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SIMULATION DE PROBLEMES COMPLEXES D'IMPACT PAR DES ALGORITHMES IMPLICITES. APPLICATION AUX PROBLEMES DE "CRASHWORTHINESS"

RESUME: Actuellement, un deft numerique est de pouvoir simuler la reponse, en situation d'ac cident, d'une structure non-lineaire complete ( comme un moteur d'avion) sous l'effet de forces exterieures (comme une perte d'aube). La modelisation et la simulation par ordinateur de ces phenomenes dynamiques transitoires de la physique exigent en general une approche incre mentale pour integrer sur le temps les equations dif f erentielles relatives au systeme etudie. La principale diffi culte reside dans le choix d'une technique d'integration temporelle incremen tale. Deux grandes familles d'algorithmes d'integration temporelle existent: la famille des algorithmes explicites, et la famille des algorithmes implicites. Les algorithmes implicites necessitent une resolution iterative a chaque pas de temps, contrairement aux algorithmes explicites. Mais pour des raisons de stabilite, les methodes explicites travaillent avec de plus petits pas de temps. Pour la plupart des problemes industriels, une methode de resolution com binant les deux familles d'algorithmes peut s'averer avantageuse. Nous proposons de realiser cette combinaison.

Un autre probleme est le comportement des algorithmes implicites dans le cadre non-lineaire. Pour les systemes non-lineaires les schemas traditionnels comme celui de Newmark ne sont stables que si le pas de temps reste petit. Pour eviter cette divergence dans le domaine non lineaire, un amortissement numerique peut etre introduit. Cependant, ces techniques ont le desavantage d'introduire une perte de precision et de ne pas toujours pouvoir eviter la diver gence. En effet, les recentes etudes de Erlicher ont montre que de l'energie peut etre introduite numeriquement. Pour resoudre ces problemes, d'autres algorithmes ont ete developpes de maniere a garder les grandeurs totales constantes tout en restant stables dans le domaine non lineaire. Le premier algorithme a verifier la conservation des moments lineaifes et angulaires, ainsi que la conservation de l'energie du systeme a ete decrit par Simo et Tarnow. Lorsque le nombre de degres de liberte du modele augmente, des modes numeriques de hautes frequences apparaissent. Afin d'eviter ['excitation de ces modes, ce qui provoque des oscillations non physiques et des problemes de convergence !ors des iterations, de la dissipation numerique a ete introduite par Armero et Romero. Le present travail a pour but d'etendre pour les materiaux hypoelastiques, ainsi que dans le domaine plastique, les schemas consistants. La difficulte pour ces modeles est d'exprimer la conservation de l'energie. En effet, comme aucun potentiel interne ne peut etre defini, l'energie interne ne peut etre directement reliee a une telle grandeur mathematique simple. Des lors, pour remedier a cela, nous proposons de definir un cycle de chargement-defchargement sur lequel nous verifions le postulat de la plasticite de Drucker. Nous sommes alors en mesure de definir une nouvelle expression des forces intemes pour un modele hypoelastique. Ces developpements nous permettent de simuler des problemes complexes de dynamique des struc tures, tels que la perte d' aube dans un turbo-reacteur. SUMMARY: Recently, robust implicit energy and momentum conserving algorithms have been developed in the non-linear range. The authors extended these algorithms to hypoelasticity based constitutive models and introduced numerical dissipation, opening the way to more com plex simulations such as blade-loss in a turbofan. W hen studying impact problems, time integration of the equations of evolution occurs in the non-linear range. Usually, explicit algorithms are used in such a context. Nevertheless, due to its lack of stability in the non linear range, and its limitation in the time step size, an implicit scheme could advantageously be used. The most widely used implicit algorithm is the Newmark algorithm [START_REF] Newmark | A method of computation for structural dynamics[END_REF]. Nevertheless, when this algorithm is used in the non-linear range, the conser vation of the energy is no longer satisfied. To avoid divergence due to the numerical instabilities, numerical damping was introduced, leading to the generalized-ex methods [START_REF] Chung | A time integration algorithm for struc tural dynamics with improved numerical dissipation: the general ized-a method[END_REF]. But these schemes can exhibit instabilities in the non-linear range too [START_REF] Erlicher | The analysis of the a-generalized method for non-line a r d ynamic problems[END_REF].

Therefore a new family of integration algorithms for structural dynamics has appeared that satisfies the mechanical laws of conservation (i.e. conservation of linear momentum, angular momentum and total energy) and that remains stable in the non-linear range.

The first algorithm verifying these properties was described by Simo and Tarnow [START_REF] Simo | The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics[END_REF]. They called this algorithm Energy Momentum Conserving Algorithm or EMCA. It consists in a mid-point scheme with an adequate evaluation of the internal forces. This adequate evaluation was given for a Saint Venant Kirchhoff hyperelastic material. A generalization to other hyperelastic models was given by Laursen [START_REF] Laursen | A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastod ynamics[END_REF], who iteratively solved a new equation for each Gauss point to determine the adequate second Piola-Kirchhoff stress tensor. Another solu tion that avoids this iterative procedure, and leads to a general formulation of the second Piola-Kirchhoff stress tensor, was given by Gonzalez [START_REF] Gonzalez | Exact energy and momentum conserving algo rithms for general models in nonlinear elasticity[END_REF]. This formulation is valid for general hyperelastic materials. The EMCA was recently extended to dynamic finite deformation plasticity by Meng and Laursen [START_REF] Meng | Energy consistent algorithms for dynam ic finite deformation plasticity[END_REF].

The finite element discretization leads to high frequency modes that are purely numeric. To avoid the convergence problems resulting from these modes, Armero and Romero [START_REF] Armero | On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. Part I: low-order methods for two model problems and nonlinear elastodynamics[END_REF][START_REF] Armero | On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. Part II: second order methods[END_REF] intro duced numerical dissipation in these conserving algorithms. This dissipation only affects the total energy but preserves the angular momentum. Moreover, it is proved to be stable in the non-linear range, contrarily to the ex-generalized algorithms. It is called Energy Dissipative Momentum Conserving algorithm or EDMC. Besides, Armero and Petocz [START_REF] Armero | Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems[END_REF][START_REF] Armero | A new dissipative time-stepping algo rithm for frictional contact problems: formulation and analysis[END_REF] proposed a treatment of contact interactions in a consistent way in the non linear range.

All the conserving methods described above were established for hyperelastic materials. We have recently [START_REF] Noels | Energy�momentum con serving algorithm for non-linear hypoelastic constitutive models[END_REF][START_REF] Noels | On the use of large time steps with an energy-momentum conserving algorithm for non linear hypoelastic constitutive models[END_REF] established a new expression of the internal forces for the hypoelastic mate rials using the final rotation scheme [START_REF] Pontijot | Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplas tic processes[END_REF]. When associated with the mid-point scheme, this expression ensures the conservation laws of mechanics for a hypoelastic constitutive model. More over, we proved that this adaptation remains consistent with the Drucker postulate when plastic deformation occurs. Never theless, to be able to simulate complex impact problems, two improvements are necessary. The first one is to introduce numerical dissipation in a consistent way for such hypoelastic constitutive models [START_REF] Noels | On Simulation of com plex impact problems with implicit time algorithm. Application to a blade-loss problem[END_REF]. This numerical dissipation avoids the numerical high .frequency modes parasiting the physical solution.

The second one is an enhancement of the contact formulation proposed by Armero and Pet6cz to surfaces with discontinuous normal, as is the case when the two bodies in contact are deformable and are thus discretized by finite elements [START_REF] Noels | Simulation of crashwor thiness problems with new improvement in implicit time integra tion of non linear dynamical systems[END_REF].

With such improvements, we are able to simulate complex problems of impact such as a blade-loss in a turbo engine.

Description of the model

The turbo-engine is modeled with a shaft that has an imposed revolution motion on one extremity. At its other extremity, there is a disk with 24 blades. The shaft, the disk and the blades are part of the rotor, which is in rotation in a stator. The stator is composed of a casing and a bearing. The rotor has a cyclic symmetry of 15 degrees. Fig. 1 (200; 0; 0) (791.9; -113. 
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31, yield stress 550 N/mm2 and hardening parameter 281 N/mm2).

Its geometry is illustrated at Fig. 2a.

The bearing has a conical geometry (Fig. 2b) and is made of an alloy ter 2 600 N/mrn2). The displacement
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��!!!< . 9.. .. with an accuracy of 10-4 on the integration error. The Hessian matrix is updated only when necessary [START_REF] Noels | On Self-adapting time integration management in crash-worthiness and sheet metal forming computations[END_REF]. Each time step is computed with a Newton-Raphson scheme (tolerance= 10-5) enhanced by a line-search [START_REF] Crisfield | Non-linear finite element analysis of solids and structures[END_REF] (tolerance 10-3).

Initial configuration

At time t = 0 s, the initial configuration of the rotor is comput ( ( the non-linear range that is mathematically proved and its abili ty to use large time step size. For the present simulation, the mean implicit time step size is equal to about 1.8 µs and the explicit critical time step is equal to 0.07 µs. But thanks to the automatic Hessian matrix update and time step computation, the implicit steps are not much more expensive that the explicit ones. The implicit simulation is therefore twice cheaper than the explicit one.

  illustrates a 15-degree part of the rotor. The blade is defined from a ruled surface that has two splines for extremities. The blade is made of an alloy (density 3600 kg/m3, Young's modulus 88 000 N/mm2, Poisson's coef ficient 0.31, initial yield stress 880 N/mm2 and hardening para meter 26 700 N/mm2). The disk and the shaft are composed of another alloy (density 6300 kg/m3, Young's modulus 165 000 N/mm2, Poisson's coefficient 0.31, initial yield stress 800 N/mm2 and hardening parameter 271 N/mm2). The blade is discretized with 99 elements: 11 in length (elements at the head of the blade are 50 % smaller than at the root), 9 elements in height and 1 element on the thickness. The disk has 2 elements on the thickness and 72 elements on the circumference. The shaft has 1 element on its thickness and 11 elements on its length (8 for the constant section shaft and 3 for the conical part). The shaft has 72 elements on its circum ference. The elements are 8-node bricks with constant pressure.
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 32 600 kg/m3, Young's modulus 88 000 N/mm2, Poisson's coefficient 0.31, yield stress 550 N/mm2 and hardening parame-Fig. Stator model. a) casing, b) bearing.

  ,_,_ -•-• 220 of the shaft is restrained by the bearing thanks to a central node (Fig. 2b). There are springs between the central node and the extremity nodes of the bearing and there are springs between the central node and two rows on nodes of the shaft. Each spring has a stiffness of 10 8 N/mm. A mass of 0.05 kg is asso ciated with the central node. The bearing and the casing have 1 element on the thickness. The casing has 36 elements on its cir cumference and 8 elements on its length. The bearing has 3 ele ments on its length and 20 on its circumference. The elements are 8-node bricks with constant pressure.
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 445678 Fig. 4a and 4b illustrate respectively the front and the rear view of the configuration after a quarter of revolution. The free blade