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ABSTRACT. Composite manufacturing processes involve multi-scale phenomena. Equations 
governing mechanics, heat transfer and fluid flow dynamics can be derived in the scale of the 
problem to solve. This article focuses on addressing fluid flow simulation needs for Liquid 
Composite Molding processes using a generic mixed FE-SPH method. The SPH method is 
Lagrangian and models fluids as particles. The method has been proven to be suitable to 
simulate fluid flows. Special solutions have been developed for flow through porous media 
and non-Newtonian fluid flow. Numerical schemes for such solutions are also given. The 
implementation of the SPH algorithm within a structural finite element software facilitates 
simulation of fluid-structure for LCM processes. Several applications are presented and discussed. 

RÉSUMÉ. La fabrication de matériaux composites met en jeu des phénomènes multiéchelles. 
Les équations qui gouvernent la dynamique des fluides, la mécanique et le transfert 
thermique peuvent être développées à l’échelle du phénomène à observer. Cet article se 
focalise sur les besoins de simulation des moulages composites en utilisant une méthode 
générique FE-SPH. La méthode SPH est lagrangienne et modélise le fluide à l’aide de 
particules. Il a été prouvé que cette méthode est appropriée pour simuler et modéliser 
l’écoulement de fluides. Des solutions spéciales ont été développées pour l’écoulement dans 
un milieu poreux et pour un fluide non newtonien. Les schémas d’intégration numérique sont 
également présentés. Les particules représentant le fluide peuvent interagir avec des éléments 
finis, ce qui permet de simuler des procédés de fabrication requérant des physiques couplées. 
Plusieurs applications sont présentées et discutées.  

KEYWORDS: Smoothed Particle Hydrodynamics, finite elements, liquid composite molding, 
explicit numerical schemes. 

MOTS-CLES : Smoothed Particle Hydrodynamics, éléments finis, liquid composite molding, 
schémas d’intégration explicite. 
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1. Introduction

Composite materials are covering a wide range of applications for aeronautics,

automotive and marine structures. Such composite materials are usually made of 

fibers enclosed in a thermosetting or thermoplastic matrix. Liquid Composite 

Molding (LCM) processes, such as compression, Resin Transfer Molding (RTM) or 

Vacuum Assisted Resin Transfer Molding (VARTM), have become of increasing 

interest to manufacture composite parts. Reproducibility, quality, performances, 

environment friendliness and cost reduction are goals a composite manufacturing 

company seeks. Those goals will inevitably require the use of reliable and powerful 

simulation tools that enhances predictions and reduces trial and error procedures. 

It is well established that micro-, meso- and macroscale media are present in 

composite manufacturing processes. For instance, for continuous fiber reinforced 

composites, the microscale corresponds to the inner tow region, whereas the inter 

tow region would be mesoscale, and the macroscale represents the overall composite 

structure. Equations governing mechanics, heat transfer or fluid flow can be derived 

for the three scales depending on the problem to be solved or the phenomenon 

looked at. More precisely for fluid flow simulation, the Navier-Stokes equations, 

averaged Navier-Stokes for porous media (Tucker et al., 1994), or Darcy’s law will 

be generally used. The equations are usually discretized in an Eulerian reference 

frame using Finite Difference Method (FDM) or Finite Element Method (FEM) 

(Trochu et al., 1993). However, when the geometry of the flow domain changes, 

because of interfaces with moving structures (such as compression, injection-

compression or VARTM) or the presence of a free surface, special solutions are 

required. Also when coupling is present, e.g. hydro-mechanical coupling, (Han et al., 
1993) showed that mixed Control Volume/FDM can be used. (Also Kang et al., 
2001 and Acheson et al., 2004) coupled resin flow, fiber preform mechanics and tow 

saturation during VARTM process through Control Volume/FEM or FDM 

algorithms. Those Eulerian numerical schemes are limited to small deformations for 

instance or do not allow to mix domains with porous and non-porous media. Lately, 

Lagrangian numerical schemes have been of interest with (Farina et al. 1997; Belov 

et al., 2004 and Sawley et al., 1999). The later qualitatively reproduced the flow 

front shape of an isothermal RTM filling using the Smoothed Particle 

Hydrodynamics (SPH) method for mesoscale simulations. 

This paper particularly focuses on the use of the generic mixed FE-SPH method 

to address the simulation needs of LCM processes. First, fundamentals on fluid flow 

dynamics are given for porous and non-porous regions. Then, a detailed description 

of the mixed FE-SPH method is presented. Finally, several examples of applications 

for LCM simulations will be proposed and discussed.  
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2. Fluid flow dynamics

In the following sections, a bold lower case letter represents a vector and a bold

upper case letter denotes a tensor. 

2.1. Fluid flow through porous media 

(Tucker et al., 1994) and Pillai 2002) derived the conservation of mass and 

momentum equations for flow in porous media from averaging the conservation 

equations for a two-phase medium in which one of the materials is fixed in space. In 

that case, the volume fraction available for the fluid remains fixed and is also called 

porosity. Considering laminar flow, the suitable forms of the equations to be solved 

(conservation of mass and momentum) are respectively: 

0u
t

[1] 

uKg�uu
u 12p
t

[2] 

where  is the fluid volume fraction or porosity, u the fluid velocity,  the viscosity, 

 the viscous stress tensor, p the pressure, g the gravitational acceleration, K the 

permeability (tensor or scalar) and  the apparent density where  is the fluid 

density. For Equation 2, it has been assumed that the flow velocity in the porous 

region is small enough to assume that the viscous drag depends linearly on the 

velocity.  

A scaling analysis can show that the viscous term (i.e., the second term of the 

RHS) can be, in most cases, neglected for LCM. With this assumption and using 

Equation 1, Equation 2 becomes: 

uKguu
u 12p
t

[3] 

Most of the time, the computational domain can be divided in porous (e.g., fiber 

reinforcements) and non-porous (e.g., channels or tubing) regions. In order to 

simulate the flow for all regions, Equation 3 provides the basis of the solution with 

the viscous drag term only being used within the porous domains. As a limiting case, 

within the porous region (i.e., where the flow is dominated by the viscous drag) the 

convective and inertia terms (LHS of Equation 3) becomes negligible and therefore 

Darcy’s law for the transport (or filtration) velocity uv  may be verified.  

3 | 17



2.2. Non-Newtonian fluid flow 

For the flow of a liquid around individual and immersed solid objects, the 

following conservation of mass and Navier-Stokes equations should be solved: 

0u
t

[4] 

g�uu
u

p
t

[5] 

For composite molding conditions, turbulence is irrelevant, but non-Newtonian 

laminar flow should be considered. The components of the viscous stress tensor may 

be written as: 

ij
k

k

i

j

j

i
ij x

u

x

u

x

u

3

2 [6] 

where the indices i, j, and k refer to the three Cartesian coordinates and ij is the 

Kronecker delta. Note that the divergence term on the RHS of Equation 6 is 

maintained since limited compressibility will be assumed in the SPH formulation 

(Equation 15), but maintain as low as possible (see Sections 2.3 and 3.3). Among 

several non-Newtonian rheological models, the Carreau one will be chosen because 

it can model fairly well most polymeric fluid behaviors (McCabe et al., 2002; 

Achilleos et al., 2002): 

1

0 1)( E [7] 

where E is the total strain rate and  and  are all parameters of the fluid

to be fitted to experimental data. The asymptotic behavior at large E is Newtonian 

with a viscosity of , for small E the effective viscosity tends to , and at

intermediate regime it displays shear-thinning behavior rather like a power-law fluid. 

Since this model does not contain a yield stress, nor infinities at any limit, no 

numerical instabilities are expected. Note that if �� �������� 7 models a

Newtonian fluid. 

2.3. Compressible fluid formulation 

During composite molding, the flow of resin may be considered as 

incompressible. In that case Equation 1 and 4 would reduce to .u = 0 and the 

pressure should be obtained from a Poisson type of equation. Such a system of 
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equations can be solved efficiently by an implicit method which allows for a 

relatively large time step. In the present study, however, the solution time step needs 

to be small. The first reason is that the motion of the flow front requires an accurate 

solution in time and space when the resin passes the border of the porous region. A 

second reason is that the weak coupling of the flow with moving structures for 

instance, requires an explicit solution with a sufficiently small time step. If the time 

step has to be small, an explicit solution in combination with compressibility of the 

liquid is more suitable. 

3. Smoothed particle hydrodynamics fundamentals

The fully Lagrangian and meshless SPH method has been originally developed

by (Gingold et al., 1977) and Lucy 1977) to solve astrophysical problems. Later, 

(Monaghan 1983, 1994) applied the SPH method to the flow of compressible fluids 

and also showed that when pressure wave propagation is not of prime interest (as in 

LCM simulations), the use of an artificial equation of state is quite suitable to model 

incompressible fluid flows. SPH solutions for incompressible flow have also been 

developed, but such solutions have not been pursued for LCM simulations. 

3.1. Integral interpolants and kernel functions 

Mathematically, an integral interpolant of an arbitrary function (r) can be 

defined as: 

'd),'()'()( rrrrr hW [8] 

where W is a kernel function having the following properties: 

   when  0),( 

          0 when  )(),( 

1d),(

hhW

hW

hW

rr

rrr

rr

[9]

where r is the vector position, h a scalar called the smoothing length,  a constant 

parameter taken as 2,  the Dirac function and  the domain. The integral 

interpolant is an estimate of the function . Moreover, it can be shown that the 

integral interpolant of the gradient of a function, if the boundary integrals are 

neglected, may be written as:  

'd),'()'( rrrr hW  [10]
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From a choice of kernel functions available in the software, the frequently used 

cubic spline function has been chosen for this study. As quoted by Shao and 

Lo (2003), this kernel has compact support, a continuous second derivative and is 

not very sensitive to particle disorder. 

3.2. Summation interpolants 

For numerical simulation of continuum dynamics, the material is modeled by 

a = 1, 2, … N particles of mass ma and density a. A particle a interacts with the 
neighboring particles b belonging to the sphere of influence of a. A sphere of 
influence (Figure 1), is defined by a kernel function that weighs interactions and a 

smoothing length that limits interactions in space. Therefore, the integral interpolant 

of a function (defined in section 3.1.) and its gradient can be approximated by a 

summation interpolant over a collection of particles:  

),()( hWm ba
b b

b
ba rrr [11] 

),()( hWm ba
b

a
b

b
ba rrr [12] 

Equation 12 shows that no mesh is required to numerically evaluate the gradient of 

the unknown functions but only the gradient of the kernel function. The role of grid 

or mesh size in FDM or FEM is played by the particle size in SPH: a smaller particle 

size implies a better spatial resolution of the flow, but requires more CPU. The 

smoothing length is defined to be proportional to the particle size. 

The fact that SPH is a meshless method explains the attractiveness of the method 

to the dynamics of materials undergoing large relative displacements, while 

maintaining a Lagrangian frame of reference. 

Figure 1. Sphere of influence of a particle a 
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3.3. SPH formulation for fluid flow through porous media 

Within the SPH method, particles represent a fixed amount of material. If the 

fluid enters a porous region, the mass has to be distributed over a larger volume in 

space. Since the fluid particles should be able to model the progress of the flow 

front, the proper choice for the SPH formulation in porous media is to let the 

particles move with the microscopic fluid velocity. Thus, Equations 1 and 3 are 

amenable to the regular SPH discrete equations, which involves the apparent density 

and the microscopic velocity:  

aba
b

bab
a Wm
t

uu
d

d [13] 
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22d
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The artificial viscosity contribution ab from (Monaghan et al., 1983) has been 

included in the momentum equation in order to stabilize the solution scheme. This 

type of artificial viscosity is superior to the standard finite element viscosity for 

SPH. For flow at low speed, the strength of the artificial viscosity may be taken quite 

small. For fluid flow through porous media, the most relevant physical viscosity 

contribution is directly entered as the viscous drag term of the momentum equation. 

Conservation of energy may also be solved with a similar SPH formulation, but since 

the pressure does not depend on the internal energy and since it will be assumed here 

that thermal effects on the viscosity may be neglected, the energy equation will not 

be considered.  

Since Equations 13 and 14 allow some compressibility, they will be solved in 

combination with an artificial equation of state (Murnaghan model) for nearly 

incompressible liquid: 

1
0

0 Bpp [15] 

with p
0
 a reference pressure, 

�

the reference density, B the (artificial) bulk modulus 

and   the exponent. The parameters B and   are adjusted to keep the sound speed 

for Equation 15 greater, by at least a factor of 10, than the maximum fluid velocity. 

Therefore, tuning properly those parameters will keep the compressibility lower than 

a few percent. 
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3.4. SPH formulation for non-Newtonian fluid flow 

A similar SPH formulation of Equations 4 and 5 can be given for non-Newtonian 

fluid flow: 

aba
b

bab
a Wm
t

uu
d

d [16] 
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a Wm
t 22

d

d [17] 

ijaijaija p ,,
[18] 

where  is the total stress tensor. 

To evaluate the shear stresses, the following SPH formulation for the velocity 

gradients will be adopted (Libersky et al., 1991): 

ja

ab

b
iaib

b

b

j

ia

x

W
uu

m

x

u

,

,,

, [19] 

This method has been validated for materials with strength in PAM-CRASH by 

(Groenenboom 1997, 2002). The current model is similar to that used by (Ellero et 
al., 2002), with the visco-elastic model replaced by the Carreau model, but it differs 

from the implementation for incompressible flow by (Shao et al., 2003), who arrive 

at an expression for the viscosity similar to the usually adopted artificial viscosity. 

To overcome numerical instabilities during the transient period when the flow is 

started, the artificial viscosity is linearly reduced and the Carreau model is linearly 

activated during a user-specified time interval.  

Finally, the Murnaghan model (Equation 15) is also used as a constitutive 

equation. The parameters of this model are adjusted so that the compressibility of the 

fluid remains lower than few percents. 

3.5. Mixed FE-SPH 

Some advanced LCM modeling and simulations involve hydro-mechanical 

coupling when a foam core is compressed while manufacturing sandwich materials 

or when processes such as injection-compression or VARTM are used, for instance. 

In those cases, either flow induced deformations or forced deformations are present. 

Such interactions between resin and the moving structures (foam core, mold…) are 

modeled by one of the sliding interface algorithms available in PAM-CRASH. 

Sliding interfaces model the interaction between structures and parts of structures 
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that are not permanently connected by standard finite element connectivity 

conditions. The employed sliding interfaces is based on the well known penalty 

formulation, where geometrical interpenetrations between so-called slave nodes and 

contacting faces are penalized by counteracting forces that are in essence 

proportional to the penetration depth. The contact algorithm will automatically 

detect when a particle (slave) penetrates any segments (master) of the outer surface 

of the finite element of the foam. The contact thickness indicates the distance away 

from a contact face where physical contact is established. In this case the contact 

thickness should be representative of the particle size. The use of such interaction 

between the SPH and finite elements has been validated for a range of applications 

such as sloshing (Meywerk, 1999; Cha, 1999), heart valve opening (Haack, 2000) 

and impact of aeronautical structures on water (Pentecote, 2003). 

4. Numerical schemes

4.1. Explicit integration  

Temporal integration of Equations 13 and 14, is performed by a similar explicit 

method as for PAM-CRASH finite element nodes: 

b

n
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11 nn
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n
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n
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where the superscript denotes the time step, the tilde on ua (Equation 21) the time 

step to be discussed below and r
a
 the particle coordinate vector. Note that all 

velocities are defined at intermediate (or half-integer) time steps whereas densities, 

pressure and positions are defined at integer time steps, rendering second-order 

accuracy. A numerically stable time step, accounting for finite elements, particles 

and any sliding interface, is determined automatically by the software during each 

solution step. Within the porous regions, the flow is usually dominated by the drag 

force contribution of Equation 21, which in equilibrium should be balanced by the 

pressure gradient, combined with gravity, if relevant. Hence, the drag term should be 

integrated in an implicit manner to guarantee numerical stability at an acceptable 

computational time step. Therefore �a should be taken as (ua)
n+1/2

. Since the

expression for the drag force only depends on the properties of particle a, the 

unknowns at the new time step remain uncoupled from the neighboring particles. 
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Similarly, in the case of the Non-Newtonian formulation, Equations 16 and 17 

will be integrated as: 

b
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where the total stress  is the sum of the hydrostatic pressure and the viscous 

stress (Equation 18). 

4.2. Transition to the porous regions 

When a particle travels from a non-porous to a porous region, it will suddenly 

experience a high deceleration due to the drag force. To avoid the numerical 

instabilities that may arise from this situation, linear interpolation is used. The range 

corresponding to the representative smoothing length has been found to provide an 

adequate solution. 

4.3. Additional SPH features  

A well-known but undesirable feature of SPH is the tendency of the particle 

distribution of moving particles to become less homogeneous. A particle motion 

correction, introduced as XSPH by (Monaghan, 1994), but adapted to the apparent 

density , is defined by: 

b
ab

ba

ab
ba

a Wm
t

2

1d

d uu
u

r [26] 

The relative strength of this correction is given by  which is usually taken close 

to 0.3. Other relevant features of the PAM-CRASH/SPH method are planes of 

symmetry, a variable smoothing length and non-interacting regions in space. The 

option of mirror particles (Morris, 1997) allows to introduce mathematically exact 

planes of symmetry. Non-interacting regions are also defined by parts of space in 

which particles do not experience mutual interaction. This option allows to define 

inflow regions of particles moving under the influence of inertia and external forces 

only. Those options have been used for the applications discussed below. 
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5. Examples of applications

5.1. Isothermal isotropic filling 

Following is an example of mold filling simulation with isotropic permeability. A 

Newtonian fluid is injected in a complex 2D mold containing 50% of fiber 

reinforcement. The permeability of the fiber reinforcement is isotropic and constant 

in time (K=10
-10

 m
2
). The fluid viscosity is 0.001 Pa.s and the fluid inflow velocity is 

0.05 m.s
-1 

 at both entries. Comparisons were made on flow front positions and 

pressure distributions with the well-established FE-based commercial simulation tool 

PAM-RTM (ESI, France) to model the RTM process including filling and curing. 

For this case, only the filling part based on Darcy’s law, including flow front 

propagation has been used. Figure 2 shows the results of the simulations after 38 s (a 

and b) and 54 s (c and d) of injection. The comparison of the flow front positions 

using the SPH method (a and c) to the PAM-RTM ones (b and d) gives a good 

match. Minor differences in the filling sequence can be explained by the numerically 

enhanced compressibility used in the SPH simulations. Increasing the 

compressibility in SPH provides better agreement but at higher computational cost. 

In terms of injection pressure responses, the injection pressure obtained at the end of 

the injection is 0.07 MPa and 0.08 MPa from SPH and PAM-RTM simulations 

respectively. It is concluded that there is a quite reasonable agreement between the 

SPH method and PAM-RTM for isotropic porous media flow. 

Figure 2. Comparison of an isothermal isotropic RTM filling using the SPH method 
and PAM-RTM 
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Figure 3. Comparison of an isothermal anisotropic RTM filling using the SPH 
method and PAM-RTM 

5.2. Isothermal anisotropic filling 

Orthotropic effects of the porous medium are easily incorporated in the method 

by considering the permeability K, to be a tensor. A Newtonian fluid is injected in a 

rectangular 2D mold containing 50% of fiber reinforcement. The permeability of the 

upper half of the mold is isotropic (K=1.25 10
-9

 m
2
) while the bottom half is 

anisotropic (Kxx=10
-9

 m
2
, Kxy=Kyx=0.5 10

-9
 m

2 
and Kyy=4.0 10

-9
 m

2
). Note that the 

off-diagonal terms (Kxy and Kyx) in the permeability tensor represent the angle 

between the simulation domain axes and the main flow directions of the fiber 

reinforcements. The simulation results shown in Fig. 3 demonstrate that the SPH 

method (a) is as accurate as PAM-RTM (b), and that the circular (upper half 

domain) and ellipsoidal (lower half domain) flow front profiles are respectively 

representative of an isotropic and anisotropic filling. 

5.3. Hydro-mechanical coupling 

RTM can be a very attractive single-step process for sandwich structures 

manufacturing. The two fiber-reinforced skins and the impermeable core are laid up 

in a mold cavity. Hydro-mechanical coupling is present when the pressure field 

developing while saturating the fiber-reinforced skins leads to shifting or 

compression of the core (Wirth et al, 1998; Binetruy et al., 2003). For such process, 

the skins are modeled as porous regions in which Lagrangian SPH particles are 

evolving. Figure 4 shows particles and finite elements modeling resin and sandwich 

core respectively.  
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Figure 4. Snapshot of the local foam deformation when hydro-mechanical coupling 
is present 

The injection is performed at constant flow rate. The equations for the 

deformation and stresses in the foam are solved by the explicit finite element 

algorithm. The choice has been made to employ the first-order, iso-parametric and 

under-integrated hexahedron elements with hourglass control of PAM-CRASH. 

Although specific material models for various types of foam are available within this 

software, a linear-elastic material behavior with initial internal compressive stress is 

assumed since the compression remains limited. When the foam is deformed because 

of resin pressure built-up, more volume becomes available to the resin. Both porosity 

and permeability increase leading to a discontinuity in the pressure response. User-

defined subroutines have been developed to include porosity and permeability 

variations as a function of the local foam core displacement. This behavior simulated 

with the presented method agrees well with the physics and the experimental data. 

Full details, pressure and foam deformation results on hydro-mechanical coupling 

simulation using the mixed FE-SPH method are given in (Comas-Cardona et al., 
2005). 

5.4. Saturated permeability of fabrics 

In order to perform accurate LCM filling simulations, physical parameters such 

as fabric permeability are needed. It is well known that the experimental 

measurements of that fabric property is very delicate. Usually a fluid is injected at 

constant pressure (or constant flow rate) through several layers of fabric of cross 

section A and length L. Then pressure loss p and flow rate Q are measured, and the 

permeability K is calculated using Darcy’s law: 
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pA

QL
K [27] 

The simulation of flow through a periodic cell should provide a reliable solution 

and avoid that experimental procedure. Numerically, an injection at constant flow 

rate could be performed. Then the pressure loss can be measured and the 

permeability is also given by Equation 27. However, another solution would be to 

start from a filled cavity, apply periodic boundary conditions and drive the fluid 

through the unit cell by gravity. For such flows, Darcy’s law can be written as: 

g

u
K x

xx

ˆ
[28] 

where ûx is the steady state average fluid velocity in the flow direction. A validation 

of this technique has been done for a Newtonian fluid flow through a rectangular 

pipe. Results of the validation for two viscosities are given in Table 1 using a 

5 x 10 x 20 particle lattice. It can be seen that the theoretical permeability of a 

rectangular pipe (Kth) matches well the permeability obtained from the simulations 

(KSPH). Calculations on a full size fabric cell (Figure 5) is currently under 

investigation. 

Table 1. Flow through a rectangular pipe (Re is the Reynolds number) 

kg/m
3) (Pa.s) 

g 

(m/s
2
) 

KSPH (m
2
) 

Kth 

(m
2
) 

hû
Re

Sim 1 1 1 1 5.5 10
-2
 5.7 10

-2
 5.5 10

-2 

Sim 2 1 10 1 5.4 10
-2
 5.7 10

-2
 5.4 10

-3 

Figure 5. Snapshot of the filling of a periodic fabric unit cell 
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6. Discussion and conclusions

This paper presents the mathematics and numerical schemes for a unified

approach to LCM processes at various scales of discretization, using a mixed FE-

SPH approach. It has been demonstrated that the SPH method allows to simulate 

mold filling in both isotropic and anisotropic porous media, and viscous flow to 

determine permeability. In combination with Finite Elements, hydro-mechanical 

coupling during an RTM process may be simulated as well.  

Flow front and pressure levels obtained with the FE-SPH method may slightly 

differ from experiments because of the limited compressibility allowed in the 

solution (Equation 15). Therefore a compromise need to be found between reducing 

compressibility and obtaining results at a reasonable CPU. The level of these 

differences is, however, surpassed by the variations in the results due to the 

inaccuracies in the measured physical input parameters. For regular filling, these 

inaccuracies propagate in a linear manner, but with hydro-mechanical coupling, the 

variations in the results may become much bigger.  

The generic FE-SPH method is not expected to prevail for regular resin filling 

simulations since FDM or FEM filling tools are faster to use. However, when 

coupling is of interest, the SPH-FE method does provide an attractive alternative. A 

major advantage of this method with respect to PAM-RTM and similar software is 

that it allows the interactive coupling with the structural deformation leading to a 

completely different flow because of permeability variations and the formation of 

channels (preferential flow) in between the fiber reinforcement and the foam for 

instance. Therefore, the potential of the method relies on its Lagrangian formulation 

as well as its ability to interact with finite elements. Also, it would be of interest for 

mesoscopic and microscopic flows in unit fabric cells. More work could involve the 

hydro-mechanical coupling between the flow and the fibers, and the permeability 

measurement for sheared fabrics for instance. 

Future developments for a more powerful LCM simulation tool would be to 

incorporate the equation of energy to solve for non-isothermal processes. This 

original method provides a suitable solution for various coupled phenomena since 

the integration of many physical effects is rather straightforward in the SPH 

formulation and implementation. This feature is an important asset of the method 

Acknowledgements 

The authors would like to thank S.V. Lomov and I. Verpoest (KUL, Belgium) for 

providing the fabric unit cell. 

7. References

Achilleos E., Georgiou G., Hatzikiriakos S., “On numerical simulations of polymer extrusion 

instabilities”, Appl. Rheol., Vol. 12, 2002, pp. 88-104. 

15 | 17



Acheson J.A., Simacek P., Advani S.G., “The implications of fiber compaction and saturation 

on fully coupled VARTM simulation”, Comp. Part A, 2004, Vol. 35, pp. 159-169. 

Belov E.B., Lomov S.V., Verpoest I., Peters T., Roose D., Parnas R.S., Hoes K., Sol H., 

“Modelling of permeability of textile reinforcements: lattice Boltzmann method”, Comp. 
Sci. Tech., Vol. 64, No. 7-8, 2004, pp. 1069-1080. 

Binetruy C., Advani S.G., “Foam core deformation during liquid molding of sandwich: 

Modelling and experimental analysis”, J. Sand. Struc. Mat., Vol. 5, No. 4, 2003, pp. 351-

376. 

Cha H., Lee I., Choi H.Y., “Industrial applications of PAM-SHOCK using SPH”, In: PAM 
Users Conference in Korea HANPAM ’99, Seoul, November 15-16, 1999, pp. 253-265. 

Comas-Cardona S., Groenenboom P.H.L., Binetruy C., Krawczak P., “A generic mixed FE-

SPH method to address hydro-mechanical coupling in liquid composite moulding 

processes”, Comp. Part A, 2005, To be published. 

Ellero M., Kroeger M., Hess S., “Viscoelastic flows studied by Smoothed Particle Dynamic”, 

J. Non-Newtonian Fluid Mech., Vol. 105, 2002, pp. 35-51.

Farina A., Cocito P., Boretto G., “Flow in deformable porous media: Modelling and 

simulations of compression moulding processes”, Mathl. Comput. Modelling, Vol. 26, 

No. 11, 1997, pp. 1-15. 

Gingold R.A., Monaghan J.J., “Smoothed particle hydrodynamics: Theory and application to 

non-spherical stars”, Mon. Not. R. Astr. Soc., Vol. 181, 1977, pp. 375-389. 

Groenenboom P.H.L., Copper cylinder impact at high velocity: Numerical Simulation using 

SPH and Finite Elements in PAM-SHOCK, ESI internal report, 2002. 

Groenenboom P.H.L., “Numerical simulation of 2D and 3D hypervelocity impact using the 

SPH option in PAM-SHOCK”, Int. J. Impact Eng., Vol. 120, 1997, pp. 309-323. 

Haack C., On the use of a Particle Method for Analyis of Fluid-structure Interaction, Sulzer 

Innotech Report STR TB2000 014, June, 2000. 

Han K., Lee L.J., Liou M., “Fibre mat deformation in liquid composite molding, II: 

Modelling”, Polym. Comp., Vol. 14, No. 2, 1993, pp. 151-160. 

Kang M.K., Lee W.I.; Hahn H.T., “Analysis of vacuum bag resin transfer molding process”, 

Comp. Part A, Vol. 32, 2001, pp. 1553-1560. 

Libersky L.D., Petschek A.G., Smooth Particle Hydrodynamics with strength of materials, 

In: Trease H.E., Fritts M.J. and Crowley W.P. (Ed.), Advances in Free-Lagrange 

Methods, June 1990, Lecture Notes in Physics, Vol. 395, Spinger, New York, 1991, 

pp. 248. 

Lucy L.B., “A Numerical Approach to the Testing of Fusion Process”, Astron. J., Vol. 88, 

1977, pp. 1013-1024. 

McCabe C., Manke C.W., Cummings P.T., “Predicting the Newtonian viscosity of complex 

fluids from high strain rate molecular simulations”, J. Chem. Phys., Vol. 116, No. 8, 

2002, pp. 3339-3342. 

16 | 17



Meywerk M., Decker F., Cordes J., “Fluid-structure interaction in crash simulation”, Proc. 
Inst. Mech. Engrs., Vol. 214, 1999, pp. 669-673. 

Monaghan J.J., “Simulating free surface flows with SPH”, J. Comput. Phys., Vol. 110, 1994, 

pp. 399-406. 

Monaghan J.J., Gingold R.A., “Shock Simulation by the Particle Method SPH”, J. Comput. 
Phys., Vol. 52, 1983, pp. 374-389. 

Morris J.P., Fox P.J., Zhu Y., “Modelling low Reynolds number incompressible flows using 

SPH”, J. Comput. Phys., Vol. 136, 1997, pp. 214-226. 

PAM-CRASH Notes Manual, ESI-Group Trademark, 2001. 

Pentecote N., Kohlgrueber D., Kamoulakos A., “Simulation of water impact problems using 

the Smoothed Particle Hydrodynamics Method”, ICD’03 conference, Lille, France, 

December, 2003. 

Pillai K.M., “Governing equations for unsaturated flow through woven fibre mats, Part 1. 

Isothermal flows”, Comp. Part A, Vol. 33, No. 7, 2002, pp. 1007-1019. 

Sawley M., Cleary P., Ha J., “Modelling of Flow in Porous Media and Resin Transfer 

Moulding using Smoothed Particle Hydrodynamics”, 2nd Int’l Conference on CFD in 
Minerals and Process Industries, CSIRO, Melbourne, Australia, 6-8 Dec, 1999, pp. 473-

478. 

Shao S., Lo E.Y.M., “Incompressible SPH method for simulating Newtonian and non-

Newtonian flows with a free surface”, Adv Water Resources, Vol. 26, No. 7, 2003, 

pp. 787-800. 

Trochu F., Gauvin R., Gao D.M., “Numerical analysis of the Resin Transfer Molding process 

by the Finite Element Method”, Adv. Polym. Tech., Vol. 12, No. 4, 1993, pp. 329-342. 

Tucker III C.L., Dessenberger B., “Governing equations for flow and heat transfer in 

stationary fibre beds”, Advani SG ed., Flow and Rheology in Polymer Composite 
Manufacturing, Amsterdam, Elsevier, 1994, p. 257-323. 

Wirth S., Gauvin R., “Experimental analysis of core crushing and core movement in RTM 

and SRIM foam cored composite parts”, J. Reinf. Plast. Comp., Vol. 17, No. 11, 1998, 

pp. 964-988. 

17 | 17


