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Single- and multi-objective genetic algorithm optimization
for identifying soil parameters

A. Papon, Y. Riou, C. Dano and P.-Y. Hicher
Research Institute in Civil and Mechanical Engineering, UMR CNRS 6183 - Ecole Centrale Nantes, 

University of Nantes, 1 rue de la Noë, BP 92101, 44321 Nantes cedex 3, France

This paper discusses the quality of the procedure employed in identifying soil parameters by inverse 
analysis. This procedure includes a FEM-simulation for which two constitutive models—a linear elastic 
perfectly plastic Mohr–Coulomb model and a strain-hardening elasto-plastic model—are successively 
considered. Two kinds of optimization algorithms have been used: a deterministic simplex method and a 
stochastic genetic method. The soil data come from the results of two pressuremeter tests, complemented 
by triaxial and resonant column testing. First, the inverse analysis has been performed separately on each 
pressuremeter test. The genetic method presents the advantage of providing a collection of satisfactory 
solutions, among which a geotechnical engineer has to choose the optimal one based on his scientific 
background and/or additional analyses based on further experimental test results. This advantage is 
enhanced when all the constitutive parameters sensitive to the considered problem have to be identified 
without restrictions in the search space. Second, the experimental values of the two pressuremeter tests 
have been processed simultaneously, so that the inverse analysis becomes a multi-objective optimization 
problem. The genetic method allows the user to choose the most suitable parameter set according to 
the Pareto frontier and to guarantee the coherence between the tests. The sets of optimized parameters 
obtained from inverse analyses are then used to calculate the response of a spread footing, which is part 
of a predictive benchmark. The numerical results with respect to both the constitutive models and the 
inverse analysis procedure are discussed.

KEY WORDS: soil parameter identification; inverse analysis; genetic algorithms; multi-objective algorithm

1. INTRODUCTION

Using constitutive models to design structures with FEM codes requires the identification of a
set of soil parameters. Analytical methods adapted to different constitutive models have been
developed [1–4]. The further development of more sophisticated constitutive models requires finer
and more complex parameter identification processes, partly because the increasing number of
parameters cannot be determined from stress–strain curves directly. In this paper, the authors
propose a methodology for identifying soil parameters based on inverse analysis. The aim is to
determine the unknown values of the constitutive parameters by minimizing the difference between
experimental data and predictions of analytical or numerical calculations. Inverse analysis has been
successfully developed in the geotechnical area, partly because it produces a relatively objective
determination of the parameters, even those that express no physical meaning, and this occurs from
any testing procedure and for any constitutive model, provided that it is possible to run an analytical
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or numerical simulation of the soil response [5–7]. The nature of the simulation—analytical or
numerical—depends mainly on the complexity of both the constitutive model and the boundary
conditions. In this study, the simulation is carried out numerically.

Inverse analysis is generally an ill-posed mathematical problem, for which neither existence nor
uniqueness of a solution can be guaranteed. Therefore, a specific approach has to be developed
in order to reduce the number of parameters to be identified and to restrict the parameter search
space, through an initial sensitivity study and a priori knowledge about the behavior of the studied
soil. However, even with this preliminary study, the problem of non-uniqueness remains an open
question. Indeed, inherent experimental and numerical uncertainties and the imperfect reproduction
of the soil behavior by constitutive models have to be considered: a usual way is to accept a
certain error—which has to be defined for each inverse analysis process—to define the best sets
of parameters as developed by Levasseur et al. [8–10]. For these theoretical and practical reasons,
satisfactory parameter identification needs not to be extremely precise, but must be reliable. Hence,
determining a set of satisfactory solutions is preferable to the search of a unique precise solution.

Given the fact that tests are rarely conducted solely, it stands to reason to process all the experi-
mental data simultaneously. Tests conditions could generate different sets of optimized parameters
if the inverse analysis is executed separately on each test. To avoid indecision and indetermination,
an alternative way to predict a satisfactory set of parameters is to involve simultaneously many
experimental responses through the same inverse analysis.

The aim of this paper is to present a parameter identification methodology which can determine
a set of satisfactory solutions for different tests. First, the inverse analysis is formulated as an opti-
mization problem and different resolution methods are presented and compared. Then, parameter
identification from two pressuremeter tests is carried out by considering successively two different
constitutive models. The validity of the method is discussed by confronting the numerical results of
spread footing settlement to the experimental ones obtained from an international benchmark [11].
Finally, conclusions are made about which optimization method is best to select.

2. FORMULATION AND RESOLUTION OF INVERSE ANALYSIS

Inverse analysis is based on the formulation of an optimization problem. However, it is important
to distinguish the resolution of a mathematical optimization and the corresponding parameter
identification. In this section, we focus on the mathematical problem and the ability of the resolution
methods to approach and detect optima. In the following sections, we consider both mathematical
and geotechnical standpoints.

2.1. Formulation of a classical inverse analysis problem

In order to carry out an inverse analysis, the user has to formulate first the optimization problem,
which means to define the function to be minimized, called error or cost function, and the search
space. Error functions are currently given by

Ferr(x)=
[

N∑
i=1

|diexp−dinum(x)|k
]1/k

(1)

where x is a vector of parameters, diexp the experimental value at the measurement point i and

dinum the computed value, k is a non-null positive real and N is the number of values.
According to Tarantola [12], the least-squares criterion (k=2) is highly sensitive to a small

number of large errors in a data set. In fact, the higher the parameter k, the higher the sensitivity to
errors in a data set. If in situ experimental results are involved in inverse analysis as in this study,
scattered data should be expected and k should be considered equal to 1. Moreover, in order to
make the error function independent of the interval between the measurement points, this function
is defined as the area between the experimental and the computational curves, i.e. the integral of
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Figure 1. Solutions of a two-objective optimization.

the absolute value of the error during the test. A justification of this definition in the particular
case of this study is given in Section 3.2.4.

The search space for the vector x has to be chosen by considering all the physically acceptable
values for each parameter. In order to minimize the problem of non-uniqueness in the solution,
some initially undetermined parameters can also be fixed, either because a preliminary sensitivity
analysis has shown that they have no effect on the predicted response, or because some additional
information allows the user to determine their values.

2.2. Multi-objective analysis

Contrary to the current approach which considers inverse analysis as a single-objective problem,
using only one test result and one type of simulation, a multi-objective problem aims at coupling
multiple test results and simulations. Such a formulation results in multiple error functions.

In the case of single-objective problems, the comparison between two sets of parameters is
obvious, in so far as the lower the value of the error function, the better the corresponding set of
parameters. In the case of multi-objective problems, the comparison is not so easy anymore, if the
user does not make any preference among the objectives. For example, five sets of parameters and
the corresponding values of the error functions F (1)

err and F (2)
err are considered in a two-objective

problem in Figure 1. The set of parameters x (1) fits better the first experimental curve than the set
of parameters x (2), whereas inversely the set of parameters x (2) fits better the second experimental
curve than the set of parameters x (1). Without any a priori preference, we cannot conclude whether
x (1) is better than x (2) or vice versa.

Different resolution approaches have been developed to solve a multi-objective problem. Deb
[13] distinguishes the approaches that require making preferences before optimization (a priori
approaches) and the ones which require making preferences after optimization (a posteriori
approaches). An intuitive a priori approach, called the weighted sum approach, consists of building
a global error function from the initial error functions, which are weighted considering a priori
preferences. For geotechnical problems, it means that the user is able to decide a priori which
test is more reliable than another. All the a posteriori approaches are aimed at determining the
so-called Pareto frontier. Originally introduced by Pareto [14], the Pareto frontier is used in order
to help decision making in the optimization problem. By definition, a solution x (i) dominates a
solution x ( j ) in terms of Pareto, if both conditions of Equation (2) are fulfilled.

∀m ∈ [1;M],F (m)
err (x

(i))�F (m)
err (x

( j ))

∃m ∈ [1;M],F (m)
err (x

(i))< F (m)
err (x

( j ))
(2)

where M is the number of test results.
In the example given in Figure 1, x (1) dominates x (4), and x (2) dominates x (3), x (4) and x (5).

Likewise, x (3) and x (5) are not comparable in terms of Pareto. The solutions of a multi-objective
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problem correspond to the Pareto optimal solutions, i.e. the solutions which are not domi-
nated by any other sets of parameters. In the previous example, x (1) and x (2) are equivalent
solutions of the two-objective problem and Ferr(x (1))= (F (1)

err (x (1)),F
(2)
err (x (1))) and Ferr(x (2))=

(F (1)
err (x (2)),F

(2)
err (x (2))) belong to the Pareto frontier. After the optimization with an a posteriori

approach, the user can select the most suitable set of parameters based on the knowledge of the
Pareto frontier.

2.3. Optimization algorithms

2.3.1. Deterministic algorithms. Single-objective inverse problems in the geotechnical area have
been commonly carried out by using gradient methods [15–20]. However, the robustness of the
simplex method [21], also known as the Nelder and Mead downhill method, has been preferred by
Gioda [5] because it does not require the derivative of the error function contrary to the algorithms
based on local gradients. A simplex is a polyhedron containing n+1 points in a n-dimensional
space, where n is the number of parameters to be optimized. Under the simplex method, the
initial simplex is modified according to the value of the error function at the n+1 vertexes,
using the following three operations: reflection, contraction and expansion. The calculation is
stopped when the improvement of the function error becomes smaller than a given tolerance
value.

Both gradient and simplex methods determine a unique set of parameters. However, the unique-
ness of the solution is not guaranteed. Zentar et al. [18] highlight the fact that the increasing number
of optimized parameters exacerbates that shortcoming. Ledesma et al. [22] and Gens et al. [23]
have alternatively proposed a probabilistic approach in order to take experimental uncertainties
into account and to limit the problem of non-uniqueness of the solution.

Another weakness of the gradient and simplex methods is that they strongly depend on the
initial set of parameters, whenever the error function has several secondary minima. This drawback
can be overcome by multiple optimizations starting from different initial sets of parameters, in
order to detect convergences toward secondary minima. Hicher and Rahma [24] have developed
empirical correlations between the physical properties of soils (e.g. nature of constituent, grain
size distribution) and their mechanical properties. These considerations allow the estimation of
a realistic initial set of parameters. Obrzud et al. [25] have proposed to proceed in two steps.
At first, they use a neural network technique to estimate the parameter values. These values are
then optimized by means of a gradient-based algorithm, which improves the quality of the initial
set. The method exploits the robustness of the neural network technique and the precision of the
gradient methods.

In a multi-objective problem, if the gradient or simplex methods have to be used, the weighted
sum approach can be selected. If preferences between the objectives can be made, an a priori
approach is suitable. For example Dano et al. [19] have performed an inverse analysis from
two dilatometer tests: one in fully drained conditions and another one in partially drained condi-
tions, in order to identify the plastic compressibility, the pre-consolidation pressure and the
slope of the critical state line of heavy oil reservoir soils. They gave an important weight to
the first pressure–strain curve because of its high reliability compared with the other one. If
a priori preferences cannot be justified, the weights associated with each initial error function
can be modified as proposed by Mertens et al. [26] in order to determine the Pareto fron-
tier. However, this method does not guarantee that all the solutions can be determined along
the Pareto frontier in case of encountering locally non-convex Pareto surfaces. Moreover, if
the weights are changed regularly, it does not mean that the Pareto solutions are regularly
located on the Pareto surface and, therefore, the Pareto surface has to be determined with most
care.

2.3.2. Genetic algorithms. Genetic algorithms [27, 28] offer many advantages compared with the
previous methods [13]. Genetic algorithms are derived from Darwin’s evolution theory. They belong
to the family of stochastic algorithms and reproduce biological processes. The probability of survival
of the best adapted individuals, represented by the best set of parameters, and the probability of the
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emergence of competitive ones are improved by the transmission of a favorable gene pool. Gene
mutation preserves the genetic diversity of the population and makes possible the emergence of new
competitive individuals. The solution can be defined as the set of individuals whose values of the
error function are inferior to a predetermined value and corresponds to individuals with different
gene pools. The result provides a global view of this set of gene pools. The strategy of the algorithm
is to detect individuals with low error functions, using a reduced number of iterations compared
with an exhaustive search, rather than to guarantee the detection of an optimal set of parameters.
First, an initial population is randomly generated among the search space. Then, at each generation,
this population is modified according to a pseudo-random process based on the value of the error
function through the following operations: selection, cross-over and mutation. Selection and cross-
over mainly improve the performance of individuals, whereas mutationmakes it possible to continue
the exploration of a given search domain and to avoid the premature convergence toward a secondary
minimum.

Genetic algorithms work with a population of solutions, so that they can provide a set of
satisfactory solutions. They also do not use any gradient information and they are based on stochastic
principles. Therefore, they can be implemented for different types of problem [7–10, 29, 30] and
are considered more robust than the gradient methods. Moreover, Levasseur et al. [9, 10] propose
to characterize mathematically the obtained set of satisfactory solutions by a principle component
analysis which gives a first-order approximation of the solution as an ellipsoid. When the solution
set is not too curved in the research space, the user disposes of an ellipsoid characteristic of
the soil properties. The computational cost with genetic algorithms is higher than with gradient
methods. However, the trials with different initial sets of parameters for the simplex method
increase consequently the computational cost.

Genetic algorithms present also advantages in multi-objective inverse problems, because they
can determine reliably the Pareto frontier in one single simulation run [13]. Several multi-objective
evolutionary algorithms classified as non-elitist or elitist [13] can be found in the literature. The first
ones have been developed earlier and set the principles of a multi-objective evolutionary algorithm.
The second ones are supposedly faster and better than the former ones, because of the use of an
elite-preserving operator. MOGA-II [31] is one of them and we have subsequently selected it. It is
an improved version of Multi-Objective Genetic Algorithm (MOGA), which has been introduced
by Poloni and Pediroda [32]. Their study helped to modify the classical single-objective genetic
algorithm by introducing first a method of selection based on dominance in terms of Pareto,
and then, a new operator called directional cross-over, which aims to determine a direction of
improvement by comparing the value of the error function of two individuals. This new operator
makes for a faster convergence, but has to be used sparingly for highly non-linear problems in order
to avoid local Pareto frontiers. In this study, we do not expect a highly non-linear problem and the
computation cost for the evaluation of individuals can be problematic. Therefore, the directional
cross-over operator is used with the classical cross-over. An improved Multi-Objective Genetic
Algorithm (MOGA-II) is presented by Poles et al. [31]. In MOGA-II, an elite-preserving operator
is introduced.

A comparison between the gradient method and genetic algorithms has already been proposed
by Levasseur et al. [8] and Rechea et al. [33]. They show that the use of a genetic algorithm to
identify soil parameters is particularly suitable when the topology of the error function is complex.
We propose to extend this comparison by using two different constitutive models, by introducing
multi-objective optimization in geotechnical area and finally by using the simulation of a spread
footing test to estimate the quality of the parameter identification.

With respect to the previous conclusions, a comparison between:

• the simplex method and genetic algorithms in case of single-objective problems, on the one
hand,

• the weighted sum approach with the simplex method and a multi-objective genetic algorithm
with an elite-preserving operator, on the other hand, is performed.

The aim of this study is to establish the relevance of each of them for determining material
parameters in geotechnical analysis.
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3. IDENTIFICATION OF DESIGN PARAMETERS FROM PRESSUREMETER TESTS FOR
A SUBSEQUENT PREDICTION OF SETTLEMENTS

3.1. Presentation of the benchmark

As part of a spread footings benchmark [11], five loading tests on square footings ranging from
1×1m to 3×3m in size were conducted at a sandy site, where numerous soil tests were also
performed. The participants of the benchmark had to predict the load corresponding to settlements
of 25 and 150mm for each of the five footings.

The parameters necessary for the numerical estimation of the foundation settlements will be
identified using inverse analysis, as previously mentioned. Only the 3×3m square footing test is
studied here. Figure 2 shows the general soil layering at the site (see [11] for more information).
Two pressuremeter tests have been performed at two different depths: 2 and 5.9m. Triaxial tests
have been performed at three different effective confining pressures for six specimens sampled
at 0.6 and 3m, respectively. According to Briaud and Gibbens [11], the sand is probably lightly
overconsolidated by desiccation of fines and removal of about 1m of overburden at the location
of the spread footing tests, which is confirmed by the pressuremeter tests. The coefficient of earth
pressure at rest K0 is taken equal to 0.7, consistently with pressuremeter test results.

3.2. Pressuremeter tests and numerical modeling

3.2.1. Pressuremeter curves. In this study, we consider as the basic information on the soil
behavior, the pressuremeter curve which gives the evolution of the pressure applied within the
probe as function of the ratio u(a)/a, where a is the radius of the probe and u(a) is the displacement
of the wall. The first part of the experimental curves (up to around u(a)/a=4%) is not taken into
account in the calculation of the error function because of the unusual curvature at the beginning
of the pressuremeter tests, probably due to the remolding of the soil along the cavity wall [34]
(see also Figure 3).

3.2.2. FEM modeling. Owing to the axisymmetry of the problem, a 2D finite element model is
sufficient. Moreover, plain-strain condition is assumed in the vertical direction. So, a horizontal
layer is constructed in the CESAR-LCPC FEM code to simulate the pressuremeter test. 8-node
rectangular elements are used so that the model contains 891 nodes and 252 elements. The ratio of
the outer diameter to the inner diameter of the model is taken sufficiently high in order to model
the condition of infinite medium [35]. The calculations consider the hypothesis of small strains,
which is justified by the values of the local strains which are always smaller than 10% (without
considering the close surrounding area of the probe). The loading is displacement controlled and,
at each step, the same displacement increment is applied all along the probe.

Figure 2. Soil layering (from experimental results [11]).
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Figure 3. Comparison of the experimental and numerical results of the first pressuremeter test with the
simplex (S) and genetic (GA) methods assuming two constitutive models, Mohr–Coulomb model (MC)

and a strain-hardening elasto-plastic model (SH-EP).
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Figure 4. Shape of the strain-hardening yield surface in the p′ – q plane.

3.2.3. Constitutive models. Because of its relatively extensive use in geotechnical design, the
linear elastic perfectly plastic Mohr–Coulomb model is selected. This model is characterized by
five parameters: elastic modulus E , Poisson’s ratio �, friction angle �, dilatancy angle � and
cohesion c. The identification is performed on the following three parameters: elastic modulus E ,
friction angle � and cohesion c, because of their major influence on the design of spread footings.
In all the calculations, Poisson’s ratio is taken equal to 0.33 and the following correlation between
the friction angle and the dilatancy angle, used by many authors, is considered:

�=�−30 (degrees) (3)

However, this model can be seen as a rough estimation of the behavior of a cohesive-frictional
soil. Particularly, the non-linear behavior before failure cannot be represented. To circumvent that
shortcoming, a strain-hardening elasto-plastic model [36] has been implemented in CESAR-LCPC.

Using a 3D expression of the Mohr–Coulomb yield surface [37], a hardening function rd is
introduced (see also Figure 4):

f (p′,q,�,rd)= q ·m(�)

Mp
−(p′+Cp)·rd(εpd)=0 (4)
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m(�)= 6√
3(3−sin�p)

[
cos�− sin�p√

3
·sin�

]
(5)

where � is Lode’s angle, rd is the hardening function depending on the deviatoric plastic strain ε
p
d,

Mp is the slope of the maximum shear strength line in the p′−q plane, which can also be deduced
from the more commonly used friction angle �p through Equation (6) and Cp is the isotropic
tensile strength which is related to the Mohr–Coulomb cohesion c through Equation (7):

�p =Arcsin

(
3 ·Mp

6+Mp

)
(6)

Cp = c

tan�p
(7)

The non-linear behavior is described assuming a hyperbolic hardening function:

rd(ε
p
d)=rel+

ε
p
d ·(1−rel)

a+ε
p
d

(8)

where rel defines the size of the initial elastic domain (when ε
p
d =0). The parameter a characterizes

the hardening rate: an increase in the value of a involves an apparent more compressible volumetric
response and an apparent more ductile behavior. In fact, the maximum dilation and the maximum
strength are only shifted at greater axial strains. Therefore, a greater value of a increases the
non-linearity of the stress–strain response, whereas a very low value of a renders the model similar
to the elastic perfectly plastic model.

The calculation of plastic strains is based on the following flow rule:

dεpv
dεpd

=
⎡
⎣

√
3 ·(3−sin�c)

6 ·(cos�− sin�c√
3

·sin�)
·Mc

⎤
⎦− q

p+Cp
(9)

where dεpv and dεpd are the volumetric plastic and deviatoric plastic strain increments, respectively.
Mc is the slope of the line representing the transitional state between the contractant and dilatant
domains (usually called characteristic state or phase transformation state) in the p′– q plane (�c
is the characteristic angle corresponding to Mc).

The dependency of the small strain stiffness on the mean effective stress has also been introduced
in the strain-hardening elasto-plastic model in order to take into account the evolution of elastic
properties with the effective stresses. A simple formulation in which Poisson’s ratio is kept constant
has been chosen

E

Eref
=

(
p′

p′
ref

)n

(10)

where p′
ref, n and Eref are parameters to be experimentally calibrated. The value of n must be

adjusted to make it consistent with the strain level at which elastic properties are considered. More
precisely, small strain stiffness determined at strain levels below 0.001% is usually associated with
values of n close to 0.5, whereas the use of a secant modulus identified at a strain level of about
1% is related to a value of n close to 1 [38, 39]. On the conceptual basis of the strain-hardening
elasto-plastic model, a value of n equal to 0.5 is a priori considered.

The strain-hardening elasto-plastic model is characterized by seven parameters: reference elastic
modulus Eref, Poisson’s ratio �, characteristic angle �c, friction angle �p , cohesion c, hardening
parameter a and the size of the elastic domain rel. The following four parameters: reference elastic
modulus Eref (p′

ref is set equal to 100 kPa), friction angle �p, cohesion c and hardening parameter
a have a major influence on the calculation of spread footings. Therefore, high attention has to
be paid to their identification. In order to compare the results of the identification procedure with
both models, we decided to keep the number of parameters to identify equal to three. Therefore,
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the results of triaxial tests performed on remolded samples are also considered. The remolding
of the soil can have a strong influence on the initial part of the stress–strain curve, but we can
assume that the failure characteristics remain the same since the triaxial tests were carried out at
the estimated in situ water content and the estimated in situ relative density. Therefore, according
to the results of the triaxial tests, a friction angle equal to 35◦ was retained. In all the calculations,
Poisson’s ratio � was taken equal to 0.2, the characteristic angle �c taken equal to 30◦ (Mc =1.2),
in agreement with the triaxial test results, and the size of the elastic domain rel taken equal to 0.7,
considering that the soil is lightly overconsolidated with K0=0.7.

The two constitutive models discussed above are based on a Mohr–Coulomb failure criterion.
The strain-hardening elasto-plastic model takes into account two additional phenomena: non-
linear behavior due to plastic hardening and non-linear elasticity. Therefore, we can expect a
better reproduction of the soil behavior. For the two models, identification by inverse analysis is
limited to three parameters (E,�,c) and (Eref,a,c). The other parameters are determined thanks
to correlations, classical values and some other tests. Note that the value of the friction angle is
set from triaxial tests only for the second model. Indeed, the second model introduces a hardening
function, which allows for a better reproduction of the non-linear behavior before failure and
therefore leads to a friction angle value close to a physical value in case of inverse analysis. The
bilinear behavior given by the Mohr–Coulomb model implies a compromise between the elastic
modulus and the friction angle, which does not lead in the inverse analysis to values corresponding
systematically to physical values. Considering this prior determination of some of the parameters,
the purpose of this study is to test the ability of inverse analyses to determine the complementary
part of the parameter set.

3.2.4. Computational program. The identification procedure is based on the successive use of two
different codes: CESAR-LCPC for the direct modeling scheme and ModeFrontier [40] for the
optimization process. For each optimization, each initial simplex for the simplex method and each
population for the genetic algorithms are randomly generated with the algorithm SOBOL [41]
which is used to fill uniformly the search space, i.e. the space of the parameters to be identified. In
the case of the Mohr–Coulomb model, the ranges of the possible parameter values correspond to
classical values (Table I). The low values of cohesion (inferior to 10 kPa) can be explained by the
non-saturation of the sandy soil. In the case of the strain-hardening elasto-plastic model, resonant
column test results [11] on remolded samples give the range of values of Eref. Several simulations
with different values of a and mean values of c and Eref were performed in order to locate the
range of study for a (Table II). The initial population for single- and multi-objective problems
is set to 200 individuals and the size of the population is kept constant during the optimization
process. The probability of directional cross-over is set to 0.5, the probability of selection to 0.05
and the probability of mutation to 0.1. Therefore, the probability of classical cross-over is set to
0.35. These values follow the recommendations of the user manual [40] and are similar to the

Table I. Search domain for the linear elastic perfectly plastic Mohr–Coulomb model.

Minimal value Maximal value Step

E (MPa) 10 50 1
� (degrees) 30 50 1
c (kPa) 0 10 0.5

Table II. Search domain for the strain-hardening elasto-plastic model.

Minimal value Maximal value Step

Eref (MPa) 180 280 5
a 0.0025 0.05 0.0025
c (kPa) 0 10 0.5
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ones given in the literature [42]. For more details about the binary encoding of individuals see
References [31, 32, 40]. Optimization is considered as completed when no improvement concerning
the determination of the Pareto frontier is made for five consecutive generations. The simplex
algorithm stops the procedure when the relative improvement between two consecutive solutions
cannot reach beyond 10−5.

As previously mentioned, the error functions are defined as the area between the experimental
and the numerical curves. In the case of a multi-objective problem, the values of several error
functions are compared and the definition of the error functions has to be modified in order
to render them independent of the experimental curve considered. For this purpose, the area
between the experimental and the numerical curves is divided by the studied interval of the cavity
deformation. An adimensional error function would have facilitated the comparison between the
two pressuremeter tests. But the decision does not influence the results in the case of the multi-
objective analysis with genetic algorithms, given the strategy used to determine the Pareto frontier.
In the case of the weighted sum approach with the simplex method, it could have an influence.
However, since the results for single- and multi-objective methods are in agreement, we may argue
that the influence is limited. The selected error function magnifies the impact of the errors on
points that correspond to high pressures and high strains, rather than the errors on points which
correspond to the beginning of the curve. This strategy is justified by the higher reliability of the
measurements at the end of the test, considering the remolding of the soil along the cavity wall at
the beginning of the test.

3.3. Single-objective identification

In this section, an inverse analysis as a single-objective problem is carried out based on the
pressuremeter test performed at 2m depth. Additional comments on the inverse analysis of the
second pressuremeter test are made. The two constitutive model presented in the previous section
are successively examined.

3.3.1. Identification of the elastic perfectly plastic model parameters. In this subsection, we assume
a linear elastic perfectly plastic Mohr–Coulomb behavior for the soil and we consider the pres-
suremeter test at 2m depth. As aforementioned, three parameters (E,c,�) have to be determined.

The optimization procedure was first conducted by using the simplex method. Because the
results depend on the initial set of parameters, calculations with five different initial simplexes were
carried out. Since three parameters are involved in the optimization, an initial simplex consists
of four sets of parameters. The results demonstrate the influence exerted by the initial chosen
values on the optimized ones. The results of the optimizations, which lead to the final smallest
and biggest values of the error function among the trial tests, are summarized in Table III. The
scattering toward the value of the error function is important (up to 48%) and shows the necessary
care when carrying out an inverse analysis with the simplex method. According to the principle of
the simplex method, we consider as relevant the trial test which leads to the final smallest value of

Table III. Optimization with the simplex algorithm of the 2-m deep pressuremeter test assuming linear
elastic perfectly plastic Mohr–Coulomb model.

Initial set Optimal set

E (MPa) � (degrees) c (kPa) E (MPa) � (degrees) c (kPa) F(1)
err (kPa) Nb of evaluations

38 31 8.5

50 31 8.5 8.56 2027 47 0.5
48 36 5.5
29 33 4.5

43 39 4.5

16 46 5 12.63 3812 44 7
33 33 1.5
17 41 3
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Figure 5. Distribution of the ‘satisfactory’ individuals obtained with the genetic method assuming
Mohr–Coulomb model for the pressuremeter test at 2m depth.

Table IV. Five best individuals obtained for the optimization with the genetic
method of the 2-m deep pressuremeter test assuming linear elastic perfectly

plastic Mohr–Coulomb model.

E (MPa) � (degrees) c (kPa) F (1)
err (kPa) Nb of evaluations

37 33 9.5 7.98

3000
38 33 9 8.04
36 33 10 8.07
49 31 8.5 8.14
37 34 7 8.21

error function. Figure 3 compares the experimental data and the numerical simulation performed
with the optimal set of parameters corresponding to the relevant trial test. In this figure, MC
stands for the Mohr–Coulomb model. The numerical curve provides an acceptable fitting of the
experimental one, if we consider the part of the curve selected for the inverse analysis. However,
the value of the friction angle for the optimal set (Table III) is not in agreement with the results
of the triaxial tests performed on specimens sampled at 0.6m depth (respectively at 3 m depth),
which give a friction angle equal to 34.2◦ (respectively 36.4◦).

Optimization with the genetic method was also carried out. This method provides a population
of individuals, which has to be selected according to a satisfaction criterion. All individuals, whose
error function is lower than a reference value, are called ‘satisfactory’. In this inverse analysis, the
genetic method provides a better mathematical optimum than the simplex method. Therefore, the
optimum obtained with the simplex method is considered as the reference value. Figure 5 shows
the individuals whose error function is lower than the reference value. It is worth noting that for
this optimization, the best set of parameters obtained with the simplex method is also detected by
the genetic method. About 30 other individuals are more relevant than the mathematical optimum
obtained with the simplex method. The parameter values are located in large ranges: for example,
the values of the friction angle vary between 31 and 37◦. The results are in agreement with the
results presented by Levasseur et al. [8], which show a similar distribution of the parameters
to be identified. Table IV summarizes the sets of parameters that correspond to the five best
individuals. These sets of parameters are included in smaller ranges of values, which indicates a
locally smooth error function. The scattering of the satisfactory population in the parameter space
(Figure 5) gives qualitative information about the sensitivity of the parameters and their coupling
effects. Elastic modulus and friction angle are closely related: an overestimated elastic modulus
can be balanced by a smaller friction angle. At a constant friction angle, a connection between the
elastic modulus and the cohesion can be established: the higher the elastic modulus, the lower the
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cohesion (see also Table IV). This is in agreement with the fact that the increase in the cohesion
or in the friction angle has a similar effect on the computed pressuremeter curve. One way to
limit the number of these parameter combinations is to divide the measurements into different
sets according to the parameters to be identified. Since the pressuremeter data include information
from both elastic and plastic ranges, this procedure would result in two sets of measurements: one
for the elastic parameters (beginning of the test) and one for the plastic ones (end of the test).
However, in this case, this strategy has to be handled rather carefully because of the influence
of the elastic modulus on the final part of the pressuremeter test. Unfortunately, the unreliable
measurements probably due to the remolding of the soil at the beginning of the pressuremeter
curves prevent us from applying this strategy in the study.

According to the triaxial test results, it seems consistent to select a set of parameters whose
friction angle is higher than 33◦. Figure 3 compares the experimental data and the numerical
simulation performed with the best set of parameters. The numerical curve provides an acceptable
matching of the experimental one.

The difference between the numerical curves resulting from the two optimization methods is
very small, even if the sets of parameters are quite different (35% difference in elastic modulus,
6% difference in friction angle). Note that the numerical curves obtained from the satisfactory sets
identified by the genetic algorithm are not represented for the sake of clarity but they are located
between the two numerical curves represented in Figure 3. This fact illustrates the non-uniqueness
of the solution of the inverse analysis problem and justifies the use of genetic algorithms which
guarantee a relatively exhaustive search for satisfactory sets. Moreover, it is worth noting that the
genetic algorithm provides better mathematical optimal than the simplex algorithm. It seems that
the simplex algorithm remains trapped in a secondary minimum.

Concerning the inverse analysis of the pressuremeter test at 5.9m depth, an additional comment
can be made. In this case, the simplex method determines a slightly better mathematical optimum
than the genetic method (error function: 13.84<13.88kPa) if the calculation is stopped when
no improvement of the best individual is made for five generations. Thirty-nine generations are
necessary for the genetic algorithm to detect the minimum given by the simplex method. This
fact illustrates the aim of genetic algorithms which consists of determining a set of satisfactory
solutions rather than the exact mathematical one with a pseudo-random search, compared with
the aim of the simplex algorithm which consists of finding a mathematical optimum that can be a
secondary or a global minimum.

3.3.2. Identification of the strain-hardening elasto-plastic model parameters. In this subsection,
we assume a strain-hardening elasto-plastic constitutive model (named SH-EP) for the soil and we
consider first the pressuremeter test at 2m depth. As aforementioned, three parameters (Eref,c,a)
have to be determined, �p being set equal to 35

◦. A process similar to the previous one is followed.
Inverse analyses with the simplex and genetic methods are carried out. Table V summarizes the

scattering in the optimal sets, related to the initial set values obtained with the simplex method.

Table V. Optimization with the simplex algorithm of the 2-m deep pressuremeter test assuming
a strain-hardening elasto-plastic model.

Initial set Optimal set

Eref (MPa) a c (kPa) Eref (MPa) a c (kPa) F (1)
err (kPa) Nb of evaluations

265 0.0225 4.5

230 0.045 10 9.05 57185 0.035 7
235 0.01 1.5
195 0.0175 5.5

250 0.0425 0.5

265 0.0225 4 11.01 48225 0.005 8.5
275 0.03 3
225 0.025 1.5
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Figure 6. Distribution of the ‘satisfactory’ individuals obtained with the genetic method assuming a
strain-hardening elasto-plastic model for the pressuremeter test at 2m depth.

Table VI. Five best individuals obtained for the optimization with
the genetic method of the 2-m deep pressuremeter test assuming a

strain-hardening elasto-plastic model.

Eref (MPa) a c (kPa) F (1)
err (kPa) Nb of evaluations

200 0.025 10 8.97

1200
205 0.0275 10 8.98
195 0.0225 10 9.03
210 0.03 10 9.03
210 0.0275 10 9.04

It is worth noting that the scattering is less important than in the case of the Mohr–Coulomb model,
which implies a smoother error function. As previously explained, the lowest value of the error
function given by the simplex method is considered as the satisfactory criterion for the genetic
method. Figure 6 shows the individuals whose error function is lower than the reference value and
Table VI summarizes the five best sets of parameters obtained with the genetic method. Table VI
and Figure 6 show a relation between Eref and a—the higher Eref, the higher a—and a preference
for high values of c. These results are in agreement with the comments made in the previous
section concerning the Mohr–Coulomb model.

Figure 3 compares the fitting of the experimental curve for the two constitutive models. One can
see that the two models produce very similar results. The main difference concerns the beginning
of the curve, which is not taken into account in the inverse analysis. The beginning of the curve,
unfortunately not usable in this study, is thus crucial to distinguish the quality of the reproduction
of the soil behavior by both models.

Considering the satisfactory population obtained from the inverse analysis of the second pres-
suremeter curve with the genetic method, one can notice that the lower values of cohesion (inferior
to 4kPa) are obtained. This can be explained by a smaller value of the suction in an area closer to
the water table.

This first study compared two kinds of algorithms in the case of single-objective inverse analyses.
For both constitutive models, the numerical curves resulting from the inverse analyses with the
simplex and genetic methods provide an equivalent fitting of the experimental one, even if the
genetic method provides slightly better results if we consider the values of the error function.
However, the parameters obtained with the simplex method appear to be inconsistent with the
triaxial tests results. The advantage of the genetic method consists of providing a set of satisfactory
individuals. From this population, the user gains information about the sensitivity of the numerical
response to the parameter values and the possible relations between them. Moreover, considering
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the user’s scientific and technical background, and incorporating the results of others tests, the
user will be able to select with better accuracy the parameters for the design calculations.

Comparing the identification procedure with the two models can be a difficult task, because
just keeping the number of parameters to be identified constant is not enough to assure similar
conditions. Indeed, the topology of the error function depends on the constitutive model and
its ability to reproduce the reality. However, as soon as the user selects a set of parameters to
be identified and keeps fixed values of the other parameters, the error function will change and
depend strongly on these choices. In the case of the Mohr–Coulomb model, a large search space
is defined without any fixed value or restricted domain for the parameters to be determined. Under
these conditions, the uniqueness of the solution is certainly not assured. In the case of the SH-EP
model, additional tests are used to fix the value of the friction angle and to restrict the domain
of Eref, which could limit the problem of the non-uniqueness of the solution. Figures 5 and 6
confirm these tendencies by showing more satisfactory sets of parameters over a larger range for
the Mohr–Coulomb model.

In order to choose the algorithm to be used for the inverse analysis, the user has to take into
account two aspects: the expected reliability and wealth of the information, on one hand and the
computation cost, on the other hand. Indeed, the richness of the results is gained to the detriment
of the calculation time. Considering that five successive calculations were carried out with the
simplex, the average calculation cost of the genetic method is about �=9 times higher than the
one of the simplex method. It is worth noting that this ratio � is lower (�=6) for the SH-EP
model than for the Mohr–Coulomb model (�=12). Note that these indications are based on
several optimizations for which some results are not mentioned in this paper (see Tables III–VI).
The difference between the two models can be explained by the topology of the error functions:
the evolution of the error function in the case of the Mohr–Coulomb model is not so smooth as
in the case of the SH-EP model. These considerations are based on the number of parameter sets
evaluated, i.e. the numbers of FE-calculations for each optimization. To complete this comment
on the calculation cost, the time related to each evaluation depends on the constitutive model:
the more complex the model, the longer the time computation necessary for an evaluation. In our
case, the FE-calculation with the Mohr–Coulomb model is six times quicker than with the SH-EP
model. The user has to select the constitutive model according to the expected quality of the design
calculation.

This comment concerns the present study (identification of three specific parameters from
pressuremeter tests) and cannot be easily generalized. Therefore, if the user can assume a priori
the topology of the error function considering the constitutive model used and the parameters to
be identified, he or she can predict the potential interest of the genetic algorithms which work
better with problems with irregular error functions having secondary minima.

At the end of this part of the study, we obtain conclusions similar to the ones presented
by Levasseur et al. [8] and Rechea et al. [33]. Furthermore, we highlight the influence of the
constitutive models on the topology of the error function.

3.4. Multi-objective identification

In the previous section, two separate inverse analyses of the pressuremeter curves were performed.
However, the parameters obtained from these two tests may not have been consistent with each
other. Such a problem exists especially when we assume a linear elastic perfectly plastic behavior,
for which the probability of non-uniqueness of the solution is high. For example, the best sets of
parameters obtained with the simplex method give a value of the elastic modulus at 2m depth
higher (50MPa) than the elastic modulus at 5.9m depth (36MPa). In the case of the genetic
method, the ranges of friction angle values obtained for both depths are so different (inferior to
34◦ and superior to 38◦) that this result does not appear consistent with the relative homogeneity
of the soil. By increasing the satisfactory criterion of each pressuremeter test in the case of
single-objective optimizations, a set of satisfactory solutions for both tests can be determined.
However, this set of solutions is too reduced to be processed and involves high values of the error
functions. Indeed, the single-objective optimization explores only localized areas and, therefore,
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Figure 7. Distribution of Pareto optimal solutions of the multi-objective identification with the
simplex (S) and genetic (GA) methods in the criterion space assuming Mohr–Coulomb model

compared with the results of single-objective identification.

does not provide enough information outside these areas. Moreover, due to the complexity of
some error functions, it appears difficult to extrapolate the information from this reduced set of
solutions.

In order to find a compromise which satisfies both tests, and to improve, therefore, the reliability
of the results, both pressuremeter tests are simultaneously considered in the inverse analysis, which
becomes a multi-objective identification.

3.4.1. Identification with the Mohr–Coulomb model. For the Mohr–Coulomb model, four param-
eters have to be optimized: two different elastic moduli E1 (respectively E2) which correspond
to the two different depths 2m (respectively 5.9m), one cohesion c and one friction angle �,
assuming the homogeneity of the soil profile. It is worth noting that a unique elastic modulus
has not been searched for. Therefore, the determination of one elastic modulus is independent
from the other and so depends only on the corresponding pressuremeter test. This aspect allows
us to circumvent the inability of the Mohr–Coulomb model to represent the evolution of elastic
properties with effective stresses.

In the case of the simplex method, the weighted sum approach is applied. The extreme limits of
the Pareto frontier have already been given by the single-objective inverse analyses (see Figure 7).
As the search for each elastic modulus depends only on the corresponding pressuremeter test,
each solution of the single-objective optimization determines the value of one error function. The
value of the other error function remains unknown. The dashed lines represent the results of the
single-optimization. The symbols are used only to distinguish the two methods (simplex (S) and
genetic algorithm (GA)). An additional point is determined for the case where both pressuremeter
tests have the same weights. The inverse analysis consists then of minimizing the error function
defined by

Ferr= F (1)
err +F (2)

err

2
(11)

where F (1)
err corresponds to the pressuremeter test at 2m depth and F (2)

err to the pressuremeter test
at 5.9m depth.

Five trial tests with different initial simplexes were performed. The results of the optimizations
which lead to the final smallest or biggest values of the error function among the trial tests
are summarized in Table VII. The strong dependency of the results on initial simplexes can be
explained by the complexity of the error function Ferr, which superposes the irregularities of the
two error functions F (1)

err and F (2)
err . The insufficiency of the simplex method is illustrated by the trial
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Table VII. Optimization with the weighted sum approach using simplex method and assuming linear
elastic perfectly plastic Mohr–Coulomb model.

Initial set Optimal set

E1 E2 c � E1 E2 c � F (1)
err F (2)

err Ferr Nb of
(MPa) (MPa) (kPa) (degrees) (MPa) (MPa) (kPa) (degrees) (kPa) (kPa) (kPa) evaluations

34 24 8 34

23 37 7 39 9.19 14.17 11.68 62
24 34 0 50
44 13 5.5 39
16 31 8.5 35
36 11 3.5 46

29 29 1.5 47

43 42 7 37 89.13 17.00 53.06 58
49 49 6.5 37
18 18 4 42
29 28 6 41
39 33 9.5 30

Table VIII. Pareto optimal solutions obtained for the two-objective optimization with the
genetic method assuming linear elastic perfectly plastic Mohr–Coulomb model.

E1 (MPa) E2 (MPa) c (kPa) � (degrees) F (1)
err (kPa) F (2)

err (kPa) Nb of evaluations

32 37 8 35 8.11 86.36

4200
30 41 10 35 8.20 53.02
23 38 10 38 8.34 13.95
21 35 10 39 8.69 13.88
22 36 8.5 39 8.84 13.84

test, which leads to the worst result (Ferr=53.06kPa). If the simplex hits a secondary minimum,
it cannot turn back and, therefore, remains trapped.

The use of a multi-objective genetic algorithm (MOGA-II) makes possible a reliable and exhaus-
tive determination of the Pareto frontier in only one calculation run. Five individuals are Pareto
optimal solutions. They are summarized in Table VIII. For the sake of clarity, Figure 7 represents a
limited objective domain, which contains only three Pareto optimal solutions given by the genetic
method. Considering the high values of F (2)

err of the two other Pareto optimal solutions (superior to
50 kPa), these solutions do not seem suitable for the studied problem and are no longer considered
in the following. The results are in agreement with the ones of the single-objective optimization.
The multi-objective genetic algorithm detects a solution with a value of F (2)

err lower than the value of
F (2)
err corresponding to the best set in case of single-objective identification with genetic algorithm.

It can be justified by the strategy of genetic algorithms which consists of determining satisfactory
solutions rather than mathematical optimum. Indeed the differences between the values of F (2)

err
remain small (inferior to 0.3%). One Pareto optimal solution is satisfactory with respect to the
definition of the single-objective optimization of the first pressuremeter test (Figure 7), but does
not belong to the satisfactory set detected by the single-objective identification with the genetic
method. Therefore, the multi-objective formulation allows for the emergence of new satisfactory
sets of parameters suitable for the considered problem.

Figure 7 compares the results given by the weighted sum approach using the simplex method
and by MOGA-II in terms of Pareto. The solution given by the weighted sum approach is not as
good as the three Pareto optimal solutions given by MOGA-II. Indeed, the genetic method provides
solutions, whose values of both error functions are inferior to those of the solution given by the
weighted sum approach. However, these four sets of parameters are located in the same region
of the parameter space as shown by Tables VII and VIII and, therefore, a small difference is to
expect in the different calculations of the spread footing test.
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Figure 8. Distribution of Pareto optimal solutions of the multi-objective identification with the simplex
(S) and genetic (GA) methods in the criterion space assuming a strain-hardening elasto-plastic model

compared with the results of single-objective identification.

Inverse analysis of the first pressuremeter leads systematically to solutions with lower values of
the error function. This difference can be related to the different range of pressure during the test.

3.4.2. Identification with the SH-EP model. For the strain-hardening elasto-plastic model, four
parameters are optimized: two different values of a: a1 (respectively a2) that correspond to the
two different depths 2m (respectively 5.9m), one cohesion value c assuming the homogeneity
of the soil profile and the value of Eref, assuming the evolution of small strain stiffness given in
Equation (10). The same comment about the search of a1 and a2 can be made as the one previously
made for elastic moduli: a unique value of a is not searched for, which takes into account the fact
that a is a non-intrinsic parameter. In the same way as in the previous section, optimizations with
the simplex and genetic methods were carried out. Figure 8 shows the distribution of Pareto optimal
solutions given by the weighted sum approach using the simplex method and by MOGA-II. As
in the case of the Mohr–Coulomb model, the solutions given by the genetic method are better in
terms of Pareto than the ones given by the weighted sum approach. The difference is less important
as in case of the Mohr–Coulomb model, which confirms the comment concerning the topology of
the error function.

According to the two multi-objective identifications, we can conclude that MOGA-II is more
reliable than the weighted sum approach. It is difficult to compare the computation cost of
the two approaches because the weighted sum approach is not carried out completely. Indeed,
in order to determine completely the Pareto frontier, multiple sets of weights should have
been tested. However, the set (0.5, 0.5) corresponding to equal weights applied to both pres-
suremeter tests gives locally an approximation of the Pareto frontier and allows us to draw some
conclusions.

Compared with the single-objective identification, some additional assumptions are made on
the soil profile for the multi-objective identification. Indeed, we assume the homogeneity of
the soil in terms of (c,�) for the Mohr–Coulomb model and (Eref,c) for the strain-hardening
elasto-plastic model. We assume also the relation in Equation (10). For both models, and under
these assumptions, it is possible to find parameter sets whose values of error functions are
close to the satisfactory criteria defined in the single-objective identifications (Figures 7 and 8).
Therefore, the multi-objective optimization enables us to verify the consistency of the assump-
tions made by finding satisfactory compromises. Let us note that, under these assumptions, a
different suction effect in the two depths, as mentioned in Section 3.3.2, cannot be taken into
account.

The same comment about the two constitutive models as in the single-objective identification can
be made in the multi-objective identification. The simplex method encounters the same difficulties
for detecting a global minimum, especially under the assumption of the Mohr–Coulomb model.
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Figure 9. Finite element model of the spread footing test.

However, this tendency is based only on the value of the error functions and on the values of the
parameters, which can be deceptive. In order to obtain more elements of analysis on the quality
of the identification procedure, we decided to simulate the spread footing test, using the different
parameter sets obtained by the previous study.

3.5. Predictions of spread footing settlement

The sets of parameters obtained by considering a single- or a multi-objective problem and assuming
a Mohr–Coulomb behavior or a strain-hardening elasto-plastic behavior are now used to perform
numerical simulations of the spread footing. Since the spread footings are square, a 3D-model
should be required. However, a prior study has shown that, for equivalent meshes, the difference
of calculated settlements between the 2D- and the 3D-model is small compared with the difference
between the computational costs. Therefore, an axisymmetric model is used (see Figure 9), for
which the surface of the circular section is equal to the surface of the rectangular one. 6-node
triangular elements and 8-node rectangular elements are used. The model contains 6121 nodes
and 2278 quadratic elements. Two soil layers are considered in order to carry out simulations
with parameters obtained for single- and multi-objective identifications. Therefore, in the case
of simulations with parameters obtained from single-objective identifications, both layers are
characterized by two different sets of parameters and, in the case of simulations with parameters
obtained from multi-objective identifications, two parameters are identical for both layers and one
is different. A linear elastic model is used for the concrete slab (E=11GPa). The loading is
force-controlled. Inverse analyses were performed from pressuremeter tests. The soil stiffness in
the horizontal direction was, therefore, determined. We assume that the stiffness in the vertical
direction is mainly mobilized for the footing test and we retain for the two constitutive models an
elastic modulus 1.5 times higher than the one identified, which corresponds to a currently observed
ratio between vertical and horizontal stiffness.

Figure 10 compares the experimental and numerical settlement curves resulting from different
simulations. A crucial difference exists between the simulations with the Mohr–Coulomb model
and the SH-EP model: the latter gives numerical simulations which agree better with the curvature
of the experimental settlement curve. The difference can be explained by the hardening function,
defined in the SH-EP model, which gives a better representation of the non-linear soil behavior
before failure. In this model, the elastic modulus describes the real elastic behavior, whereas in
the Mohr–Coulomb model, a secant elastic modulus is defined to reproduce the complete behavior
before failure. The difference on soil stiffness was not noticeable in the inverse analysis from
pressuremeter tests partly because of the lack of information about the beginning of the experimental
curves. Under this condition, we may argue that the use of pressuremeter tests seems to be not
suitable for such prediction. However, further studies under different conditions have to be carried
out in order to confirm this comment.
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Figure 10. Comparison of experimental spread footing settlements and numerical predictions assuming two
constitutive models (Mohr–Coulomb model (MC) and a strain-hardening elasto-plastic model (SH-EP))
resulting from single- and multi-objective identifications with the simplex (S) and genetic (GA) methods.

Compared with most contributors to the benchmark, the predictions for both models comply
better with the experimental observations. Note that the results of some participants are given only
for 25 and for 150mm according to the benchmark requirements. It is obvious that the conditions
between this study and the predictions given by the participants of the benchmark are different
since the benchmark results were already known. However, the predictions given in Figure 10 result
from an objective process. Indeed, the only assumption made in this study, whose consequences
are important, concerns the size of the elastic domain rel and consists of assuming a certain level
of overconsolidation. In fact if the beginning of the pressuremeter curves had been known, we
would have been able to better determine this parameter. It is thus worth noting the importance of
the quality of the identification tests. Considering the predictions of some participants, constitutive
parameters used in their studies may have not been properly determined, which can be due to a
non-efficient identification technique.

Considering both models separately, the difference between the numerical simulations remains
in a limited range. However, for the Mohr–Coulomb model (respectively, the SH-EP model), the
simulations resulting from the single-objective identification lead to 5% (respectively, 12%) load
difference at a 125-mm settlement. This difference was expectable, considering the differences
noticed between the parameter values, but was not expectable considering the numerical pres-
suremeter curves. Indeed, since the stress paths of the identification test, on the one hand, and of
the design simulation, on the other hand, are generally different, there is no reason to expect that
sets of parameters, which lead to quasi-identical numerical curves for the simulation of the test
during inverse analysis, lead also to quasi-identical numerical curves for the design simulation.
This remark shows the importance of the choice of the identification test.

For both models, the simulations resulting from multi-objective identifications are close to each
other. Therefore, the consistency of the parameter values along the soil profile, guaranteed by the
assumptions made on the soil profile, leads for both optimization methods to equivalent sets of
parameters in terms of inverse analysis and design calculation. This comment shows the interest
of a multi-objective identification by partly overcoming the problem related to the choice of the
identification tests. The difference between simulations resulting from the simplex and genetic
methods is not significant enough to be commented.

Compared with the simulations resulting from single-objective identifications, the simula-
tions resulting from multi-objective identifications show globally an initially stiffer behavior.
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This difference can be explained by the assumption of homogeneity of the soil profile made for the
multi-objective calculation. In the case of the Mohr–Coulomb model, the constant friction angle
along the soil profile implies an overestimated friction angle at 2m depth which is balanced by a
smaller elastic modulus. Therefore, the simulations resulting from multi-objective identifications
are less stiff at the beginning of the simulation than the simulations resulting from single-objective
identifications, but are stiffer at the end of the simulation. A similar explanation can be proposed
in the case of the SH-EP model.

Compared with the experimental spread footing curve, the numerical simulation with the SH-EP
model and the set of parameters resulting from the single-objective optimization with the simplex
method provides the best fitting. Moreover, the other numerical simulations of the spread footing
curve assuming this model seem to be consistent with each other in spite of the small differences
discussed previously. The set of parameters, especially the value of the hardening parameter,
resulting from the single-objective optimization with the simplex method, is different from the
others. However, according to the results provided by the genetic method, this set of parameters is
a secondary minimum. This fact implies two observations. First, in terms of inverse analysis, the
mathematical best set of parameters is not necessarily the physical best set of parameters considering
the noisy error functions due to measurement errors and the imperfect reproduction of the reality
by constitutive models. Second, the error made in the parameter identification (i.e. detection of
a secondary minimum instead of a global one) might be balanced by the imperfection of the
numerical simulation of the spread footing. Indeed, shear bands of high intensity, which appear
progressively during the test, cannot be modeled with good accuracy due to the mesh dependency
and, therefore, the soil behavior appears more resistant than it is in reality. Parameter identification
is thus directly related to design simulation. It is worth noting that the genetic method determined
satisfactory sets of parameters close to the best set of parameters obtained with the simplex method.
Therefore, if the user performs an inverse analysis with genetic algorithms, he or she can select
different satisfactory sets of parameters, whose values are different enough to expect a difference
in the design simulation, and carry out the design simulation for each selected set of parameters.
The difference between the numerical simulations provides the way to quantify the indecision
related to the identification procedure and to deal with the errors due to the imperfection of the
numerical simulation.

An inverse analysis performed by using the spread footing test as a reference test could not be
carried out due to the implied computational cost.

4. CONCLUSIONS

Generally, the usual parameter identification techniques based on inverse analysis remain unsatis-
factory, because they do not take into account the non-uniqueness of the inverse analysis problems.
This difficulty can be overcome by determining a set of satisfactory solutions and the use of several
tests. Along this way, we proposed to compare two kinds of optimization methods. Inverse anal-
ysis was carried out from two pressuremeter tests for a subsequent prediction of a spread footing
settlement. In order to study the efficiency of optimization methods in two different conditions,
two constitutive models were successively examined.

The inverse analysis is considered first as a single-objective problem, so that prior conclusions
can be drawn. The computational cost with genetic method is higher, but this method provides more
reliable results and more information concerning the parameter values, which can be processed
by the user to find suitable parameters. The advantage related to the reliability increases when
all the constitutive parameters sensitive to the considered problem have to be identified without
any strong restriction on the search space, as shown by the comparison between the results given
by inverse analysis for the two models. Therefore, this method seems to become very interesting
when the number of parameter to identify becomes bigger.

One of the objectives of this study was to test the capability of the genetic method in the case
of the simultaneous identification of several parameters. The inverse analysis was then carried out
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by considering simultaneously two pressuremeter tests. The weighted sum approach appears to be
not as reliable as the direct determination of the Pareto frontier by the genetic method, especially
in the case of the Mohr–Coulomb model because of the topology of the error function. If enough
points of the Pareto frontier are determined, the user can choose the most suitable compromise.
If simplified assumptions (for example, the homogeneity of the soil profile) can be made, the
multi-objective identification gives the possibility to the user to verify the consistence of these
assumptions by finding satisfactory compromises.

The simulation of the spread footing test raises two main difficulties in the identification process
which the user must consider. First, inverse analysis is usually applied on experimental tests
whose stress path is different from the one concerning the design simulation. Therefore, sets of
parameters which lead to quasi-identical numerical curves for the test examined in the inverse
analysis do not lead systematically to quasi-identical numerical curves for the design simulation.
Moreover, this difficulty increases if only a part of the experimental curve of the test involved
in inverse analysis is known as shown by the comparison of the two models. The indecision can
be reduced by a multi-objective identification, which provides close numerical simulations for
both optimization methods. Second, the apparently successful predictions provided by the single-
objective identification with the simplex method lead us to two comments. Secondary minima can
provide better design predictions than global minima considering the errors due to experimental
measurement and the imperfect reproduction of the reality by the constitutive models. The error
made by selecting a secondary minimum can also be balanced by errors in the design simulation.

Considering the errors or indecisions accumulated due to experimental measurement, the imper-
fect reproduction of the reality by constitutive models and the nature of identification test or the
numerical method for simulation, it is difficult to define a systematic methodology to identify
constitutive parameters. However, the genetic method provides a quasi-exhaustive set of satisfactory
parameters which can be used to estimate the uncertainty related to the identification procedure.
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