h and 24 h. The Load-CMOD curves are
obtained.

In order to estimate the size-independent fracture energy, a damage based model is used to represent the softening
behaviour of concrete. The stress-crack opening curve is implicitly taken into account through the smeared softening dam-
age curve (stress–strain relationship). A fracture energy regularization is applied to the model in order to avoid spurious
mesh sensitivity. Therefore the energy dissipated due to fracture per unit length (or unit width) described by the stress–
strain curves is constant. As the softening behaviour is nonlinear, the Levenberg–Marquardt [12,13] algorithm is used to per-
form inverse analysis. Only a part of the Load-CMOD curves is fitted in order to estimate the size-independent fracture
energy.

2. Modelling basis

2.1. Isotropic damage based model

As it has been outlined before, the RILEM motivation was to provide a fracture characteristic (the fracture energy) to fic-
titious crack models [6] which represents the area under the tensile softening curve (r � dw). When using damage models,
the stress-crack opening softening curve is implicitly described by the softening damage curve. The tensile softening relation
is taken into account through a damage variable which characterises the fracture process. The fracture zone is represented by
a damage zone and the material behaviour in the fracture process zone is characterised in a smeared manner.

In the crack band theory, instead of treating cracks as lines as in fictitious crack models, Bazant and Oh [16] consider that
the fracture zone has a certain width h over which micro-cracks are uniformly distributed (smeared over a bandwidth). The
band width h is regarded as a material parameter. It is required in order to avoid spurious mesh sensitivity and achieve
objectivity. The energy dissipation due to fracture per unit length (or unit width) is therefore a constant and is given by
Gf ¼
Z 1

0
rdd ¼ h

Z 1

0
rdefr ð4Þ
where d is the crack opening displacement and efr the fracture strain. According to this theory, the material behaviour in the
fracture process zone is characterised in a smeared manner through a strain-softening constitutive relation. In a damage
model, a damage variable characterises the fracture process in a smeared manner and as in the crack band theory, the dis-
sipation must be governed by the fracture energy.

If we consider the original version of the damage model developed in [17,18], the stress-effective stress relationship is
defined along a finite set of directions of unit vectors n at each material point
r ¼ ð1� dðnÞÞni ~rijnj ð5Þ
where d(n) is a scalar quantity defining the damage effect and ~rij the effective stress tensor components. The evolution of
damage is controlled by a loading surface f
f ðnÞ ¼ n~en� ed0 � nðnÞ ð6Þ
n is a hardening–softening variable and ed0 represents a strain threshold (i.e. the threshold triggering damage).
In we consider the isotropic version of this model (i.e. "nd(n) = d), the damage surface d(n) is approximated by a sphere

and the stress–strain relationship reads [17,18]
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rij ¼ ð1� dÞC0
ijklekl ¼ ð1� dÞ~rij ð7Þ
where C0
ijkl are the components of the initial stiffness tensor.

For the isotropic version, the loading surface is written in terms of the equivalent strain ~e and reads [19]
f ¼ ~e� ed0 � n ð8Þ
The equivalent strain is computed using the positive eigenvalues of the strain tensor
~e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
he1i2þ þ he2i2þ þ he3i2þ

q
ð9Þ
If the damage is isotropic, the evolution of the damage surface is defined by [18]
IF f ¼ 0 and d~e > 0
Then
dd ¼ ed0ð1þB~eÞ

~e2

h i
expð�Bð~e� ed0ÞÞd~e

dn ¼ d~e

(
ð10Þ
ELSE; dd = 0, dn = 0
The integrated damage evolution law reads [19]
d ¼ 1� ed0

~e
expðBðed0 � ~eÞÞ; _d > 0 ð11Þ
where B is a parameter which controls the slope of the softening curve defined by the exponential expression.
The damage evolution law proposed above is valid for tension. Under compressive loading, the damage evolution law is

directly deduced from the tensile damage
dc ¼ db ð12Þ
The parameter b is adjusted to obtain an adequate material response under compressive loading. The complete stress–
strain law for the isotropic version of this model reads [19]
rij ¼ ð1� dÞh~rijiþ þ ð1� dcÞh~riji� ð13Þ
where h~rijiþ and h~riji� are the positive and the negative parts of the effective stress tensor components. Fig. 2 shows a typical
uniaxial tension–compression response of the model corresponding to a standard concrete with the following parameters
(E = 30 GPa, ft = 3 MPa, b = 12, B = 1e4, ed0 = ft/E).

2.2. Energetic regularization for one dimensional analysis

Under tensile loading, the softening relationship is driven by the damage exponential law. When fracture progresses, this
leads to a high localisation in a narrow zone of the discretized structures. Dissipation is therefore vanishing in elements with
reduced mesh density. The tensile softening behaviour must be changed such we impose the same energy dissipation what-
ever the element size
Gf

h
¼
Z 1

0
ðð1� dÞEeÞde ð14Þ
-30

-25

-20

-15

-10

-5

 0

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5

St
re

ss
 (M

Pa
)

Strain (E-3)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.05  0.1  0.15  0.2  0.25  0.3

Tension

Compression

Fig. 2. Uniaxial tension–compression response.
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where h is the characteristic length which should be related to the width of the fracture process zone, i.e. the region where
damage is developing. It should be measured in the direction normal to the crack plane. In this study h ¼

ffiffiffiffiffiffiffiffiffiffi
Aelem

p
is adopted

where Aelem is the finite element area. The local energy in each element gelem
f is assumed to be distributed uniformly over an

element Gelem
f ¼ h � gelem

f . This implies that micro-cracks are assumed to be uniformly distributed over a finite element as in
the crack band theory [16].

After combining Eqs. (13) and (14), the fracture energy is given by:
Gf

h
¼
Z ed0

0
ðEeÞdeþ

Z 1

ed0

ed0

e
exp½Bðed0 � eÞ�

� �
Eede ð15Þ
The first part of the fracture energy corresponds to the elastic contribution (d = 0). After integration, Eq. (15) gives
Gf

h
¼ fted0

2
þ ft

B
ð16Þ
where ft is the tensile strength and E the Young’s modulus with ft = E ⁄ ed0.
This leads to a mesh-independent energy release upon crack propagation. The parameter B which controls the softening

curve is given by:
B ¼ ft
Gf

h �
fted0

2

ð17Þ
The proposed fracture energy regularisation is tested on a simple uniaxial tension test [20]. The test consists in a simple bar
with length 1 m and a width 0.1 m (Fig. 3). The bar is assumed to be fixed on the left. So, the total elongation is therefore
equal to the displacement increment applied to the right end in the x–x direction. Fracture is forced in the finite element
of width h located at the center of the bar by setting a defect (smaller tensile stress ftwe). Computations are driven in
plane-stress, the material data for concrete are as follows:

Gf = 100 N/m, E = 30 GPa, the tensile strength ft = 3 MPa and the tensile strength for the element with defect ftwe = 1 MPa.
The mesh objectivity is shown in Fig. 4 using different discretizations (m = 11, 21, 31), where m is the number of elements.

2.3. Energetic regularization for two dimensional analysis

As it has been outlined in the introduction, the present work deals with an inverse analysis procedure in order to estimate
the fracture energy at very early ages. Experimentally, three-point bending tests are performed (Section 4, Fig. 12). In the
previous section, the fracture energy (Eq. (16)) was evaluated under uniaxial tension. For a notched beam under three-point
bending, the stress state along the crack path is not uniaxial even if the crack is under mode I [21]. The energy dissipated by
cracking is affected by the biaxial stress state. In [21], Jirasek and Bauer evaluated the crack band theory under two-dimen-
sional configuration. The biaxial stress effect is analysed for a notched beam under three-point bending test using a simple
damage model (with different equivalent strain definitions). A similar analysis is proposed in this section. A notched beam
under three-point bending test with the same geometry as that studied experimentally (Fig. 12) is considered. A numerical
test is performed using the damage model proposed above using the fracture energy evaluated under uniaxial tension (Eq.
(16)). The objective is to evaluate the dissipated energy in the cracking zone and to compare it with the input fracture energy.
The following parameter set is considered (E = 40 GPa, m = 0.2, ft = 2.5 MPa, Gf = 100 N/m). Computations are driven in plane-
stress. The mesh of the beam is made of 1500 quadrilaterals elements (4 nodes element with linear interpolation) (Fig. 5). In
the central part of the beam, the size of the finite element (in the front of the notch) is about 1.6 mm. The parameter B is
computed using Eq. (17). Fig. 6 shows the global behaviour of the beam (load vs. deflection). The evolution of the Cartesian
components and the principal components of the stress tensor are shown in Figs. 7 and 8. These evolutions are computed for
the first cracked finite-element situated in the front of the notch (gauss point 2). Fig. 9 shows the diagrams of principal stres-
ses versus principal strains. The total amount of the fracture energy is
Gf ¼ h �
Z 1

0
r1de1 þ

Z 1

0
r2de2

� �
¼ 102:56 N=M ð18Þ
The contribution of the minor principal stress (perpendicular to the beam axis) is about �2.02E � 2 � 0 N/m. The total
amount of the fracture energy dissipated by the model is slightly greater than the fracture energy used to perform the
numerical simulation (computed from uniaxial tension). This result is in accordance with results obtained in [21]. When
L

δ

h

b

Fig. 3. Imperfect bar in pure tension.
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Fig. 4. Load–displacement diagram for m = 11, 21, 31.

Zoom

Fig. 5. The mesh of the beam.
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Fig. 6. The numerical load–displacement curve.
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using a Mazars equivalent strain (Eq. (9)), the presence of a positive minor principal stress increases the tensile strength (the
peak of the major principal stress is about 2.56 MPa > ft). The evolution of the biaxiality ratio r2/r1 shown in Fig. 10 reveals a
biaxial tension state in the vicinity of the crack. This ratio varies within one element during loading. Along the crack, the
biaxial stress ratio is different from a finite-element to another. In order to evaluate the dependence of the fracture energy
as a function of the biaxiality ratio, an analytical expression (similar to that proposed in uniaxial tension, Eq. (16)) is
proposed.

Let us denote c the biaxial stress ratio r2/r1. Firstly, for a biaxial-tension state with 0 < c < 1, the biaxial strain ratio is
given by
r2

r1
¼

~r2

~r1
¼ c) e2

e1
¼ c� m

1� cm
ð19Þ
For 0 < c < 1, the biaxial strain ratio is positive for c P 0.2 and negative for c < 0.2. The Mazars equivalent strain (Eq. (9))
reads
c < 0:2) ~e ¼ e1 ð20Þ

c P 0:2) ~e ¼ e1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cmÞ2 þ ðc� mÞ2

ð1� cmÞ2

s
ð21Þ
In terms of the effective stresses, the fracture energy is given by
Gf

h
¼
Z 1

0
ð1� dÞ~r1de1 þ

Z 1

0
ð1� dÞ~r2de2 ð22Þ
We express all the stress and strain components as a function of e1. After computation, the fracture energy reads
c < 0:2) Gf ¼ hg1E
ed0

B
þ e2

d0

2

� �
ð23Þ

c P 0:2) Gf ¼ hg2E
ed0

B
þ e2

d0

2

� �
ð24Þ
with
g1 ¼
ð1� 2cmþ c2Þ
ð1� cmÞ2

!
;g2 ¼

ð1� 2cmþ c2Þ
ð1� cmÞ2 þ ðc� mÞ2

!
ð25Þ
Fig. 11 shows the evolution of the fracture energy as a function of the biaxial ratio. Eqs. (23) and (24) are only valid for
biaxial tension (0 < c < 1). In the case of biaxial stress state with tension in one direction combined with compression in the
other direction (i.e. for c < 0), finding an analytical solution for Gf with the proposed damage model is not a trivial task. The
situation is complicated by the fact that under compressive loading, the stress does not exhibit the same evolution as under
tensile loading. For the negative biaxial stress ratio, the biaxial strain ratio is given by
c ¼ ð1� dbÞ~r2

ð1� dÞ~r1
) e2

e1
¼ cð1� dÞ � mð1� dbÞ
ð1� dbÞ � cmð1� dÞ

ð26Þ
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Based on the forgoing analysis, it is clear that for a notched beam under three-point bending, the crack front exhibits biax-
ial stress state. However, the presence of the transversal stress (the stress perpendicular to the beam axis) has a small impact
on the dissipated energy. For the damage-based model proposed above, the amount of the dissipated energy needed to ini-
tiate the crack is slightly different from that computed for uniaxial tension (used as an input parameter to perform the
numerical simulation).

The fracture energy computed under biaxial stress state depends on the biaxiality ratio. This ratio is not constant during
loading. It varies from one finite element to another. It also varies (during loading) within the same finite element.

3. Inverse analysis procedure

In order to find a trend for the development of the fracture energy with age, inverse analysis is carried out using the dam-
age model proposed above. The softening curve is searched such that the fitted curve approximates the experimental one.
The best material parameters set is therefore obtained. The fracture energy and the tensile strength are treated as fundamen-
tals input material properties. The fracture energy is the area under the stress-displacement softening curve and it is as-
sumed to be constant for all finite elements. It does not vary along the crack path. As it has been outlined in the
introduction, a size/ligament effect on the specific fracture energy Gf exists. According the local energy concept[10], to take
into account the boundary effect, a bilinear distribution is assumed to represent the crack path variation of the fracture en-
ergy. Consequently, the application and the validity of our mechanical damage model is compromised in the boundary re-
gion. The model could only be valid in the inner zone limited by the transition length a�1 (see Fig. 1) where a size independent
fracture energy could be estimated.

A transition length could be evaluated in order to fix the part of the P-CMOD experimental curve to be fitted. Using the
bilinear model, if the RILEM’s Fracture energy is given through the P-d curves for specimens with different sizes, the tran-
sition length could be evaluated [10]. Also, the Acoustic Emission technique (AE) provides an excellent tool to estimate
the local fracture energy distribution and consequently the transition length values [22]. In the present study, the P-d curves
obtained are unfortunately not exploitable. Also, AE technique has not been explored. Only the P-CMOD curves have been
well established. Therefore, in order to approximate the size independent fracture energy, only a part of the P-CMOD curve
has to be fitted when performing inverse analysis. The long tail of the P-CMOD curve after the peak-load is ignored. Two dif-
ferent values of CMOD (CMOD = 0.2 mm and CMOD = 0.1 mm) are considered in order to study the influence of the cut-off
value on the identified fracture energy.

3.1. Inverse analysis algorithm

To perform inverse analysis, the Levenberg–Marquardt Algorithm (LMA) is used [23–25]. Also known as the damped
least-squares (DLS), it is one of the most important methods for solving systems of nonlinear equations. It is based on an
iterative technique to locate the minimum of a multivariate functions expressed as the sum of squares of nonlinear real val-
ued functions. It is widely adopted for solving curve-fitting problems in many research area [26–28]. To obtain the optimum
solution of the experimental P-CMOD curve, the sum of weighted squares of the errors between the measured data F(ui) and
the curve-fit function F⁄(ui, p) is minimised (where p is the vector of the damage model parameters (p = ft, Gf)).
9



Table 1
Characteristics of used aggregates.

Sand 0/4 Gravel 4/20

Water content 3.5 2.1
Absorption 0.7 1.39
Density 2.6 2.57
v2ðpÞ ¼ 1
2

Xm

i¼1

FðuiÞ � F�ðui;pÞ
zi

� �2

ð27Þ
this function is called the chi-squared error criterion, where z indexes the error in measurement of F(ui). The inverse analysis
procedure involves two major steps:

� Formulation of the mechanical model.
� Estimation of the coefficients of this model by using inverse analysis.

The LMA nonlinear equation is given by
½JT ZJ þ kI�a ¼ JT ZðF � F�Þ ð28Þ
where J is the Jacobian matrix. Z the weighted matrix (a diagonal matrix with Zii ¼ 1
Zii

). In each iteration, the best perturbation
a of the vector of parameters p that reduces v2(p) is computed. The Jacobian matrix is numerically approximated using back-
ward differences. The LMA is robust and efficient even if it starts far from the final minimum. However, there is no sense to
force it starting with a far initial parameters set. In our study, the solution found at each age is used as input parameter in the
following one.
4. Experiment

4.1. Concrete formulation

The experimental work is part of a French national project CEOS.fr [29]. The materials constituting the CEOS concrete [29]
are: semi-crushed gravel of class 4/20 mm, alluvial sand of class 0/4 mm and Cement CEMI 52.2 N (EN 197-1 and EN 197-2)
Fig. 12. Schematic representation of the three-point bending test setup.

Table 2
Concrete formulation.

Dosage (kg/m3)

Gravel 4/20 980
Sand 0/4 785
CEMI 52.2 N 400
Super plasticizer 1.8
Added water 154.1
Effective water 165.9

10



(see Table 1). A small amount of super-plasticizer (Optima 206) was adjusted manually for workability. The formulation used
is given in Table 2. The water to cement ratio (W/C) is 0.42 and the gravel to sand ratio (G/S) is 1.25.

4.2. Experimental procedure

Concrete was poured into moulds of dimensions 10 ⁄ 15 ⁄ 70 cm3 (Fig. 12). A Teflon plate with a thickness of about 3 mm
was placed in the mould before casting for the notch position. It was removed at the time of the test. Also, two metallic plates
Fig. 13. Metallic plates placed in the mould.

Fig. 14. Metallic plates used to fix the CMOD gauges.
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were placed in the mould at the bottom of the beam on which two other metallic plates are fixed when the beam is demoul-
ded (Fig. 13). These second plates were then used to fix the CMOD gauges (Fig. 14). To better interpret the repeatability tests,
the slump test of the Abrams cone was carried out. Concrete was poured into moulds in two layers and vibrated with a plate
vibrator. Specimens were then covered with an impermeable plastic sheet and kept in an air conditioned room at a
 0

 1

 2

 3

 4

 5

 0  0.05  0.1  0.15  0.2  0.25

Lo
ad

 (K
N

)

CMOD (mm)

12 h

14 h
16 h

18 h

24 h

Numericals results
experimental results

Fig. 18. Comparison between fitted and experimental P-CMOD curves.

Fig. 17. The numerical procedure.

 0

 1

 2

 3

 4

 5

 10  15  20  25  30

Fa
ilu

re
 L

oa
d 

(K
N

)

Ages (H)

Fig. 16. Failure load evolution.

12



temperature of 20 C and a relative humidity of 50%. The formwork was removed with care one hour before the test to glue
the plates (which were used to hold the CMOD gauge) and the reflector for the measurement of the deflection.

The loading frame consists of an Instron make closed loop universal testing machine of 160 kN capacity. The load was
applied with a circular jack to ensure a point load. A rubber pad was placed between the load jack and the beam to take care
of the surface unevenness and to avoid damage under the load. The beam was simply supported on two circular supports.
The notch mouth opening displacement was measured with a CMOD gauge. The two blades of the CMOD gauge, each 10 mm
in length, were attached to two metallic plates 10 mm apart, one on either side of the notch at the bottom face of the beam.
These metal plates were firmly attached to other plates (which were inserted into the mould before casting concrete) with
high strength glue that ensures perfect stability of plates. All the tests were performed under crack mouth opening
displacement control with a slow rate of 0.5 lm/s. This allowed to reach the peak load in about one minute. Through these
tests, the load was obtained as a function of time, CMOD and deflection. However, the load–deflection curve is not always
reliable compared to the load-CMOD which is in most case good. The data were recorded every one second.
Table 3
comparison of the fracture energy dissipated by the model and the identified fracture energy.

Age 24 h 18 h 16 h 14 h 12 h

Guniaxial
F (identified) (N/m) 139.73 80 67.42 57.62 33.10

h �
R1

0 r1de1 þ
R1

0 r2de2
	 


(N/m) 142.49 81.49 69.16 58.88 33.40
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Fig. 20. Evolution of the tensile strength with age (for CMOD = 0.2 mm and CMOD = 0.1 mm).
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Fig. 21. The crack opening fields at different ages (d(m)).
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4.3. Experimental results and discussion

The main objective of this work is the determination of the fracture energy. The P-CMOD curves are analysed carefully.
The results for the concrete aged less than 24 h have a special interest because very few data are available in the literature.
The graph of Fig. 15 shows that the failure load and the slope of the elastic part increase with age while the post-peak part
decrease rapidly. The increase of the failure load and elastic slope shows that the fracture properties of concrete increased
with age. The increase in the elastic slope can be attributed to the evolution of the Young’s modulus with time.

Fig. 16 represents the failure vs time, and gives an idea on the evolution of concrete strength. At early age this load is low,
and then it increased significantly. At the age of 24 h, it reached 3.7 KN, which is a significant value regarding those obtained
for a mature concrete. This can be explained by the fact that from 24 h the hydration phenomenon reached advanced stages,
the solid skeleton is formed and cohesion between the different components becomes stronger.
5. Numerical results and discussions

The procedure explained in Fig. 17 is performed using the finite element code Cast3M [30]. The mesh of the beam is rep-
resented in Fig. 5. The finite element configuration considered in Section 2.3 is adopted here. The inverse analysis procedure
is performed using the fracture energy formula obtained under uniaxial tension (Eq. (16)).

Fig. 18 shows the comparison between the experimental results and the fitted ones. Overall, the numerical results are in
good agreement with the experimental ones. The best fitted parameter set is obtained for the age of 24 h. At very early age
(before 24 h), the material seems to exhibit a nonlinear behaviour up to the peak load. This is a natural observation since this
nonlinear hardening is caused by the local softening behaviour. However, this nonlinearity is ‘‘very pronounced’’ up to the
peak. For the damage model used in this paper, the local behaviour is elastic-linear up to the peak which may not be the case
at very early ages where the material seems to exhibit both viscous and elastic behaviour. This might explain why the fitted
numerical results stray a bit from the experimental ones in this region.

Fig. 19 shows the evolution of the size independent fracture energy for two different ‘‘cut-off’’ values. Similar results are
obtained. Any other value that keeps the crack far from the boundary would give similar results. In the literature, a little
research dealing with concrete at very early ages (before 24 h) can be found. In [2], an upward trend was found regarding
the evolution of the fracture energy at very early ages.

As it has been outlined in the introduction, the damage model used to perform inverse analysis is not able to capture the
boundary effect as the fracture energy is assumed to be constant over the element size. The solution proposed was to fit only
a portion of the P-CMOD curves. Hence, an estimation of the size independent fracture energy is obtained. Fig. 19 shows the
development of the size independent fracture energy with age. Overall, the data indicate an ‘‘upward trend’’ which is in
agreement with the experimental results. In Fig. 20, the evolution of the tensile strength is illustrated. As for the fracture
energy, an increasing trend is observed.

In Table 3, the energy dissipated by the model (for the first cracked element situated in front of the notch with
h = 1.6e�3 m) is compared to the fracture energy identified from the inverse analysis procedure (for the first cut-off value
CMOD = 0.2 mm). For each age, a slight difference exists between the two values.

According to the local energy concept, the size independent fracture energy could be estimated in the inner zone before
the crack reaches the back boundary. In Fig. 21, the crack opening fields are illustrated for different ages. The crack opening
computation was performed using the post-processing method developed by Matallah et al. [31,20] which allows to calcu-
late crack openings from a nonlinear damage or plasticity model. For all beams, the crack patterns show that, at the displace-
ment limit fixed to perform inverse analysis, the crack does not reach the boundary limit and the fracture process is not
strongly disturbed by the boundary effects.
6. Conclusions

In this study, the fracture characteristics of concrete at very early ages are investigated. An experimental procedure was
carried out to perform three point bending tests on notched beams of concrete specimens at ages before 24 h. The P-CMOD
curves obtained indicate an increasing trend of the evolution of the failure load and the post-peak softening which give a glo-
bal indication of the concrete behaviour at very early age. In order to investigate the evolution of the fracture concrete char-
acteristics, an inverse analysis procedure based on a softening damage model and a nonlinear inverse analysis algorithm has
been developed. Two physical fractures characteristics has been used as input parameters: the tensile strength and the frac-
ture energy. Overall, numerical results indicate an ‘‘upward trend’’ regarding the evolution of the fractures characteristics. As
the damage model used to perform inverse analysis assumes a constant r � d relation across the crack length, only a portion of
the P-CMOD curves has been used in fitting and a good estimation of the size independent fracture energy has been obtained
according to the bilinear model [10]. However, regarding this point, further investigation should be considered. Indeed, exper-
imentally, AE technique shows that the number of events increases with increase in distance from the notch tip before sta-
bilize over a certain distance [22]. Hence, a tri-linear local fracture energy distribution should be considered. This implies that
in the damage softening model the fracture energy is no longer constant. This aspect will be addressed in a future paper where
acoustic emission technique will be used to obtain the form of the local fracture energy distribution.
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