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Simultaneous geometrical and material optimal design of hybrid

elastomer/composite sandwich plates

N. Le Maofit?, E. Verron?, ]. Bégué®

2 Institut de Recherche en Génie Civil et Mécanique, UMR CNRS 6183, Ecole Centrale de Nantes, BP 92101, 44321 Nantes cedex 3, France
b Centre Technique des Industries Mécaniques (CETIM), 74 route de la Joneliére, BP 82617, 44326 Nantes cedex 3, France

The paper presents the complete optimization of a hybrid elastomer/composite sandwich plate structure:
design variables consist in the total number of layers of the structure, their respective thicknesses, their
fiber orientations, the position(s) of the viscoelastic core(s) and the stacking sentence. The damping of the
hybrid structure is calculated by the Method of Strain Energy (MSE). The constrained optimization max-
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imizes the damping loss factor using the linear search algorithm. As an example, the method is applied to

a simple structure and the results demonstrate the capabilities of our tool.

1. Introduction

Nowadays, fiber-reinforced composites are widely used for
automotive and aerospace parts because of their high stiffness,
light weight, and also for their good fatigue and corrosion proper-
ties as compared to metals. Nevertheless, their damping properties
are often revealed insufficient for some applications that involve
vibrations or noise. In order to improve the damping properties
of composites, the most common method is passive and consists
in sticking an elastomeric viscoelastic patch (often combined with
constrained metallic layer) in some well-chosen locations of the
structure [1]. This solution is quite efficient but it increases both
weight and cost of the structure. Moreover, as it is achieved a pos-
teriori, both dimensions and mechanical response of the structure
change as compared with those of the original structure.

An a priori solution consists in inserting interlaminar damping
layer(s) in the composite material during the design of the struc-
ture [2,3]. Such a solution necessitates the determination of the
more relevant position(s) and thickness(es) of damping layer(s)
in the composite in order to maximize the modal loss factors with-
out degrading the mechanical properties and increasing too much
the total weight of the structure. In this case, the design of the hy-
brid structure must be achieved before manufacturing. Neverthe-
less, the definition of the best hybrid material is difficult because
the dynamic properties of hybrid elastomer/composite depend on
a large number of quantities such as the stacking sequence of the
plies, the mechanical properties of the elastomer, ... [3-5]. To
rationally overcome this difficulty, optimization procedures can

be considered to determine the best dynamic properties in a given
frequency range [6,7]. Until now, these studies have been limited
to a small number of design variables such as thicknesses, ply an-
gles or shear modulus of the elastomer layer(s).

The present paper proposes a complete optimization procedure
in order to determine simultaneously the optimal number and
locations of the elastomer and composite layers in the sandwich,
in addition to the classical quantities mentioned above. This proce-
dure is presented in the next section and its capabilities are illus-
trated in Section 3 and discussed in Section 4.

2. An optimization tool for damped composites
2.1. Derivation of the problem

Fig. 1 presents the problem. The sandwich plate studied here is
rectangular and the design variables are:

o the number of layers n,

o the position of the viscoelastic layers V;-1,... n,

o fiber orientations in the elastic layers 6; -, , and,
o the thickness of each layer t;i_ 1, . p.

The aim of our optimization procedure is to maximize the
damping capabilities of the material by inserting elastomeric vis-
coelastic layers at well-chosen positions, without degrading the
mechanical properties and increasing too much the total mass of
the structure. As examples, for 3 layers with 1 elastomeric layer
there are 9 variables to optimize; for 5 layers with 2 elastomeric
layers, 15 variables, and for 7 layers with 3 elastomeric layers, 21
variables.
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Fig. 1. The sandwich plate and the design variables.

2.1.1. Geometry and materials

For the geometry of the sandwich plate, the thickness of each
layer is constrained to remain small as compared to both length
and width of the plate in order to keep valid the plate assumption.

The fiber-reinforced layers are considered elastic, linear and
orthotropic. Adopting the classical vectorial notation for both
strain ¢ and stress &, and introducing the elastic compliance ma-
trix, the constitutive equation reduces to [8]:
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where ¢&; and y; are the strain components, and g;; are the stress
components. The material parameters are the Young moduli E;
the Poisson ratios v; and the shear moduli G;. As shown in Fig. 1,
the subscripts (1,2,3) correspond to the fiber direction, the trans-
verse direction and to the normal direction, respectively.

The rubber material used to damp the sandwich is isotropic,
linear and viscoelastic. Moreover, the material properties are con-
sidered dependent on the loading frequency f. Introducing the
fourth-order complex viscoelasticity tensor D", the constitutive
equation can be written as:

G = Drubber (f)S (2)
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with
Drubber(f) _ g*R (f) + i£3 (f) (3)

where £%(f) and £7(f) are the fourth-order tensors that characterize
the energy storage and the dissipative response of the material,
respectively. Similarly to Eq. (1), the use of the vectorial notation
leads to the definition of the real compliance matrix

1-v(f) v(f) v(f) 0 0 0
v(f) 1-v() v(f) 0 0 0
Sy v(f) v(f) 1-v(f) 0 0 0
0 0 0 1(1-2v(f) 0 0
0 0 0 0 11 =2v(f)) 0

0 0 0 0 0 11 =2v(f))

4)
and its complex counterpart

1-v(f) V() v(f)' 0 0 0
vy 1-v(f) v 0 0 0
&g v(f) v(f) 1-v(f) 0 0 0
- 0 0 0 11 -2v()) 0 0
0 0 0 0 1 -2v(f)") 0
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with A =ER/(1+v(N)(1 - 2v(f), A =nLAER(1+ v - 2v())
and v()" =nHv(f). In this equation, E(f) and v(f) are the fre-
quency-dependent Young modulus and Poisson ratio, and #,(f) is
the loss factor of the elastomer.

2.1.2. Loading conditions

As mentioned in the introduction, the design of the damped
structure is a compromise between the capability of dissipating en-
ergy and the maintenance of both the mass and the stiffness
properties.

The dynamic response of the sandwich plate is determined by a
classical free vibrations computation between 1 and 1000 Hz, con-
sidering free-displacement boundary conditions on both x- and z-
edges (see Fig. 2 for the definition of the axes). By using the Method
of Strain Energy (MSE in the following) [9], this calculation permits
to determine the modal loss factors #; of the structure for each
modal frequency i in the range [1 Hz, 1000 Hz]. The i*** modal loss
factor for which the natural frequency is equal to f; is given by

w
=10 o 6
M=)y~ (6)

where W is the strain energy of the viscoelastic core and W, is the
total strain energy of the structure. It is to note that as the elastomer
properties explicitly depend on the loading frequency, this calcula-
tion is iterative for each eigenfrequency.
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Fig. 2. (a) Tensile tests and (b) three-point bending test for a three-layers sandwich plate with symmetry conditions.



Moreover, the new structure must withstand static loading con-
ditions, i.e. preserves a sufficient stiffness. Here, we choose two dif-
ferent static loading conditions: tensile and bending conditions.
First, we study extension stiffness properties by considering uniax-
ial extension in the two planar directions as shown in Fig. 2a. Two
simulations are performed under uniaxial prescribed displacement
in the x and z-directions, and in both cases the reaction forces Ftx
and Ftz are calculated. Second, we consider the bending stiffness
of the structure. This is achieved by a three-point bending calcula-
tion as shown in Fig. 2b: a central punch imposes a few millimeters
of deflection in the center of the laminated structure and the reac-
tion force at the center Fb is calculated.

2.1.3. Optimization

The optimization problem can now be established. The objec-
tive function F to be minimized is simply the reciprocal average
of the loss factors:

1\

F= gy 11,) (7)
Jj=1

in which N is the number of eigenfrequencies in the range

[1 Hz, 1000 Hz].

The minimization of F is constrained by the mass increase and
stiffness decrease requirements. Before the optimization, the val-
ues of reference for the initial (undamped, i.e. without viscoelastic
layers) structure are calculated: its mass M;, and the static reaction
forces Ftx,, Ftz, and Fb, which are the undamped counterparts of
the previously defined forces Ftx, Ftz and Fb (the subscript -, stands
for reference structure). The non-linear constraints (Cpy,i); - 1, 4 CON-
sist in limiting the change in both mass and stiffness properties:

M, -M
Cul: er —Toly <0
Cu2 w —Tolp <0
Ftx, L Ftx (8)
Cn13 : Txr - TO]F[X S 0
Ftz, — Ftz
Cnl4 : ;‘TT — TO]F[Z <0

where Toly;, Tolg, Tolgy and Tolg, are the user-defined tolerances
on each quantity. Moreover, we add a linear constraint C;1 to limit
the total stiffness of the damped sandwich to MaxThickness:

n
C1: Z t; < MaxThickness 9)
i=1

2.2. Implementation

2.2.1. Finite element computations

It is well-known that the dissipation is mainly due to transverse
shearing of the viscoelastic layers (see for example [10]). In order
to predict shearing and to improve the bending response of the
numerical model, 3D linear brick elements with incompatible
modes are considered for the rubber layers. Moreover, the elastic
layers are also meshed with this type of elements because it highly
simplifies the optimization of the rubber layers: in the optimiza-
tion loop, the material properties of the layers can be changed
without remeshing. The finite element model is presented in
Fig. 3. For the three-point bending calculations, tools are modeled
as analytical tools and contact with friction (¢ =0.12) is consid-
ered. Finally, the eigenfrequency problem of the undamped struc-
ture is solved with the help of the Lanczos algorithm.

As the finite element model uses only brick elements, the num-
ber of degrees of freedom is large and it implies significant CPU
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Fig. 4. A three-layer cantilever sandwich beam used to determine the optimal mesh
size.

time. In order to limit CPU time, we preliminarily determine an
optimal mesh size by considering a three-layer cantilever beam
with isotropic materials as shown in Fig. 4; this structure has been
chosen because it was thoroughly studied theoretically, numeri-
cally and experimentally [11-13]. The in-plane optimal mesh size
is 0.55 mm as compared to the size of the structure (see Fig. 4).
Moreover, we proved that a single element in the thickness direc-
tion of the viscous layer is sufficient to capture the phenomena, if
the thickness is smaller than 1 mm.

2.2.2. The optimization algorithm

The minimization of the average loss factor Eq. (7) by the MSE
with the constraints Eq. (8) is performed by the active-set algo-
rithm and the Hessian of the problem is computed by a quasi-
Newton method.

2.2.3. The tool
The global problem of optimization is solved by coupling
Matlab and Abaqus:

e Matlab is used to find the minimum of the constrained non-
linear multi-variable function,

e Abaqus is used to solve the static problems,

e Matlab and Abaqus are conjointly used to determine iteratively
the damped frequencies by updating the viscoelastic properties,

o Finally, Python scripts link both softwares.

The flow of the numerical tool is summarized in Fig. 5.

3. Results

In order to demonstrate the capabilities of our methodology, we
study the optimization of a 5-layer rectangular sandwich plate. Its
in-plane dimensions are 200 mm x 125 mm; the stacking se-
quence is [0/45/0/45/90] and the thickness of the layers is equal
to 0.2 mm for the four first layers and 0.4 mm for the last one.
The material is a glass fiber-reinforced epoxy composite and the
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Table 1
Bounds applied to the geometrical parameters.
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Design variables Lower bound

Upper bound

following mechanical properties, issued from [14], are considered:
Ei= 29.9 GPa, E,=E5=7.5 GPa, G]2 =2.25 GPa, and Vi2=V3=V12 =
0.24. Moreover, its density is equal to 1500 kg m 3. The problem
consists in damping this structure with an elastomer. The material
parameters are those of [4]: the Young modulus is frequency-
dependent

E(f) = 0.0041 + 0.0322log(f) GPa, (10)

and the loss factor is constant and equal to #, = 0.3. The Poisson ra-
tio is also constant and equal to v=0.3; and the density is
p =968.1 kg m~3. The constraints adopted for the optimization are
as follows: the possible loss in stiffness and increase in mass be-
tween the new structure and the reference one are set to 5%, the
maximum total thickness is limited to 5 mm and the geometrical
parameters are bounded by the values given in Table 1. Initial val-
ues of both thicknesses and layer orientations are randomly chosen.

Finally, all the calculations have been made on a cluster with
6 x Quad-Core AMD Opteron(tm) Processor 8380, 2500 MHz pro-
cessor with 65 Gb RAM and CPU used = 6.

The optimization of the structure is performed for n =3 to 7 lay-
ers. The results and their comparison with the reference structure
data are presented in Table 2. First, results with 4 and 6 layers
are not shown because they are identical to those with 3 and 5 lay-
ers respectively, i.e. the same number of viscoelastic layers and two
successive composite layers with the same ply angle. In every cases,
ply angles are 0° or 90°. Moreover, the comparison of the mass and
stiffness of damped plates with those of the reference plate shows
that all constraints (linear and non-linear) are respected.

Fig. 6 presents the modal loss factors for each optimized
damped structure for each eigenfrequency. As eigenmodes alter-
nate from bending to torsion, one can observe an abrupt change
in the modal loss factor between two successive eigenfrequencies.
Even if results present a similar trend for 3, 5 and 7-layer plates,
the best structure is the 7-layer one that contains 3 viscoelastic
layers and which stacking sequence is [0/V/90/V/0/V[90].

0.02
3 layers ----co-
5 layers
7 layers ———
0.015

Modal loss Factor n
(=}
=
T

0.005

0 1 1 1 1
0 200 400 600 800 1000

Nb of layers n 4 7
Layer thickness ¢ 0.1 mm 3 mm Frequency f (Hz)
Layer orientation 0 0° 90°
Fig. 6. Optimized modal loss factors for a sandwich plate with #,=0.3.
Table 2
Design parameters and constraints after optimization on the sandwich plate for #,= 0.3 (‘V’ denote the position of the viscoelastic layer).
Reference 3 layers 5 layers 7 layers
0(°) [0/45/0/45/90] [0/V[90] [0/V[90/V/[90] [0/V/90/V/[0/V[90]
t (mm) [0.2/0.2/0.2/0.2/0.4] [0.57/0.34/0.47] [0.59/0.22/0.18/0.1/0.29] [0.25/0.14/0.27/0.22/0.22/0.1/0.23]
M (kg) 0.045 0.0472(+4.95%) 0.0473(+5%) 0.0473(+5%)
Fb (N) -25.25 —24(-5%) —24.36(—-3.5%) —23.99(-5%)
Ftx (kN) -21.46 —20.46(—4.7%) —20.62(—-3.9%) —20.39(-5%)
Ftz (kN) 13.10 14.38(+10%) 14.81(+13%) 12.45(-5%)
Nb. iterations 46 175 364
CPU time (h) 18 98 227




4. Discussion

First, we can remark that the optimized orientations 0; of the
elastic layers differ from those of the original structure (45°) and
are only equal to 0° and 90°. It is due to the choice of the static stiff-
ness tests in the optimization process: as only two directions are
considered for the tensile and bending tests, the stiffness require-
ments of the constraints lead to these orientations. Nevertheless,
specifying several stiffness experiments in different directions in
the optimization process would lead to other orientations.

Second, the active-set algorithm generally converges and is
well-recognized for its ability to solve large dimension problems.
However, it has the disadvantage to converge to local minima,
especially when the optimization problem involves numerous vari-
ables. This is the case here; as an example, the result obtained with
five layers admits worse damping capabilities than the result ob-
tained with the 3-layer structure. In fact, considering different
number of layers prevents from using a global search of the solu-
tion because of the significant increase in computation time it
would lead to; these time consuming methods being incompatible
with industrial applications. Indeed, considering different optimi-
zation algorithms is required.

Finally, we observe that the damping efficiency is always weak-
er for low eigenfrequencies than for high ones. It can be easily ex-
plained by recalling that the damping capabilities of the structure
are defined by the ratio of the damped energy with respect to the
total energy of the structure. Indeed, the total strain energy of the
whole structure is mainly driven by the energy in the composite
layers that do not change a lot. The strain energy of the elastomeric
layers depends on the Young modulus E(f) that increases with the
frequency (see Eq. (10)), and as the rubber loss factor 7, is set con-
stant in the example, the strain energy of the elastomeric layers in-
creases with the frequency. In fact, #, also depends on the
frequency, more precisely it increases as fincreases; so this depen-
dency would compensate for the increase of the damping effi-
ciency. Taking into account the increase of 1, with f does not
lead to theoretical or numerical difficulties, but it necessitates
more complex experiments to characterize the material response.

5. Conclusion

In this paper, a numerical tool developed to maximize the pas-
sive damping capabilities of multi-layer plates with respect to a
large number of variables has been presented. Optimization is per-

formed with linear and non-linear constraints to limit the total
mass and to ensure a minimum stiffness of the hybrid structure.
The problem is solved using the optimization line-search algorithm
in Matlab, coupled with the FEA software Abaqus. Passive damping
properties of the structure, including frequency-dependent visco-
elastic core, is estimated using the Method of Strain Energy.

To illustrate the approach, we have optimized a simple struc-
ture composed of layers of composite and viscoelastic rubber.
The results consist in hybrid materials that maximize the passive
damping properties of the structure with respect to both design
constraints and bounds on parameters. With this example, we have
demonstrated the efficiency of our tool to optimize very different
types of parameters, considering the frequency-dependent proper-
ties of the elastomer core.
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