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Simulation of crashworthiness problems with improved

contact algorithms for implicit time integration

L. Noels1, L. Stainier2, J.-P. Ponthot�

University of Liège, LTAS-Milieux Continus and Thermomécanique, Chemin des Chevreuils 1, B-4000 Liège, Belgium 

When studying crashworthiness problems, contact simulation can be the source of a number of problems. A 
first one is the discontinuities in the normal evolution for a boundary discretized by finite elements. Another 
problem is the treatment of the contact forces that can introduce numerical energy in the system. In this 
paper, we propose to combine a method of discontinuity smoothing with the energy–momentum consistent 
scheme that recently appeared in the literature.

Keywords: Energy conserving; Momentum conserving; Dynamics; Contact; Finite-elements method

1. Introduction

When studying impact problems, time integration of the equations of evolution occurs in the

non-linear range. An important source of non-linearity results from the bodies contact

interactions. Treatment of the contact can be achieved with a penalty method, with an augmented

Lagrangian method or with a Lagrangian method [1,2]. For each method, two problems must be

carefully taken into account: the first one results from the finite-elements discretization that leads
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to discontinuous normal evolution, and the second one results from the fact that a non-linearity

can lead to instabilities of the time integration algorithm.

The first problem can be resolved with some numerical techniques such as gap smoothing

based on a signed function as proposed by Belytschko et al. [3]. Another technique is to

consider a segment-to-segment approach (and not a node-on-segment approach) as proposed by

Puso and Laursen [4]. Nevertheless, Graillet and Ponthot [5] proposed a node-on-segment

approach that consists in adapting the normal of the surface, leading to a continuous

discretization. This method has the advantage of being easy to implement and to lead to an

efficient algorithm.

The second problem is solved thanks to the recent development of the energy momentum

conserving algorithm (EMCA) initially proposed by Simo and Tarnow [6]. It consists in a mid-

point scheme with an adequate evaluation of the forces leading to a stable algorithm in the non-

linear range. This adequate evaluation of the contact forces was given for a penalty method by

Armero and Petöcz [7,8] to simulate frictional and frictionless contact. This method leads to

penetration of the surface (as in a classical penalty method) and therefore to an accumulation of

energy during the contact interaction. But the work of the contact forces is equal to the dissipation

resulting from the friction after the contact is released. Laursen and Chawla [9,10] have developed

penalty and augmented Lagrangian methods leading to unconditional dissipation of the energy.

Recently, Laursen and Love [11,12] have extended these methods to geometric admissibility by the

use of velocity corrections.

In this paper, we propose to rewrite the contact formulation proposed by Armero and Petöcz

[7,8], taking into account the adaptation of the normal that leads to a continuous normal

evolution. Moreover, the contact formulation is rewritten to be able to consider a 3-dimensional-

boundary composed of Coons patches. To achieve this goal, the formulations that depend on the

curvilinear coordinates have been rewritten in such a way that they depend only on the nodes

projections and no more on the coordinates. This method allows one to consider frictional forces

when the slave node moves from one patch to another.

The goal of this paper is to present a robust and accurate method that leads to an implicit time

integration algorithm able to deal with crashworthiness problems. This kind of problems is

generally solved with an explicit algorithm. Nevertheless, we think that such problems can be

more accurately solved with an implicit scheme without loss of robustness or efficiency [13].

Moreover we are interested in combining both the implicit and explicit scheme while dealing with

time integration. Such a combination can reduce the computational time without loss of accuracy

[13–15]. Nevertheless it requires an efficient implicit time integration method. The purpose of this

paper is to study the treatment of the contact interactions to provide such a robust time

integration algorithm. In this paper we will study crashworthiness problems with an implicit

method to demonstrate the robustness of the contact treatment in this method.

In Section 2 we will present some preliminaries on continuous dynamics, finite-elements

discretization and time integration. Next, in Section 3, we will present the classical contact

formulation and the method proposed by Graillet in order to get a continuous normal.

Adaptation of the Armero and Petöcz [7,8] formulation, with the continuous normal method, that

will lead to verify the conservation laws will be presented in Section 4. Finally, in Section 5,

numerical examples will be presented to illustrate the efficiency, the robustness and the accuracy

of the method.

2



2. Preliminaries

After having briefly recalled the notations used in this paper, we will establish the continuous

dynamics conservation laws. Next, we will introduce a finite-elements discretization and the

EMCA. Readers interested in the basics of time integration algorithms can refer to classical books

[16,17].

2.1. Notations

Let V
1;V2 � R

3 be the manifold of the points defining two bodies and S
1;S2 � R

3 be the

manifold of their respective boundary (Fig. 1). Two configurations are under consideration: the

initial configuration that is referred to with a subscript 0, and the current configuration at time t.

Each boundary S
i is decomposed into two parts: the first one, S

i
~x, is the part where the

displacements are known and the second one, Si
~T
, is the part where the traction is imposed. Let ~x

be the current positions and ~x0 be the initial positions. Therefore, the two-point gradient of

deformation tensor is defined by

F �
q~x

q~x0
with f � F�1 and J � detF. (1)

Let r0: V0 ! Rþ be the initial density. Let Xi be the manifold of the admissible positions for the

body i:

X
i � f~x : Vi

0 ! R
3 j ½J40 and ~xj

S
i
~x
¼ ~̄x� 8~x0 2 V

i
0g (2)

with ~̄x the known positions. Let t be the current time and let T ¼ ½0; tf � be the integration interval.

Therefore, the motion of the body is defined by 8i ¼ 1; 2 : t 2 T ! ~xðtÞ 2 X
i. During this motion,

the body is subject to specific load ~bðtÞ : Vi
0 � T ! R

3. In this paper, we assume this load is equal

to zero. Let R be the Cauchy stress tensor. For each body i, boundary pressures ~TSiðtÞ :

S
i
~T 0

� T ! R
3 lead to the condition ~TSiðtÞ ¼ RðtÞ~nðtÞ with~n the outward unit normal to S

i. Let us

assume that the external forces result only from the contact interaction. Therefore, it leads from

S
2
(t)

S
1
(t)

n
t1t2

u =cst2

u =cst1

y x( ,t)

V
2
(t)

V
1
(t)

x(t)

Fig. 1. Definition of the bodies interaction.
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the geometrical admissibility and from the action–reaction principle to

S
1
~T
ðtÞ ¼ S

2
~T
ðtÞ and ~TS1ð~x0; tÞ ¼ �~TS2ð~x0; tÞ 8~x0 2 S

1
~T
. (3)

The body is now decomposed into finite elements thanks to shape functions jxi : Vi
0 ! R with

xi 2 ½1;N i� (N i the total number of nodes of body i ¼ 1; 2), and with jxi ð~x
mj
0 Þ ¼ d

mj
xi

(d is the

Kronecker symbol). It leads for each node xi 2 ½1;N i� and for each initial position ~x0 2 V
i
0 to

~xð~x0Þ ¼ jxi ð~x0Þ~x
xi ; _~xð~x0Þ ¼ jxi ð~x0Þ _~x

xi
and €~xð~x0Þ ¼ jxi ð~x0Þ €~x

xi
, (4)

where Einstein’s notations are used. Let ~v be an admissible virtual displacement defined by the

manifold for body i:

D
i � f~v : Vi

0 ! R
3 j ½~vj

S
i
~x
¼ 0; ~vð~x0; 0Þ ¼ 0; ~vð~x0; tf Þ ¼ 0 8~x0 2 V

i
0�g. (5)

Let Fi � D
i be the manifold of admissible virtual displacements d~x that can be decomposed such

as (4).

2.2. Continuum dynamics

The following quasi-variational principle (principle of virtual work of forces) must hold

8d~x 2 F
i [18, p. 412]:

Z tf

0

X

i¼1;2

Z

V
i

r €~x � d~xþ R
T
:
qd~x

q~x

� �

dVi �

Z

S
i
~T

½~TSi � d~x�dSi

( )

dt ¼ 0. (6)

Integrating by parts, one gets

X

i¼1;2

Z

V
i

fr €~x � d~xgdVi

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�dK

¼
X

i¼1;2

Z

S
i
~T

f~TSi � d~xgdSi

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�dW cont

�
X

i¼1;2

Z

V
i

R
T
:
qd~x

q~x

� �

dVi

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�dW int

8t 2 T (7)

with dW int, dW cont and dK respectively the virtual work of internal forces, the virtual work of

contact forces and the virtual work of inertia forces. This principle leads to the dynamics

conservation laws.

2.2.1. Conservation of linear momentum

Let ~L be the linear momentum defined by

~L �
X

i¼1;2

Z

V
i

fr _~xgdVi ¼
X

i¼1;2

Z

V
i
0

fr0
_~xgdVi

0, (8)

where the conservation of mass ðrdV ¼ r0 dV0Þ is used. Using Eq. (3) and assuming pure

Neumann boundary conditions (i.e. S~x ¼ ;), if d~x 2 F
i is taken constant, Eq. (7) leads to the

conservation of linear momentum

_~L ¼

Z

S
1
~T

f~TS1 � ~TS2gdS1 ¼ 0 8t 2 T. (9)
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2.2.2. Conservation of angular momentum

Let ~J be the angular momentum defined by

~J �
X

i¼1;2

Z

V
i

fr~x ^ _~xgdVi ¼
X

i¼1;2

Z

V
i
0

fr0~x ^ _~xgdVi
0. (10)

Using Eq. (3), assuming pure Neumann boundary conditions (i.e. S~x ¼ ;), and taking d~x ¼~Z ^ ~x
with ~Z constant, since R is symmetric, since ~Z is an arbitrary constant, and since the points

of the two surfaces have the same position ~x, Eq. (7) leads to the conservation of angular

momentum

_~J ¼

Z

S
1
~T

f~x ^ ½~TS1 � ~TS2 �gdS1 ¼ 0 8t 2 T. (11)

2.2.3. Conservation of energy

Let K, W int and W cont respectively be the kinetic energy, the internal forces work and the

contact forces work, with

K �
X

i¼1;2

Z

V
i

1

2
r _~x

2
� �

dVi ¼
X

i¼1;2

Z

V
i
0

1

2
r0

_~x
2

� �

dVi
0,

_W int �
X

i¼1;2

Z

V
i

fRT
: ½ _Ff�gdVi,

_W cont �
X

i¼1;2

Z

S
i
~T

f~TSi � _~xgdSi, ð12Þ

where the conservation of mass is used. Let us note that _W conta0 since the points on the two

surfaces do not necessarily have the same velocity. Let us split the contact forces ~TSi into a normal

force tN~n (with tN : S
i
0 � T ! R

þ the pressure) and a friction force ~T . Since the normal velocities

are the same for the two surfaces, it yields

_W cont ¼
X

i¼1;2

Z

S
i
~T

ftN~n � _~xgdS
i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ
X

i¼1;2

Z

S
i
~T

f~T � _~xgdSi

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�� _Dfr

(13)

with _Dfr40 the frictional dissipation. Let the internal forces power be decomposed into

a reversible part _U int and an irreversible part _DintX0 (plastic dissipation, ...) with _W int ¼
_U int þ _Dint. Let E be the system energy with E � K þU int, where K is the kinetic energy.

Therefore, assuming pure Neumann boundary conditions (i.e. S~x ¼ ;), if d~x ¼ _~x and using

Eqs. (12) and (13), Eq. (7) leads to the first thermodynamics principle

_E ¼ � _Dfr � _Dint 8t 2 T. (14)
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2.3. Finite-elements decomposition

Thanks to Eq. (4), the terms of Eq. (7) can be rewritten such that

dK ¼
X

i¼1;2

Z

V
i
0

fr0j
xijmigdVi

0½
€~x �mi � d~xxi ¼

X

i¼1;2

Mximi ½ €~x �mi � d~xxi ,

dW cont ¼
X

i¼1;2

Z

S
i
~T

f~TSijxigdSi � d~xxi ¼
X

i¼1;2

½~F cont�
xi � d~xxi ,

dW int ¼
X

i¼1;2

Z

V
i
0

R
T qjxi

q~x

� �T

J

( )

dVi
0 � d~x

xi ¼ ~F
xi

int � d~x
xi , (15)

whereMximi is the mass related to nodes xi and mi. Since d~x 2 F
i is an arbitrary vector, Eq. (7) leads

to the balance equation

Mximi ½ €~x�mi ¼ ½~F cont � ~F int�
xi 8t 2 T 8i ¼ 1; 2. (16)

To be able to integrate this relation in time, T is decomposed into some intervals ½tn; tnþ1� such

that T ¼
Sn¼nf

n¼0 ½t
n; tnþ1�. Let Dt ¼ tnþ1 � tn be the time step size. Superscripts n and nþ 1 will refer

to configurations in time tn and tnþ1. To be consistent, the time integration must verify Eqs. (9),

(11) and (14) (conservation equations).

2.4. Time integration

Once the balance Eq. (16) is established for any time t, this relation must be integrated in time.

To achieve this goal Simo and Tarnow have developed the EMCA method [6]. In this section, to

ease notations, we omit the subscript i on the node number xi. Relations between positions,

velocities and accelerations at node x becomes

½~xnþ1�x ¼ ½~xn�x þ
Dt

2
½ _~x

nþ1
�x þ

Dt

2
½ _~x

n
�x,

½ _~x
nþ1

�x ¼ ½ _~x
n
�x þ

Dt

2
½ €~x

nþ1
�x þ

Dt

2
½ €~x

n
�x. (17)

These relations are second-order approximations in Dt. If ~F
nþ1=2

int is a second-order approximation

of ~F intðt
nþ1=2Þ, the balance Eq. (16) is discretized into a second-order approximation by

1
2
Mxm½ €~x

nþ1
þ €~x

n
�m ¼ ½~F

nþ1=2

cont � ~F
nþ1=2

int �x. (18)

The internal forces (~F
nþ1=2

int ) and contact forces (~F
nþ1=2

cont ) have to be designed to verify the following

conservation laws.
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2.4.1. Conservation of linear momentum

A sum on x in Eq. (18) and the use of Eqs. (17) leads to

X

x

Mxm½ _~x
nþ1

�m

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

~L
nþ1

�
X

x

Mxm½ _~x
n
�m

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

~L
n

¼ Dt
X

x

½~F
nþ1=2

cont � ~F
nþ1=2

int �x, (19)

where the continuous linear momentum ~L defined by Eq. (8) is discretized thanks to Eq. (4) into
~L ¼

P

xM
xm _~x

m
. Eq. (19) is a discretization of Eq. (9) if

X

x

½~F
nþ1=2

int �x ¼ 0 and
X

x

½~F
nþ1=2

cont �x ¼ 0. (20)

2.4.2. Conservation of angular momentum

Thanks to Eqs. (17), the vector product between ~xnþ1=2 ¼ ð~xn þ ~xnþ1Þ=2 and Eq. (18) leads to

1

Dt
Mxm½~xnþ1�x ^ ½ _~x

nþ1
�m

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~J
nþ1

�
1

Dt
Mxm½~xn�x ^ ½ _~x

n
�m

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

~J
n

¼ ½~xnþ1=2�x ^ ½~F
nþ1=2

cont � ~F
nþ1=2

int �x, (21)

where the continuous angular momentum ~J defined by Eq. (10) is discretized thanks to Eq. (4)

into ~J ¼ Mxm~xx ^ _~x
m
. Therefore, Eq. (21) is a discretization of Eq. (10) if

~xnþ1 þ ~xn

2

" #x

^ ½~F
nþ1=2

int �x ¼ 0 and
~xnþ1 þ ~xn

2

" #x

^ ½~F
nþ1=2

cont �x ¼ 0. (22)

2.4.3. Conservation of energy

Thanks to Eqs. (17), the dot product between _~x
nþ1=2

¼ ð _~x
n
þ _~x

nþ1
Þ=2 and Eq. (18) leads to

Mxm

2
½ _~x

nþ1
�x � ½ _~x

nþ1
�m

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Knþ1

�
Mxm

2
½ _~x

n
�x � ½ _~x

n
�m

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Kn

¼ ½~xnþ1 � ~xn�x � ½~F
nþ1=2

cont � ~F
nþ1=2

int �x, (23)

where the continuous kinetic energy K defined in Eq. (12) is discretized thanks to Eq. (4) into

K ¼ 1
2
Mxm _~x

x
� _~x

m
. Let E be the discretized energy, let U int be the discretized internal energy, let

W int be the discretized work of the internal forces, let DintX0 be the discretized internal

dissipation during the step and let DfrX0 be the discretized friction dissipation during the step.

Therefore Eq. (14) is discretized into

Enþ1 � En ¼ �Dfr � Dint. (24)

If this latest expression is compared with Eq. (23), the internal forces must lead to

½~F
nþ1=2

int �x � ½~xnþ1 � ~xn�x ¼ Unþ1
int �Un

int þ Dint (25)

and the contact forces must lead to

½~F
nþ1=2

cont �x � ½~xnþ1 � ~xn�x ¼ W nþ1
cont �W n

cont � Dfr. (26)
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In this latest expression, we have introducedW cont, which is tolerated to be lower than zero during

the persistent contact but which must be equal to zero when the contact is released. This

methodology was proposed by Armero and Petöcz [7].

The problem of the EMCA algorithm is to find a consistent expression of the internal/contact

forces that verifies the conservation conditions. A formulation of the internal forces for

hyperelastic models was given by Gonzalez [19] and extended to dynamic finite deformation

plasticity, with a hyperelastic formulation, by Meng and Laursen [20]. In a previous work [21,22],

we have developed a new expression of the internal forces valid for an elasto-plastic hypoelastic

model, which verifies these conditions. The goal of this paper is to establish the expression of the

contact forces that verify Eqs. (20), (22) and (26).

2.4.4. Numerical dissipation

When the number of degrees of freedom increases, the numerical modes of high frequency can

lead to divergence of the time integration. Therefore, some controlled numerical dissipation can

be beneficial. This was first introduced in this EMCA algorithm by Armero and Romero [23,24],

leading to the energy dissipative momentum conserving algorithm (EDMC). In this EDMC

scheme, Eqs. (17) and (18) are rewritten as

½~xnþ1�x ¼ ½~xn�x þ
Dt

2
½ _~x

nþ1
�x þ

Dt

2
½ _~x

n
�x þ Dt½~G

nþ1=2

diss �x,

½ _~x
nþ1

�x ¼ ½ _~x
n
�x þ

Dt

2
½ €~x

nþ1
�x þ

Dt

2
½ €~x

n
�x,

1
2
Mxm½ €~x

nþ1
þ €~x

n
�m ¼ ½~F

nþ1=2

cont � ~F
nþ1=2

int � ~F
nþ1=2

diss �x ð27Þ

with ~G
nþ1=2

diss and ~F
nþ1=2

diss respectively the dissipation velocities and the dissipation forces.

Proceeding as in Sections 2.4.1–2.4.3, the dissipation forces have to verify

X

x

½~F
nþ1=2

diss �x ¼ 0 and
~xnþ1 þ ~xn

2

" #x

^ ½~F
nþ1=2

diss �x ¼ 0 (28)

to verify the conservation of the linear and angular momentum, and have to verify

½~F
nþ1=2

diss �x � ½~xnþ1 � ~xn�x ¼ DFX0 (29)

to dissipate numerically the energy DF (part of the energy dissipated by the dissipation forces).

The dissipation velocities have to verify

Mxm½~G
nþ1=2

diss �x ^
_~x
nþ1

þ _~x
n

2

" #m

¼ 0 (30)

to verify conservation of the angular momentum (the linear momentum does not depend on the

dissipation velocities), and have to verify

Mxm½ _~x
nþ1

� _~x
n
�m � ½~G

nþ1=2

diss �x ¼ DGX0 (31)

to dissipate numerically the energy DG (part of the energy dissipated by the dissipation velocities).

Let us note that both vectors have to be simultaneously considered to avoid bifurcation in the

8



spectral matrix analysis [23,24]. Depending on the form of these vectors, the EDMC scheme can

be first-order (EDMC-1) or second-order (EDMC-2) accurate. For first-order accurate schemes,

the dissipation velocities can be expressed at node x as [23] (no sum on x)

½~G
nþ1=2

diss �x ¼ w
k½ _~x

nþ1
�xk � k½ _~x

n
�xk

k½ _~x
nþ1

�xk þ k½ _~x
n
�xk

½ _~x
nþ1

þ _~x
n
�x

2
, (32)

where w is a parameter that controls the amount of numerical dissipation. Let us assume that in

the linear range (small displacement) the internal forces are evaluated thanks to a stiffness second-

order tensor K. Then the internal forces are reduced to

½~F
nþ1=2

int �x ¼ Kxm ½~x
nþ1 þ ~xn�m

2
. (33)

Therefore, to avoid a bifurcation in the spectral radius analysis [23,24], the dissipation forces have

to reduce themselves, in the linear range, to

½~F
nþ1=2

diss �x ¼ wKxm ½~x
nþ1 � ~xn�m

2
. (34)

In [25], we have proposed an expression of the dissipation forces for hypoelastic models subjected

to plastic deformations. A hypoelastic formulation computes the stress at the actual configuration

from a stress increment. This stress increment takes into account both the elastic part and the

plastic part of the deformations. For more details on this model we refer to Ponthot [26]. In this

paper we will present an expression of the dissipation forces related to the contact forces.

3. Formulation of the node-on-segment contact

Let us consider that the nodes on the surface S1 are the slave nodes and that surface S2 is the

master surface. By inverting this convention at each step, one gets a double pass algorithm.

Surface S2 can be represented by a two-component vector u : S
2
0 � T ! R

2 (the components are

u1 and u2). Therefore, ones gets ~yðu; tÞ : S
2
0 � T ! X

2 with X
2 defined by Eq. (2). Let us consider

a point ~x0 2 V
1
0 associated with a node ~xx1 ¼ ~xð~x0; tÞ. Let us define ~yð~x0; tÞ the closest point

projection of ~xx1 on the master surface (Fig. 1). Using the discretization of the master surface

~yð~x0; tÞ ¼ jx2ðuð~x0; tÞÞ~x
x2 , it yields

q~xð~x0; tÞ

qt
¼ _~x

x1
,

q~yð~x0; tÞ

qt
¼~taðuð~x0; tÞÞ

quað~x0; tÞ

qt
þ jx2ðuð~x0; tÞÞ _~x

x2
, ð35Þ

where ~taðuð~x0; tÞÞ ¼ q~yðuð~x0; tÞÞ=qua ¼ ðqjx2=quaÞ~x
x2 is the tangent vector of the surface.

3.1. Derivation of the gap

In this section we derive the normal gap and the tangential gap with respect to ~x0 constant

(material derivation) [27]. These derivations will be necessary to establish the contact forces

9



formulation. Let us define gð~x0; tÞ : S
1
0 � T ! R the normal gap such that

gð~x0; tÞ ¼ ½~xð~x0; tÞ �~yð~x0; tÞ� �~nð~x0; tÞ. (36)

The normal has a unit norm leading to ~nð~x0; tÞ � q~nð~x0; tÞ=qt ¼ 0. Since the normal is perpendicular

to the tangent plane, it leads to ~taðuð~x0; tÞÞ
qua
qt

�~nð~x0; tÞ ¼ 0. Let us note that the normal gap is

not equal to zero during the contact since we tolerate a penetration. Therefore Eqs. (35) and (36)

lead to

qgð~x0; tÞ

qt
¼ ½ _~x

x1
� jx2ðuð~x0; tÞÞ _~x

x2
� �~nð~x0; tÞ. (37)

Now let us derive the projection of the gap on the tangents. Since the projection is orthogonal,

one gets

½~xð~x0; tÞ �~yð~x0; tÞ� � tað~x0; tÞ ¼ 0 with a ¼ 1; 2. (38)

This expression is derived, using Eq. (35), into [27]

½ _~x
x1
� jx2 _~x

x2
� �~ta þ g~n �~ta;t

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�Ba

¼ ½~tb �~ta � g~n �~ta;b�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

�Aab

_ub (39)

with ~ta;t ¼ ðqjx2=quaÞ _~x
x2

and ~ta;b ¼ ðq2jx2=qubquaÞ~x
x2 .

3.2. Expression of the contact forces

The pressure at node x1 is expressed by tNð~x
x1

0 ; tÞ : S
1
0 � T ! R

þ. The Kuhn–Tucker conditions

are expressed by

gð~x0; tÞX0 and tNð~x0; tÞX0 and tNð~x0; tÞgð~x; tÞ ¼ 0. (40)

The tangential pressure is computed in a dual base ~td1 , ~td2 of ~t1, ~t2 [27] defined by

~tda � ½~ta �~tb�
�1~tb with ~tda �~tb ¼ dab, (41)

where ½~ta �~tb�
�1 represents the component ab of the inverse of the 2–2 matrix~ta �~tb. Therefore, let

~tT1
ð~x0; tÞ : S

1
0 � T ! R be the friction pressure along ~td1 and let ~tT2

ð~x0; tÞ : S
1
0 � T ! R be the

friction pressure along ~td2 . The friction pressure ~T is therefore computed from

~T � tTa
~tda with k~Tk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tTa
tTb

½~ta �~tb�
�1

q

. (42)

Let us define ~vT the slip velocity, gc the slip rate, and Fc � k~Tk � mctN the Coulomb criterion

(mc is the friction coefficient). Therefore the friction conditions are

~vT ¼ _ub~tb ¼ �gc
~T

k~Tk
and Fcp0 and gcX0 and gcFc ¼ 0. (43)

Using Eqs. (3) and (35), dW cont defined in Eq. (7) can be rewritten as

dW cont ¼

Z

S
1ðtÞ

f½tN~nþ ~T � � ½d~xx1 � jdð~x0; tÞd~x
x2 �gdS1ðtÞ. (44)

10



Using Eqs. (37) and (39), with g ¼ 0 (that corresponds to verify the Kuhn–Tucker relations

defined by Eq. (40)), Eq. (44) leads to

dW cont ¼

Z

S
1ðtÞ

ftNdgþ tTa
duagdS

1ðtÞ. (45)

Now using Eqs. (37) and (39), with ga0 (that corresponds to the actual situation), allows us to

rewrite Eq. (45) into

dW cont ¼

Z

S
1ðtÞ

ftN~n � ½d~x
x1 � jx2ð~xx1Þd~xx2 �gdS1ðtÞ

þ

Z

S
1ðtÞ

ftTa
A�1

ba ½d~x
x1 � jx2ð~xx1Þd~xx2 � �~tbgdS

1ðtÞ

þ

Z

S
1ðtÞ

tTa
A�1

ba g~n �
qjx2

qub
ð~xx1Þd~xx2

� �

dS1ðtÞ. ð46Þ

Comparing this expression with Eq. (15) leads to the contact forces

~F
x1

cont ¼ tN~nðx
x1Þ þ tTa

A�1
ba
~tbðx

x1Þ,

~F
x2

cont ¼ �tNj
x2ðxx1Þ~nðxx1Þ � tTa

A�1
ba j

x2ðxx1Þ~tbðx
x1Þ � tTa

A�1
ba ð~x

x1Þgð~xx1Þ~nð~xx1Þ
qjx2

qub
ð~xx1Þ. ð47Þ

In this expression, we have integrated the surface in the pressure (i.e. tN
R

S
1ftNgdS

1 and

tTa

R

S
1ftTa

gdS1). Therefore, tN and tTa
correspond to the forces and not to the pressure. This

expression of the contact forces will lead to the conservation of the angular momentum (thanks to

the term g~n) and has been established by Armero and Petöcz [8]. Finally, using Eq. (43), the

frictional dissipation defined in Eq. (13) can be deduced from Eq. (45), leading to

_Dfr ¼ �tTa
_ua ¼ �tTa

dab _ub ¼ �~T �~vT ¼ mctNgc40. (48)

Now we will adapt the contact forces (47) to a surface with normal discontinuity.

3.3. Discontinuous normal algorithm

When studying the contact between bodies discretized into finite elements, the boundary of each

body is composed of bilinear Coons patches (3D elements with linear shape functions) or of linear

segments (2D elements with linear shape functions). Therefore, the normal is no longer

continuous at the interface between two patches or segments. In this section, we will extend the

method proposed by Graillet [5] to solve this problem. This method will lead to a continuous

normal ~ncð~xx1 ; tÞ for each slave node x1, and will determine a master entity (segment or patch)

number no as well as a reduced master continuous coordinates uc in order to uniquely determine a

projection for each slave node on the master surface. These two master values have to be

considered to deduce the projection point ~yðno; uc; tÞ. We will analyze three possible situations: the

slave node projects itself out of all the entities (Fig. 2a), the slave node projects itself on one entity

(Fig. 2b) or the slave node projects itself on more than one entity (Fig. 2c).
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3.3.1. Case 1: projections are out of the entities

Let us suppose a 2D problem with a projection of slave node ~xx1 on the two segments no� 1

and no, but with these two projections out of the effective part of the segments (Fig. 2a). Let ~yðCÞ

be the intersection of these two segments. Normal is continuous with a slave node displacement

for

~yðno; uc; tÞ ¼ ~yðC; tÞ and ~ncð~xx1 ; tÞ ¼
~yðno; uc; tÞ � ~xx1

k~yðno; uc; tÞ � ~xx1k
. (49)

For the 3D problem, Eqs. (49) are taken in the plane that includes the slave node and that is

perpendicular to the intersection edge of the two patches.

3.3.2. Case 2: there is one projection

If there is only one projection on entity no for coordinates u (Fig. 2b), we directly have

~yðno; uc; tÞ ¼ ~yðno; u; tÞ and ~ncð~xx1 ; tÞ ¼
~yðno; uc; tÞ � ~xx1

k~yðno; uc; tÞ � ~xx1k
. (50)

3.3.3. Case 3: there are two or more projections

If there are more than two projections, let us consider the two closest projections. Let us

suppose a 2D problem with a projection of slave node ~xx1 on the two segments no� 1 and no

(Fig. 2c). Let ac be the angle defined in Fig. 2c. If this angle is larger than or equal to 90� (limit

configuration illustrated in Fig. 3a), the slave node has always two projections. But, if we want the

normal to evolve continuously, the slave node has to evolve from a simple projection

configuration to a double projection configuration. Then, if the node is closer from segment

no� 1 or no than from the bisecting lines (gray surface on Fig. 3a), we consider that the contact

occurs with this segment and the formulation is identical to Eq. (50) (assuming the segment

number is no). If the slave node is closer from the bisecting line (hashed zone on Fig. 3a), the

normal must be transformed to be continuous. The method proposed by Graillet [5] is the

following. Let us consider Fig. 3b, where the angle ac (assumed greater than 60� as we will explain

later) is represented and the complementary angle is decomposed into 4 angles of equal amplitude

S
2
( )t

V
2
( )t V

2
( )t

S
2
( )t

n (t)
c

t (t)1
c

y(no,u,t )

y(C)=y(no,u ,t)
c

x
ξ1

y(no-1,u,t)

(a) (b)

x
ξ1

y(no,u,t)

α c

y(no-1,u,t)
V

2
( )t

S
2
( )t

t (t)1
c

n (t)
c

y(no,u,t)

x
ξ1

(c)

Fig. 2. Projection configurations in 2 dimensions: (a) projections are out of the entities; (b) there is one projection;

(c) there are two projections.
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ð180� � acÞ=4. Let us assume that slave node ~xx1 is closer from segment no than from segment

no� 1 (i.e. it is between lines b and b0). The two projections are ~yðno� 1; u; tÞ and

~yðno; u; tÞ.Therefore, projection ~yðno� 1; u; tÞ is moved to ~yðno� 1; u0; tÞ such that the normal

becomes continuous with

~ncð~xx1 ; tÞ ¼
~yðno� 1; u0; tÞ �~yðno; u; tÞ

k~yðno; u; tÞ �~yðno� 1; u0; tÞk
^~en,

~yðno; uc; tÞ ¼ ½~xþ a~ncð~xx1 ; tÞ� \ S
2ðtÞ ð51Þ

with~en the unit vector perpendicular to the plane and a a scalar that is numerically computed (in a

similar way a projection is computed) to reach the intersection. Now we have to determine

~yðno� 1; u0; tÞ such that ~nc will have a continuous evolution. Let ~yðC; tÞ be the intersection of the

two segments as defined on Fig. 3b. Therefore, the system of equations to be solved is

~yðno� 1; u0; tÞ ¼ ~yðC; tÞ þ a0L0 ~yðno� 1; u; tÞ �~yðC; tÞ

k~yðno� 1; u; tÞ �~yðC; tÞk
,

L0 ¼ k~yðno; u; tÞ �~yðC; tÞk, ð52Þ

where a0 is determined to lead to a normal continuous evolution. To achieve that goal, if the slave

node evolves from line b to line b0 (Fig. 3b), the normal has to evolve from a direction parallel to b

to a direction perpendicular to segment no. Then, point ~yðno� 1; u0; tÞ has to evolve from ~yðno�
1; u; tÞ to ~yðC; tÞ and, actually, a0 has to evolve from unity to zero, yielding

a0 ¼
k~yðno; u; tÞ � ~xk=L0 � tanððp� acÞ=4Þ

tanððp� acÞ=2Þ � tanððp� acÞ=4Þ
with tan

p� ac

2

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos ac

1� cos ac

s

and

tan
p� ac

4

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ cos acÞ=2
p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ cos acÞ=2
p

s

. ð53Þ

S
2
( )t

V
2
( )t

b
b’

y(no,u,t)

(b)

S
2

V
2

(a)

22.5°

22.5°

22.5°
22.5°

αc=90°

y(C,t)

[180- ]/4 c

y(no-1,u’,t)

en

αc >60˚

y(no-1,u,t)

x
ξ1

t (t)1
c

n (t)
c

y(no,u ,t)c

Fig. 3. Description of the two-projection configuration (2 dimensions): (a) limit configuration ac ¼ 90�;

(b) configuration for an angle larger than 60�.
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Although the above formula is correct for all angles ac, we have assumed that ac is larger than 60�.

In fact, for such a limit configuration represented at Fig. 4a, if there are two projections, the slave

node is always closer from bisecting line b than from the segments. Therefore, the methodology

that gives a continuous normal could be simplified by taking a normal to the line that joins the

two projections as represented in Fig. 4b. The intersection between the surface and the line

directed along the normal and originating from the slave node gives the actual projection point.

With ~en the vector perpendicular to the plane and with a a scalar numerically computed (in a

similar way a projection is computed), assuming that the intersection occurs with segment no, one

gets

~ncð~xx1 ; tÞ ¼
~yðno� 1; u; tÞ �~yðno; u; tÞ

k~yðno; u; tÞ �~yðno� 1; u; tÞk
^~en,

~yðno; uc; tÞ ¼ ½~xþ a~ncð~xx1 ; tÞ� \ S
2ðtÞ. ð54Þ

When studying a 3D problem, all the formulas developed remain correct when applied in the

plane including ~xx1 , ~yðno� 1; u; tÞ and ~yðno; u; tÞ. Moreover, in Figs. 2a, 3b and 4b, we have

represented the continuous tangent tc1 associated with the continuous normal nc.

4. Consistent contact forces formulation

In this section we propose an original implementation of the method proposed by Armero and

Petöcz [7,8] that leads to verify the conservation laws. Our implementation allows us to take into

account the discontinuity of the normal. Let us work in configuration nþ 1
2
, which is obtained

S
2
( )t

V
2
( )t

S
2

V
2

(a)

α c=60˚
30°

30°

30° 30°

(b)

en

α c <60˚

y(no-1,u,t)

y (no,u,t)
n+1/2

x
ξ1

t (t)1
c

n (t)
c

y(no,u ,t)
c

Fig. 4. Description of the two-projection configuration (2 dimensions): (a) limit configuration ac ¼ 60�; (b)

configuration for an angle larger than 60�.
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with the positions ~xnþ1=2 ¼ ð~xn þ ~xnþ1Þ=2. The algorithm developed in Section 3.3, and applied in

this configuration, leads to the continuous normal ~ncð~xx1 ; tnþ1=2Þ for each slave node x1 and to a

unique projection on a segment number no and with coordinates ucnþ1=2. Moreover, since the

3-dimensional boundary is composed of Coons patches, to be able to consider frictional forces

when the slave node moves from one patch to another, the contact formulation is modified. We

rewrite the formulations that depend on the curvilinear coordinates, such that the formulations

depend only on the nodes projections. For a complex surface, it is always easier to compute

expressions that depend on the closest projection than to compute expressions that depend on

curvilinear coordinates.

4.1. Normal forces

Eq. (37) is integrated in time by the use of a finite difference stencil, leading to the dynamic gap

defined by Armero and Petöcz [7]:

gnþ1
d ¼ gnd þ~ncð~xx1 ; tnþ1=2Þ � ½~xnþ1 � ~xn�x1 �~ncð~xx1 ; tnþ1=2Þ � ½~y nþ1ðno; ucnþ1=2Þ �~ynðno; ucnþ1=2Þ�,

(55)

where we use the coordinate ucnþ1=2 obtained in the mid-configuration to evaluate the pro-

jection in configurations n and nþ 1. The dynamic gap is initialized with the true gap

(i.e. gn ¼ ½~xn �~yn� �~nn40) before the first contact detection (i.e. gnþ1 ¼ ½~xnþ1 �~ynþ1� �~nnþ1
p0)

(see [7] for details). Using a normal penalty kN , a potential of contact was defined by Armero and

Petöcz [7]:

UðgÞ ¼ 1
2
kNg

2 if gp0 and UðgÞ ¼ 0 if g40, (56)

leading to the evaluation of the normal force

tNð~x
x1 ; tnþ1=2Þ ¼ �

Uðgnþ1
d Þ �UðgndÞ

gnþ1
d � gnd

if gnþ1
d agnd

¼ �
qU

qg

gnþ1
d þ gnd

2

	 


if gnþ1
d ¼ gnd . ð57Þ

The normal components of the contact forces defined in Eq. (47) are then obtained by

½~F
nþ1=2

cont �
x1
N ¼ tNð~x

x1 ; tnþ1=2Þ~ncð~xx1 ; tnþ1=2Þ,

½~F
nþ1=2

cont �
x2
N ¼ �tNðx

x1 ; tnþ1=2Þj
x2
d ðno; u

cnþ1=2Þ~ncð~xx1 ; tnþ1=2Þ. ð58Þ

4.1.1. Conservation of linear momentum

Since ½1�
P

x2
jx2ðno; ucnþ1=2Þ� ¼ 0, Eq. (20) is directly verified from Eq. (58) that leads to

½~F
nþ1=2

cont �
x1
N þ

X

x2

½~F
nþ1=2

cont �
x2
N ¼ 0. (59)
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4.1.2. Conservation of angular momentum

Expressions (58) verify Eq. (22) since

X

i¼1;2

~xnþ1 þ ~xn

2

" #xi

N

^ ½~F
nþ1=2

cont �
xi
N

¼ �tNð~x
x1 ; tnþ1=2Þ~ncð~xx1 ; tnþ1=2Þ ^

~xnþ1 þ ~xn

2

" #x1

� j
x2
d ðno; u

cnþ1=2Þ
~xnþ1 þ ~xn

2

" #x2
2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼gð~xx1 ;tnþ1=2Þ~ncð~xx1 ;tnþ1=2Þ

¼ 0.

ð60Þ

4.1.3. Conservation of energy

Let us study the cycle defined by Armero and Petöcz [7]: in configuration 1 there is no contact

(g1d ¼ g140), in configuration n with 2pnpn0 there is a persistent contact (gndp0), and in

configuration n0 þ 1 the contact is released (gn
0þ1

d 40). Let us first note that, using Eqs. (55) and

(58), for each 1pnpn0 we have

W nþ1
cont �W n

cont ¼ ½~F
nþ1=2

cont �
x1
N � ½~xnþ1 � ~xn�x1 þ ½~F

nþ1=2

cont �
x2
N � ½~xnþ1 � ~xn�x2

¼ tNð~x
x1 ; tnþ1=2Þ½gnþ1

d � gnd � ¼ �½Uðgnþ1
d Þ �UðgndÞ�. ð61Þ

During the first step between configurations 1 and 2, we have, using Eq. (56), g1d ¼ g140, Uðg1Þ ¼

0 and g2dp0, Uðg2dÞX0, leading to

W 2
cont ¼ W 1

cont
|fflffl{zfflffl}

¼0

�Uðg2dÞ þUðg1dÞ
|fflffl{zfflffl}

¼0

¼ �Uðg2d Þp0. (62)

During step n 2 ½2; n0�, we have gndp0, Uðgnd ÞX0 and gnþ1
d p0, Uðgnþ1

d ÞX0, leading to

W n
cont ¼ W n�1

cont þUðgn�1
d Þ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

�Uðgnd Þ ¼ �UðgndÞo0. (63)

Finally, considering the step n0, we have gn
0

d 40, Uðgn
0

d Þ40 and gn
0þ1

d 40, Uðgn
0þ1

d Þ ¼ 0, leading to

W n0þ1
cont ¼ W n0

cont þUðgn
0

d Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼0

�Uðgn
0þ1

d Þ ¼ �Uðgn
0þ1

d Þ ¼ 0. (64)

Therefore, the normal part of Eq. (26) is verified: during persistent contact the work is negative,

and after the contact is released, the work is equal to zero. Let us note that during this last step

where the contact is released, the pressure computed by Eq. (57) is different from zero, and

therefore, since Uðgn
0

d Þ40, the contact forces are different from zero too.
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4.1.4. Numerical dissipation

If the time integration scheme used is the EDMC-1 algorithm, Armero and Petöcz [7] have

introduced numerical dissipation related to the contact forces with

½F
nþ1=2
diss �x1 ¼ � w

Uðgnþ1
d � gndÞ

gnþ1
d � gnd

~nð~xx1 ; tnþ1=2Þ,

½~F
nþ1=2

diss �x2 ¼ w
Uðgnþ1

d � gnd Þ

gnþ1
d � gnd

jx2ðunþ1=2Þ~nð~xx1 ; tnþ1=2Þ, ð65Þ

where w is a parameter governing the numerical dissipation. This expression of the dissipation

forces verifies directly Eqs. (28). Moreover, one gets
X

i¼1;2

½~F
nþ1=2

diss �xi � ½~xnþ1 � ~xn�xi ¼ wUðgnþ1
d � gndÞ ¼ DFX0, (66)

which verifies Eq. (29).

4.2. Friction forces

Let us assume that the projection of the slave node in the mid-configuration is

~ynþ1=2ðno; ucnþ1=2Þ. Our first simplification is to define an orthogonal unit base associated to this

point:

~t
c

1ð~x
x1 ; tnþ1=2Þ ¼

~ncð~xx1 ; tnþ1=2Þ ^ ½~ynþ1=2ðn̄o; ūd Þ �~ynþ1=2ðno; ucnþ1=2Þ�

k~ncð~xx1 ; tnþ1=2Þ ^ ½~ynþ1=2ðn̄o; ūd Þ �~ynþ1=2ðno; ucnþ1=2Þ�k
^~ncð~xx1 ; tnþ1=2Þ,

~t
c

2ð~x
x1 ; tnþ1=2Þ ¼ ~t

c

1ð~x
x1 ; tnþ1=2Þ ^~ncð~xx1 ; tnþ1=2Þ. ð67Þ

Therefore the dual base defined by Eq. (41) is equivalent to the primal base.

To integrate Eq. (39) in time, we first compute a dynamic tangential gap increment

D~gtd � ½~xnþ1�x1 � ½~xn�x1 �~ynþ1ðno; ucnþ1=2Þ þ~ynðno; ucnþ1=2Þ. (68)

Let us define a dynamical projection, denoted by ~y nod ; udð Þ, that corresponds to the accumulation

of the dynamic tangential gap increments. This dynamical projection is evaluated in the following

way. Firstly, nod and ud are initialized at the first contact configuration. Next, the dynamic

tangent gap is evaluated from the dynamic tangential gap increments and from the difference

between the previous dynamical projection (i.e. ~ynþ1=2ðnond ; u
n
dÞ) and the actual projection (i.e.

~ynþ1=2ðno; ucnþ1=2Þ). It becomes

~gtd ¼ D~gtd þ ½~ynþ1=2ðnond ; u
n
dÞ �~ynþ1=2ðno; ucnþ1=2Þ�. (69)

As can be seen in Fig. 5, when the dynamic gap is added to the actual projection (i.e.

~ynþ1=2ðno; ucnþ1=2Þ), it does not lead to a point that is on the master surface S
2. Therefore, by

analogy with Eq. (39), we project this point in the plane tangent to the master surface, leading to

point ~~x defined by

~~x ¼ ~ynþ1=2ðno; ucnþ1=2Þ þ ½~t
c

að~x
x1 ; tnþ1=2Þ �~gtd �~t

c

að~x
x1 ; tnþ1=2Þ. (70)
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Actually, the new dynamic values nonþ1
d and unþ1

d are obtained by projecting ~x on the surface S2 in

the configuration nþ 1
2
, leading to ~ynþ1=2ðnonþ1

d ; unþ1
d Þ.

This construction is illustrated in Fig. 5 and is a planar approximation of a time discretization

of Eq. (39) as we will see. If ~u are the surface coordinates in the new base, and assuming that the

gap remains small enough, Eq. (39) becomes

½ _~x
x1
� j

x2
d
_~x
x2
� �~ta ¼ Aab

_~ub with Aab ¼~tb �~ta ¼ dab. (71)

For a planar approximation, we have~~x ¼ ~ynþ1=2ðnonþ1
d ; unþ1

d Þ and using the definition of ~u, it yields

~ynþ1=2ðnond ; u
n
d Þ �~ynþ1=2ðno; ucnþ1=2Þ ¼ ½ ~und �a~t

c

að~x
x1 ; tnþ1=2Þ,

~ynþ1=2ðnonþ1
d ; unþ1

d Þ �~ynþ1=2ðno; ucnþ1=2Þ ¼ ½ ~unþ1
d �a~t

c

að~x
x1 ; tnþ1=2Þ. ð72Þ

These expressions reduce Eqs. (68–70) to

½ ~unþ1
d � ~und �a ¼ ~t

c

að~x
x1 ; tnþ1=2Þ � ½~xnþ1 � ~xn�x1

� ~t
c

að~x
x1 ; tnþ1=2Þ � ½~ynþ1ðno; ucnþ1=2Þ �~ynðno; ucnþ1=2Þ�, ð73Þ

which is a time integration of Eq. (71).

If the master surface is not plane, these approximations consist in evaluating the tangential gap

by joining the projections by a line and not by moving on the surface. But this approximation is of

the same order as the finite element decomposition that leads to bilinear Coons patches.

Now we have to evaluate the frictional forces from these dynamic coordinates. Let us assume

that the sticking point is on the entity n̄o and has the coordinates ūd . Therefore, the sticking

predictor is evaluated as

t
pred
Ta

ðxx1 ; tnþ1=2Þ ¼ �kTrc
~ynþ1=2ðnond ; u

n
dÞ þ~ynþ1=2ðnonþ1

d ; unþ1
d Þ

2
�~ynþ1=2ðn̄o; ūd Þ

" #

� ~t
c

að~x
x1 ; tnþ1=2Þ

(74)

with kT the tangential penalty and rc a factor that ensures an increase of the master surface size

will not introduce numerical energy in the system. This ratio will be computed when evaluating

S
2
( )t

n+1/2

V
2
( )t

n+1/2

gtd

x

y (no ,u )
n+1/2 n+1 n+1

d d
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n+1/2 c n+1/2

y (no ,u )
n+1/2 n n

d d
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n+1/2

d d

t (t )1
c n+1/2

n (t )
c n+1/2

y (no,u )+
n+1/2 c n+1/2

gtd

∆gtd

Fig. 5. Construction to find the dynamical projection (2 dimensions).
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the friction dissipation (Section 4.2.3). Using the Coulomb law defined by Eq. (43), the final

components are

tTa
¼

t
pred
Ta

if Fcðt
pred
Ta

Þp0;

t
pred
Ta

ð~xx1 ; tnþ1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t
pred
Tb

t
pred
Tb

q mctNð~x
x1 ; tnþ1=2Þ if Fcðt

pred
Ta

Þ40:

8

>>><

>>>:

(75)

Since the dual base corresponds to the new base, assuming the normal gap remains small, the

frictional forces from Eq. (47) becomes

½~F
nþ1=2

cont �
x1
T ¼ tTa

ð~xx1 ; tnþ1=2Þ~t
c

að~x
x1 ; tnþ1=2Þ,

½~F
n

cont�
x2
T ¼ �tTa

ð~xx1 ; tnþ1=2Þj
x2
d ðno; u

cnþ1=2Þ~t
c

að~x
x1 ; tnþ1=2Þ. ð76Þ

4.2.1. Conservation of linear momentum

Since 1�
P

x2
jx2ðno; ucnþ1=2Þ ¼ 0, Eq. (20) is directly verified since Eqs. (76) lead to

½~F
nþ1=2

cont �
x1
T þ

X

x2

½~F
nþ1=2

cont �
x2
T ¼ 0. (77)

4.2.2. Conservation of angular momentum

Eqs. (76) lead to

X

i¼1;2

~xnþ1 þ ~xn

2

" #xi

^ ½~F
nþ1=2

cont �
xi
T

¼ tTa
ð~xx1 ; tnþ1=2Þ

~xnþ1 þ ~xn

2

" #x1

� j
x2
d ðno; u

cnþ1=2Þ
~xnþ1 þ ~xn

2

" #x2
2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼gð~xx1 ;tnþ1=2Þ~ncð~xx1 ;tnþ1=2Þ

^~t
c

að~x
x1 ; tnþ1=2Þ, ð78Þ

which is different from zero since the term depending on the gap g in Eq. (47) was neglected.

Eq. (22) is therefore verified only if the gap remains small enough.

4.2.3. Evaluation of frictional dissipation

In this section, we will evaluate the scaling factor rc used in Eq. (74) that leads to a consistent

algorithm. The tangential part of Eq. (26) is computed from Eq. (76), yielding

Dfr ¼ � ½~F
nþ1=2

cont �
x1
T � ½~xnþ1 � ~x�x1 � ½~F

n

cont�
x2
T � ½~xnþ1 � ~x�x2

¼ � tTa
ð~xx1 ; tnþ1=2Þ~t

c

að~x
x1 ; tnþ1=2Þ � f½~xnþ1 � ~xn�x1 � j

x2
d ðno; u

cnþ1=2Þ½~xnþ1 � ~xn�x2g. ð79Þ

Using Eqs. (68–70), this last relation becomes

Dfr ¼ � tTa
ð~xx1 ; tnþ1=2Þ~t

c

að~x
x1 ; tnþ1=2Þ � D~gtd

¼ � tTa
ð~xx1 ; tnþ1=2Þ~t

c

að~x
x1 ; tnþ1=2Þ � ½~~x�~ynþ1=2ðnond ; u

n
dÞ�

’ � tTa
ð~xx1 ; tnþ1=2Þ~t

c

að~x
x1 ; tnþ1=2Þ � ½~ynþ1=2ðnonþ1

d ; unþ1
d Þ �~ynþ1=2ðnond ; u

n
dÞ�. ð80Þ
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As Armero and Petöcz proposed [8], let us define Zd a value that represents the slip but that does

not depend on the surface size variation and let us define D~y such that

Znd � ½~y0ðno
n
d ; u

n
d Þ �~y0ðn̄o; ūdÞ� � ½~y0ðno

n
d ; u

n
dÞ �~y0ðn̄o; ūdÞ�,

D~yn � ½~ynþ1=2ðnond ; u
n
dÞ �~ynþ1=2ðn̄o; ūdÞ�,

D~ynþ1 � ½~ynþ1=2ðnonþ1
d ; unþ1

d Þ �~ynþ1=2ðn̄o; ūdÞ�. (81)

Therefore Eq. (74) leads to

t
pred
Ta

ð~xx1 ; tnþ1=2Þ~t
c

að~x
x1 ; tnþ1=2Þ � ½~ynþ1=2ðnonþ1

d ; unþ1
d Þ �~ynþ1=2ðnond ; u

n
dÞ�

¼ �
1

2
kTrc~t

c

að~x
x1 ; tnþ1=2Þ � ½D~yn þ D~ynþ1�~t

c

að~x
x1 ; tnþ1=2Þ � ½D~ynþ1 � D~yn�

¼ �
kT

2
½Znþ1

d � Znd � ð82Þ

if rc is defined by

rc ¼

Znþ1
d � Znd

D2yðnonþ1
d ; unþ1

d Þ � D2yðnond ; u
n
dÞ

if nonþ1
d ; unþ1

d anond ; u
n
d ;

Znþ1
d

D2yðnonþ1
d ; unþ1

d Þ
if nonþ1

d ; unþ1
d ¼ nond ; u

n
d

8

>>>><

>>>>:

(83)

with D2yðnonþ1
d ; unþ1

d Þ ¼
P2

a¼1fD~y
nþ1 � ~t

c

að~x
x1 ; tnþ1=2Þg2. Therefore, using Eqs. (75) and (82), Eq. (80)

can be rewritten as

Dfr ¼

kT

2
½Znþ1

d � Znd � if Fcð~T
pred

Þp0;

kTmctN

2k~T
pred

k
½Znþ1

d � Znd � if Fcð~T
pred

Þ40:

8

>>><

>>>:

(84)

Now we have to verify the physical consistency of this relation and to determine the sticking

point. Let us define a cycle of n0 steps without sliding (i.e. sticking status) and the following step

with a sliding status. Let us suppose that the contact starts at step 0. In such a case, the sticking

point is defined by n̄o ¼ no0d and by ū ¼ u0d . Thanks to Eq. (81) it leads to Z0d ¼ 0 and Eq. (84)

leads to

Dfr ¼
Xn¼n0�1

n¼0

kT

2
½Znþ1

d � Znd � þ
kTmctN

2k~T
pred

k
½Zn

0þ1
d � Zn

0

d �

¼
kT

2
Zn

0

d 1�
mctN

k~T
pred

k

" #

þ
kTmctN

2k~T
pred

k
Zn

0þ1
d 40. ð85Þ

Here we do the same approximation that Armero and Petöcz did by assuming the new sticking

point is the latest obtained projection point: ūn
0þ1

d ¼ un
0þ1

d . This approximation leads to the exact
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solution when the tangential penalty tends to infinity. For such a penalty, we have un
0

d ¼ ū and,

using Eqs. (75) and (81), Eq. (85) is rewritten as

Dfr ¼
kTmctN

2k~T
pred

k
Zn

0þ1
d ¼

kTmctN

2k~T
pred

k
k~y0ðn̄o

n0þ1
d ; ūn

0þ1
d Þ �~y0ðn̄o; ūd Þk

2

¼ mctNk~y0ðn̄o
n0þ1
d ; ūn

0þ1
d Þ �~y0ðn̄o; ūdÞk, ð86Þ

which corresponds to the time integration of Eq. (48). If the penalty is different from infinity

(which is always the case), the energy stored in ðkT=2ÞZ
n0

d ½1� mctN=k~T
pred

k� is lost and the scheme

overestimates the dissipation.

Since the tangent forces are physically dissipative, we do not need to define additional

dissipation forces related to these tangent contact forces.

5. Numerical examples

In this section we will prove that our method to compute the contact interactions is both

efficient and robust. The elements are 8-node bricks with underintegration of the pressure to avoid

volumic locking. The model used is an elasto-plastic hypoelastic material. The internal forces

expression can be found in [21,22]. Normal contact forces are expressed by Eq. (58) and tangent

contact forces are expressed by Eq. (76). Expression of the dissipation forces related to the

internal forces and expression of the dissipation velocities corresponding to a first-order

dissipation algorithm (EDMC-1) can be found in [25]. Dissipation forces related to the normal

contact forces are expressed by Eq. (65).

5.1. Numerical example 1: impact of two hollow cylinders

The problem under consideration is the interaction of two hollow perpendicular cylinders

(Fig. 6a). Both cylinders have the same mean radius (R ¼ 98:5mm), the same thickness

(e ¼ 3mm) and the same length (L ¼ 460mm). The initial difference of the gravity center

coordinates is ~x ¼ ð250mm; 0mm; 0mm). The right cylinder has no initial velocity, while the left

one has an initial velocity _~x ¼ ð40m=s; 4m=s; 0m=sÞ. Both cylinders are made of aluminum

(density r ¼ 2710kg=m3, Young’s modulus Y ¼ 70 000N=mm2, Poisson’s ratio n ¼ 0:3, initial
yield stress S0 ¼ 90N=mm2 and linear isotropic hardening h ¼ 100N=mm2). Each cylinder has

990 elements (3 through the thickness, 22 along the circumference, 15 along the length). The

interaction between the cylinders occurs with a Coulomb frictional law (normal penalty kN ¼ 105,

tangential penalty kT ¼ 103, friction coefficient mc ¼ 0:1). We will compare the results obtained

with the following algorithms:

– EDMC-1 algorithm with an infinity spectral radius equal to 0:8;
– Hilber–Hughes–Taylor (HHT) [28], with an infinity spectral radius equal to 0.8.

Fig. 6b and c illustrate respectively the equivalent plastic deformations obtained for the EDMC-1

scheme and for the HHT scheme for a time step equal to 0:5ms. Both simulations lead to the same
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results. Fig. 7a and b illustrate the time evolution of the left cylinder linear momentum,

respectively along axis X and Y . The solutions are compared to a reference solution obtained with

the EDCM scheme without numerical dissipation (EMCA) and a time step equal to 0:1ms. Along

direction X , the left cylinder transmits a part of its linear momentum to the right cylinder. Along

direction Y , the friction interaction leads to a transfer of linear momentum from the left cylinder

to the right cylinder. All the solutions are identical. Fig. 8a illustrates the fact that, since the left

cylinder impacts the right cylinder below its gravity center (positive Y ), the angular momentum

along Z of the left cylinder begins to increase. Next, due to the friction effects, the angular

momentum along Z of the left cylinder decreases. The EDMC-1 scheme leads to a solution

different by about 10% from the reference solution. The HHT scheme leads to a solution different

by about 35% to the reference solution. The angular momentum along Z of the two cylinders is

illustrated in Fig. 8b. Since we have neglected the term depending on the gap g in Eq. (47), the
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Fig. 7. Time evolution of the left cylinder linear momentum for a time step size equal to 5ms: (a) linear momentum

along X; (b) linear momentum along Y.
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Fig. 6. Geometry of the two cylinders: (a) initial configuration; (b) equivalent plastic deformation (after 5ms) with the

EDMC-1 simulation; (c) equivalent plastic deformation (after 5ms) with the HHT simulation.
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value is not constant but has a variation of 0.1%. Fig. 9a illustrates the numerically dissipated

energy at the end of the simulation. The energy dissipative simulations are performed with 5

constant time step sizes: 1, 2, 3, 4 and 5ms. For small time steps size, the HHT algorithm

introduces energy in the system and is dissipative only for large time step sizes. The EDMC-1

algorithm, whatever the time step size, always leads to a positive numerical dissipation. Fig. 9b

illustrates the (accumulated) work of the contact forces at the end of the simulation. For the

EDMC-1 scheme, this work corresponds to the friction dissipation and this value is constant for

each time step size. For the HHT scheme, the normal component does not lead to a work equal to

zero. Therefore, the work of contact force is not always equal to the friction dissipation and can

vary by about 20% when the time step size is multiplied by 5.

5.2. Numerical example 2: buckling of square tubes

Let us now study the dynamic buckling of a square tube as proposed by Karagiozova and Jones

[29]. Due to symmetry, only one quarter of the tube is under consideration. The square tube

(Fig. 10a) has a constant thickness of 1:14mm and a height of 146mm. The cross square section of

the tube has a length of 23:7mm, and the angles are smoothed with a corner radius of 2:1mm. If
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Fig. 8. Time evolution of the angular momentum for a time step size equal to 5ms: (a) angular momentum along Z for

the left cylinder; (b) angular momentum for the two cylinder.
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the section is kept symmetric, the dynamic buckling will be different from the experimentation

that is not perfectly symmetric, leading to a non-symmetrical buckling. Therefore Karagiozova

and Jones [29] have proposed to reduce the Y-length of the section by 1% and to increase the X-

length of the section by 1% (Fig. 10a) to introduce some numerical imperfections in the model.

Therefore, the area of the section remains constant with a little asymmetry. The tube is made of

aluminum (density r ¼ 2700kg=m3, Young’s modulus Y ¼ 71 000N=mm2 and Poisson’s ratio

n ¼ 0:3). The von Mises limit Sv depends on the equivalent plastic strain epl through the law

SvðMPaÞ ¼ 200þ 11:64½1� e�100epl � þ 209eplðMPaÞ. This hardening law is illustrated in Fig. 10b.

Let us note that Karagiozova and Jones [29] use a multi-linear-segment approximation of this law.

Our numerical model is composed of 2600 brick elements (120 along the height, 10 along each half

length of the section, 2 along the arc and 1 through the thickness).

The buckling is generated thanks to the impact of a rigid mass M, with an initial velocity _~x0
(Fig. 10a). The rigid mass is simulated with a volume of length 23.7mm and with a Young’s modulus

ten times larger than the tube’s one. When studying the buckling of a tube, with shells elements,

Langseth et al. [30], who used shell elements, fixed the rotational degrees of freedom at the extremity

of the tube. Since we use brick elements, we do not have this opportunity. Therefore, we choose to fix

the radial displacements of the nodes situated at 2.5mm of the extremities (gray zones represented in

Fig. 10a). The study proposed by Karagiozova and Jones [29] consists in the absorption of an impact

of 600 J (for the whole tube) at different velocities. Values of the impact velocities _~x0 and of the impact

masses M are reported in Table 1 for the four impact simulations under consideration.

We use the EDMC-1 scheme with r1 ¼ 0:8 (spectral radius at infinity) to simulate the problem.

The time step size is computed thanks to an automatic criterion [31] with an accuracy of 10�4 on
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Fig. 10. Description of the square tube: (a) geometry (mm); (b) hardening law (MPa).
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the integration error [31] and the choice of updating the Hessian matrix is also computed from

automatic criteria [31]. Each time step is computed with a Newton–Raphson scheme (tolerance

10�5) enhanced by a line-search [32] (tolerance 10�3). Contact forces are computed with the

formulation developed in Section 4. The contact is frictionless and uses a normal penalty kN ¼ 103

for the tubes N61, N41 and G5, but a penalty of kN ¼ 104 for the N76 tube that has a slower

dynamics.

The deformed configurations obtained are illustrated in Fig. 11. When compared to the

experimental results obtained by Yang [33] (Fig. 12), it appears that the buckling modes are quite

similar (same number of buckles and same positions). Crushing distances (of the top of the tube)

of our numerical results and of the experimental results are reported in Table 1. We have also

reported, in this table, the crushing distances obtained with an explicit algorithm and shell

elements by Karagiozova and Jones [29]. It appears that our numerical results obtained with an

implicit algorithms are accurate with respect to experimental results, with a 15% error. Moreover,

let us note that an implicit simulation with an a-generalized algorithm [34] (r1 ¼ 0:2) did not

succeed for the present simulation (no convergence of the Newton–Raphson algorithm).

Table 1

Impact properties

Name Impact Impact Experimental Numerical Karagiozova

velocity mass, M crushing [33] crushing and Jones [29]

(m/s) (kg) (mm) (mm) (mm)

N76 14.84 5.45 68.3 71.9 66.4

G5 25.34 1.87 60.8 70 54.3

N41 64.62 0.28 44.1 46.9 39.4

N61 98.27 0.126 35.5 38.8 35.6
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Fig. 11. Final deformations of the square tube: von Mises stress (MPa) of the numerical results obtained with the

EDMC-1 algorithm.
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6. Conclusions

In this paper we have presented a practical way to simulate complex contact interactions with

an implicit scheme in the framework of the so-called ‘‘conserving algorithm’’. To achieve this, the

evolution of the normal was smoothed and rendered continuous even for facetted discretizations.

Next, the contact forces are computed in a thermodynamically consistent way, taking into

account this smoothing method. Numerical examples have proved the efficiency and accuracy of

this method for impact simulations. We conclude that, with such improvements, implicit schemes

are able to simulate complex contact problems.
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