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Recent developments, in non-linear structural dynamics, have led to a new kind of implicit algorithms: the
energy-momentum conserving algorithm (EMCA) and the energy-dissipative, momentum-conserving

algorithm. Contrarily to commonly used algorithms, such as the explicit central difference or the a-
generalized method, the stability of those algorithms is always ensured in the non-linear range. Thanks to
this unconditional stability the only requirement on the time step size is that it must be small enough to
capture the physics. This requirement is less restrictive than a conditional stability. In previous works, we
have developed a new formulation of the internal forces for a hypoelastic model, that leads to an EMCA. In
this paper, we will extend this formulation to an energy-dissipative, momentum-conserving algorithm. We

will prove with an academic example, that our algorithm is more accurate than the a-generalized method in 
the non-linear range. Then we will simulate a blade loss problem to demonstrate the efficiency of our
developments on complex dynamics simulations.
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1. Introduction

When simulating impact problems, time integration of the equations off evolution occurs in the

non-linear range. Usually, explicit algorithms are used in such a context. Nevertheless, due to its

lack of stability in the non-linear range, and its limitation in time step size, an implicit scheme

could advantageously be used. The most widely used implicit algorithm is the Newmark algorithm

[1]. For linear models, this algorithm is unconditionally stable. For non-linear models, Belytschko

and Schoeberle [2] proved that the discrete energy, computed from the work of the internal forces

and from the kinetic energy, is bounded if it remains positive. Nevertheless, since the work of the

internal forces is different from the internal energy variation when the Newmark algorithm is used

in the non-linear range, Hughes et al. [3] have proved that the Newmark algorithm remains

physically consistent only for small time step sizes. To avoid divergence due to the numerical

instabilities, numerical damping was thus introduced, leading to the generalized-a methods [4].

Nevertheless, the unconditional stability of these methods occurs only for linear systems or

asymptotically for the high frequency in the non-linear range [5].

Therefore, a new kind of implicit algorithm that remains stable in the non-linear range

appeared. The first algorithm verifying these properties was described by Simo and Tarnow [6].

They called this algorithm energy-momentum conserving algorithm or EMCA. It consists in a

mid-point scheme with an adequate evaluation of the internal forces. This adequate evaluation

was given for a Saint Venant–Kirchhoff hyperelastic material. A generalization to other

hyperelastic models was given by Gonzalez [7]. The EMCA was recently extended to dynamic

finite deformation plasticity, with a hyperelastic formulation, by Meng and Laursen [8]. We have

recently [9,10] established a new expression of the internal forces for the hypoelastic materials

using the final rotation scheme. When associated with the mid-point scheme, this expression

ensures the conservation laws of mechanics for a hypoelastic constitutive model. Moreover, using

the radial return mapping, we proved that this adaptation remains consistent with the Drucker

postulate when plastic deformation occurs. Nevertheless, if the EMCA remains stable in the non-

linear range, the presence of high-frequency modes, resulting from the finite-element

discretization, can lead to divergence of the Newton–Raphson iterations. Armero and Romero

[11,12] have introduced numerical dissipation in the conserving algorithms, for hyperelastic

models. This dissipation only affects the total energy but preserves the angular momentum.

Moreover, it is proved to be stable in the non-linear range, contrarily to the a-generalized

algorithms. It is called energy-dissipative momentum conserving algorithm or EDMC. The goal

of this paper is to extend this EDMC algorithm to the treatment of finite plasticity. This algorithm

was recently successfully extended to the treatment of contact interaction by the authors [13]. In

that paper it is demonstrated that accuracy of contact interaction is ensured when dealing with

large time step size (compared to the time step size of an explicit simulation). By combining this

contact algorithm with the formulation of finite plasticity proposed in the present paper, we are

able to treat complex impact problem with an implicit scheme. Let us note that the purpose of

considering implicit schemes is to be able to treat this kind of simulation with a combined implicit/

explicit time integration algorithm. Such a combination can reduce the computational time

without loss of accuracy [14–16]. Nevertheless it requires an efficient implicit time integration

method in the non-linear range. This paper demonstrates that large strain/strain rate plasticity can

be treated efficiently with the new implicit time integration algorithm.
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In this paper, we propose to introduce numerical dissipation in our hypoelastic conserv-

ing model. The plan is as follows: Section 2 will expose the preliminaries such as the dynamics

conservation laws and the finite-element discretization. In Section 3, we will recall the EDMC

algorithm principles. In Section 4, we will develop a forces formulation for a hypoelastic model

that leads the integration algorithm to verify the energy dissipation and the conserving

momentum properties. In Section 5, we will show the accuracy of our algorithm on the Taylor bar

problem. We will also demonstrate the ability of theses developments to simulate the complex

problem of a blade loss in a aero engine. Finally, we will draw some conclusions.

2. Preliminaries

In this section we will define the notations in use in this work. Therefore, we will be able to

recall the continuum laws. Then we will introduce the finite element discretization.

2.1. Notations

Let V � R
3 be the manifold of the points defining the body and S � R

3 be the manifold of the

boundary. We define two configurations: the initial configuration referred to by subscript 0 and

the current configuration at time t. Let r0 : V0 ! Rþ be the initial density. Boundary S is

decomposed into two parts: the first one S~x is the part where the displacements are known and

the second one S~T is the part where the surface tractions are known. It yields S~x [ S~T ¼ S

and S~x \ S~T ¼ 0. Let ~x be the current positions and ~x0 be the initial positions. Therefore, the

two-point gradient of deformation tensor is defined by

F � q~x

q~x0
with f � F�1 and J � det F. (1)

Conservation of the mass leads to

rdV ¼ r0 dV0 and rJ ¼ r0J0. (2)

Let X be the manifold of the admissible positions

X � f~x : V0 ! R
3j½J40 and ~xjS~x

¼ ~̄x� 8~x0 2 V0g (3)

with ~̄x the known positions. Let t be the current time and let T ¼ ½0; tf � be the integration interval.

Therefore, the motion of the body is defined by t 2 T ! ~xðtÞ 2 X. During this motion, the body is

subject to specific loads ~bðtÞ : V0 � T ! R
3. Let R be the Cauchy stress tensor. Boundary

pressures ~TSðtÞ : S~T 0
� T ! R

3 lead to the condition ~TSðtÞ ¼ RðtÞ~nðtÞ with ~n the outward unit

normal to S.

The body is now decomposed into finite elements thanks to shape functions jx : V0 ! R with

x 2 ½1;N� (N the total number of nodes), and with jxð~xm0Þ ¼ d
m
x (d is the Kronecker symbol). It

leads for each node x 2 ½1;N�

~xð~x0Þ ¼ jxð~x0Þ~xx; _~xð~x0Þ ¼ jxð~x0Þ _~x
x
and €~xð~x0Þ ¼ jxð~x0Þ €~x

x
, (4)
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where Einstein’s notations are used. Let ~v be an admissible virtual displacement defined by the

manifold

D � f~v : V0 ! R
3j½~vjS~x

¼ 0 et ~vð~x0; 0Þ ¼ 0;~vð~x0; tf Þ ¼ 0 8~x0 2 V0�g. (5)

Let Dv � D be the manifold of admissible virtual displacements d~x that can be decomposed such

as (4).

2.2. The continuum dynamics

The following quasi-variational principle (principle of virtual power of forces) must hold

8d~x 2 D
v [17, p. 412]:

Z tf

0

Z

V

r €~x � d~xþ R
T
:
qd~x

q~x
� r~b � d~x

� �

dV�
Z

S~T

½~TS � d~x�dS
( )

dt ¼ 0. (6)

Integrating by parts, one gets
Z

V

fr €~x � d~xgdV
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�dK

¼
Z

V

fr~b � d~xgdVþ
Z

S~T

f~TS � d~xgdS
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�dW ext

�
Z

V

R
T
:
qd~x

q~x

� �

dV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�dW int

8t 2 T ð7Þ

with dW int, dW ext and dK, respectively, the virtual work of internal forces, the virtual work of

external forces and the virtual work of inertia forces. This principle leads to the dynamics

conservation laws.

2.2.1. Conservation of linear momentum

Let ~L be the linear momentum defined by

~L �
Z

V

fr _~xgdV ¼
Z

V0

fr0 _~xgdV0, (8)

where Eq. (2) has been used. If d~x 2 D
v is taken constant (rigid body translation), Eq. (7) leads to

the conservation of the linear momentum

_~L ¼
Z

V

fr~bgdVþ
Z

S~T

f~TSgdS
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�~F ext

8t 2 T. (9)

2.2.2. Conservation of angular momentum

Let ~J be the angular momentum defined by

~J �
Z

V

fr~x ^ _~xgdV ¼
Z

V0

fr0~x ^ _~xgdV0. (10)
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Taking d~x ¼~Z ^ ~x with ~Z constant (rigid body rotation), since R is symmetric, and ~Z is an

arbitrary constant, Eq. (7) leads to the conservation of the angular momentum

_~J ¼
Z

V

fr~x ^ ~bgdVþ
Z

S~T

f~x ^ ~TSgdS 8t 2 T. (11)

2.2.3. Conservation of the energy

Let K, W int and W ext be, respectively, the kinetic energy, the internal forces work and the

external forces work, with

K �
Z

V

f1
2
r _~x

2gdV ¼
Z

V0

f1
2
r0

_~x
2gdV0,

_W int �
Z

V

fRT
: ½ _Ff�gdV,

_W ext �
Z

V

fr~b � _~xgdVþ
Z

S~T

f~TS � _~xgdS, ð12Þ

where Eq. (2) is used. If the internal forces power _W int is decomposed into a reversible part
_U int and an irreversible part _DintX0 (plastic dissipation, etc.) and if E is the system energy,

one gets

_W int � _U int þ _Dint and E � K þU int. (13)

Therefore, if d~x ¼ _~x, Eq. (7) leads to the first thermodynamics principle

_E ¼ _W ext � _Dint 8t 2 T. (14)

2.3. Finite-element decomposition

Thanks to Eq. (2) and to Eq. (4), the discrete terms of Eq. (7) can be rewritten such that

dK ¼
Z

V0

fr0jxjmgdV0½ €~x�m � d~xx ¼ Mxm½ €~x�m � d~xx,

dW ext ¼
Z

V0

fr0~bjxgdV0 � d~xx þ
Z

S~T

f~TSj
xgdS � d~xx ¼ ½~F ext�x � d~xx,

dW int ¼
Z

V0

R
T qjx

q~x

� �T

J

( )

dV0 � d~xx ¼
Z

V0

fRTfT~D
x
JgdV0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�~F
x

int

�d~xx, ð15Þ

where Mxm is the mass related to nodes x and m and where ~D is the derivative value, in the initial

configuration, of the shape functions (i.e., ~D
x ¼ qjx=q~x0). Since d~x 2 D

v is an arbitrary vector,

Eq. (7) leads to the balance equation

Mxm½ €~x�m ¼ ½~F ext � ~F int�x 8t 2 T. (16)
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To be able to integrate this relation in time, T is decomposed into some intervals ½tn; tnþ1� such
that T ¼

Sn¼nf

n¼0 ½tn; tnþ1�. Let Dt ¼ tnþ1 � tn be the time step size. Superscripts n and nþ 1 will refer

to configurations in time tn and tnþ1. To be physically consistent, the integration scheme must

verify Eq. (9), Eqs. (11) and (14).

3. The energy-dissipative momentum conserving algorithm

Once the balance Eq. (16) is established for all times t, this relation must be integrated in time.

To achieve this goal, Armero and Romero [11,12] have introduced velocities dissipation ~Gdiss and

forces dissipation ~Fdiss in Simo and Tarnow EMCA scheme. Both vectors ~Gdiss and ~Fdiss must be

considered simultaneously to avoid bifurcation in the spectral analysis of the amplification matrix.

In this section we will present the headlines of the EDMC algorithm. Then we will propose a

predictor–corrector algorithm to solve the set of equations. Next, we will deduce the conditions on

the forces to verify the conservations laws expressed by Eqs. (9), (11) and (14).

3.1. Description

The relation between positions and velocities at node x becomes

½~xnþ1�x ¼ ½~xn�x þ Dt

2
½ _~xnþ1�x þ Dt

2
½ _~xn�x þ Dt½~Gnþ1=2

diss �x. (17)

This relation is a second-order approximation (in Dt) if ~Gdiss ¼ OðDt2Þ and is a first-order

approximation if ~Gdiss ¼ OðDtÞ. A second-order approximation of the relations between the

velocities and the accelerations at node x is

½ _~xnþ1�x ¼ ½ _~xn�x þ Dt

2
½ €~xnþ1�x þ Dt

2
½ €~xn�x. (18)

The balance Eq. (16) is discretized in time at node x by

1
2
Mxm½ €~xnþ1 þ €~x

n�m ¼ ½~F nþ1=2

ext � ~F
nþ1=2

int � ~F
nþ1=2

diss �x. (19)

This relation is a second-order approximation of Eq. (16) if ~Fdiss ¼ OðDt2Þ and if the internal

forces ~F
nþ1=2

int are a second-order approximation of ~F intðtnþ1=2Þ. The set of Eqs. (17)–(19) is solved
by a predictor–corrector algorithm. Prediction values are deduced from Eqs. (17) and (18) by

taking €~x
nþ1 ¼ 0

½~xnþ1;0�x ¼ ~xn þ Dt _~x
n þ Dt2

4
€~x
n þ Dt~G

nþ1
2
;0

diss

� �x

,

½ _~xnþ1;0�x ¼ _~x
n þ Dt

2
€~x
n

� �x

. ð20Þ
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Linearization with the accelerations of Eq. (19) evaluated at Newton–Raphson iteration i, leads to

½Si�xm½D €~x
iþ1�m ¼ � 1

2
Mxm½ €~xnþ1;i þ €~x

n�m

� ½~F nþ1=2

int ð~xnþ1;iÞ þ ~F
nþ1=2

diss ð~xnþ1;iÞ � ~F
nþ1=2

ext ð~xnþ1;iÞ�x ð21Þ
with S the Jacobian matrix

Sxm ¼
qf1

2
Mxn½ €~xnþ1 þ €~x

n�n þ ½~F nþ1=2

int þ ~F
nþ1=2

diss � ~F
nþ1=2

ext �xg

q½ €~xnþ1�m

¼ Kxn q~x
n

q €~x
m þ

1

2
MxmI ¼ Kxm Dt2

4
Iþ Dt2

2
Gð _~xmÞ

� �

þ 1

2
MxmI. ð22Þ

In this last expression, Kxm is the stiffness matrix and G is the derivative of ~Gdiss with respect to the

velocities

Kxm ¼ q½~Fnþ1=2

int þ ~F
nþ1=2

diss � ~F
nþ1=2

ext �x

q½~xnþ1�m
and Gð _~xxÞ ¼ q~G

nþ1=2

diss ð _~xxÞ
q _~x

x
. (23)

Let us note that solving Eqs. (21) using D €~x and not D~x avoids the inversion of matrix G. Details to

obtain the Jacobian matrix are reported in the appendix. Finally, linearization with the

accelerations of Eqs. (17) and (18) leads to correction values at iteration i þ 1 and at configuration

nþ 1

½ €~xnþ1;iþ1�m ¼ ½ €~xnþ1;i þ alsD €~x
iþ1�m,

½ _~xnþ1;iþ1�m ¼ _~x
nþ1;i þ Dt

2
alsD €xiþ1

� �m

,

½~xnþ1;iþ1�m ¼ ~xnþ1;i þ als
Dt2

4
D €~x

iþ1
� �m

þ Dt½~Gdissð _xnþ1;iþ1Þ � ~Gdissð _~x
nþ1;iÞ�m ð24Þ

with als a line search parameter that enhances the Newton–Raphson resolution [18, p. 254].

3.2. Verification of conservation laws

In this section we will verify the conservation laws defined by Eqs. (9), (11) and (14).

3.2.1. Conservation of linear momentum

A sum on x in Eq. (19) and the use of Eq. (18) leads to
X

x

Mxm½ _~xnþ1�m

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

~L
nþ1

�
X

x

Mxm½ _~xn�m

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

~L
n

¼ Dt
X

x

½~F nþ1=2

ext � ~F
nþ1=2

int � ~F
nþ1=2

diss �x, (25)
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where the continuous linear momentum ~L defined by Eq. (8) is discretized thanks to Eq. (4) in
~L ¼

P

xM
xm _~x

m
. Eq. (25) is a discretization of Eq. (9) if

X

x

½~Fnþ1=2

int �x ¼ 0 and
X

x

½~F nþ1=2

diss �x ¼ 0. (26)

These two conditions must be simultaneously verified since the dissipation forces are independent

of the internal forces.

3.2.2. Conservation of angular momentum

Thanks to Eqs. (17) and Eq. (18), the vector product between ~xnþ1=2 ¼ ð~xn þ ~xnþ1Þ=2 and

Eq. (19) leads to

1

Dt
Mxm½~xnþ1�x ^ ½ _~xnþ1�m
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~J
nþ1

� 1

Dt
Mxm½~xn�x ^ ½ _~xn�m
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

~J
n

¼ Mxm½~Gnþ1=2

diss �x ^
_~x
nþ1 þ _~x

n

2

" #m

þ ½~xnþ1=2�x ^ ½~F nþ1=2

ext � ~F
nþ1=2

int � ~F
nþ1=2

diss �x, ð27Þ

where the continuous angular momentum ~J defined by Eq. (10) is discretized thanks to Eq. (4) in
~J ¼ Mxm~xx ^ _~x

m
. Therefore, Eq. (27) is a discretization of (10) if

~xnþ1 þ ~xn

2

" #x

^ ½~F nþ1=2

int �x ¼ 0 and
~xnþ1 þ ~xn

2

" #x

^ ½~F nþ1=2

diss �x ¼ 0 (28)

and if

Mxm½~Gnþ1=2

diss �x ^
_~x
nþ1 þ _~x

n

2

" #m

¼ 0. (29)

This last expression allows the numerical dissipation to conserve the angular momentum.

3.2.3. Conservation of energy

Thanks to Eqs. (17) and (18), the dot product between

_~x
nþ1=2 ¼

_~x
n þ _~x

nþ1

2
þ ~G

nþ1=2

diss

and Eq. (19) leads to

Mxm

2
½ _~xnþ1�x � ½ _~xnþ1�m

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Knþ1

�Mxm

2
½ _~xn�x � ½ _~xn�m

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Kn

þMxm½ _~xnþ1 � _~x
n�m � ½~Gnþ1

diss �x

¼ ½~xnþ1 � ~xn�x � ½~F nþ1=2

ext �x
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

W nþ1
ext �W n

ext

�½~xnþ1 � ~xn�x � ½~Fnþ1=2

int þ ~F
nþ1=2

diss �x, ð30Þ
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where the continuous kinetic energy K defined in Eq. (12) is dicretized thanks to Eq. (4) in

K ¼ 1
2
Mxm _~x

x � _~xm and where the power of the external forces _W ext defined in Eq. (12) is discretized

and integrated in W nþ1
ext �W n

ext ¼ ½~xnþ1 � ~xn�x � ½~F nþ1=2

ext �x. Let E be the discretized energy, let U int

be the discretized internal energy, let W int be the discretized work of the internal forces and let

DintX0 be the discretized internal dissipation during the step, all such that their continuous values

are defined in Eq. (13). Therefore Eq. (14) can be discretized into

Enþ1 � En ¼ W nþ1
ext �W n

ext � Dint � Dnum, (31)

where DnumX0 is the numerical dissipation during the step. If this last expression is compared with

Eq. (30), the internal forces must lead to

½~F nþ1=2

int �x � ½~xnþ1 � ~xn�x ¼ Unþ1
int �Un

int þ Dint (32)

and the dissipation values must lead to

Mxm½ _~xnþ1 � _~x
n�m � ½~Gnþ1=2

diss �x
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�DK

þ ½~F nþ1=2

diss �x � ½~xnþ1 � ~xn�x
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�DW

¼ DnumX0. (33)

The problem of the EDMC algorithm is to find a physically consistent expression of the internal

forces and of the dissipation terms that verify Eqs. (26)–(28), (29), (32) and (33). In a previous

work [9,10], we have developed a new expression of the internal forces, for an elasto-plastic

hypoelatic model, that verifies this conditions in the absence of numerical dissipation. The goal of

this paper is to establish the expression of the dissipation forces for such a model. It will be

achieved in the following section.

4. Expression of the forces for a hypoelastic model

In this section, we will establish the internal and dissipation forces expressions and

the dissipation velocities expression for an elasto-plastic hypoelastic model. First, we will

recall the hypoelastic model. Next, we will briefly expose the formulation of the internal

forces we have established in [9,10]. Then we will be able to extend this theory to the formula-

tion of the dissipation forces for such a model. The velocities dissipation will therefore

be given. Finally, the spectral analysis will prove that the high frequencies are numerically

dissipated.

4.1. The hypoelastic model

The two-point-deformation map F defined in Eq. (1) can be evaluated between configurations m

and n

Fn
m � q~xn

q~xm
with Fn

0 ¼ Fn
mF

m
0 . (34)
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Thanks to the Polar Decomposition theorem, this tensor can be decomposed into a rotation tensor

R and into a deformation tensor U

Fn
m ¼ Rn

mU
n
m with Un

m ¼ Un
m
T and Rn

m
T
Rn

m ¼ I. (35)

Therefore one can define the Green–Lagrange deformation tensor GLn
m, the Almansi deformation

tensor An
m and the natural deformation tensor En

m by

GLn
m � 1

2
½Fn

m
T
Fn
m � I�,

An
m � 1

2
½I� fnm

T
fnm�,

En
m � 1

2
ln½Fn

m
T
Fn
m�. ð36Þ

Cauchy stress tensor at configuration n is denoted R
n. Let Hijkl ¼ kdijdkl þ Gdikdjl þ Gdildjk �

ð2G=3Þdijdkl be the Hooke fourth-order tensor with operation H : E defined byHijklEkl and with k

the bulk modulus and G the shear modulus. Let us denote the corotational values (i.e. before the

rotation operation) with a superscript c. Then the corotational stress tensor is computed from

R
cnþ1½Rn þH : Enþ1

n � sc�, (37)

where sc is a deviatoric correcting term resulting from the J2 plasticity and computed from the radial

return mapping [19]. It is computed in the following way. Let the elastic predictor se be the deviatoric

part of Rn þH : Enþ1
n . If the elastic predictor lies outside the vonMises criterion in the stress space, the

step was, at least partially plastic and some corrections need to be introduced in the system. This

correction is evaluated in the following way. The unit normal tensor Nc (normal to von Mises criterion

in the stress space) is defined from se=
ffiffiffiffiffiffiffiffiffiffiffiffi
se : se

p
where the operation a : b is defined by aijbij. Let e

p be the

equivalent plastic strain and let Sv be the yield stress. Therefore, gp is a scalar such that [19]

½ep�nþ1 ¼ ½ep�n þ
ffiffiffi

2

3

r

gp and sc ¼ 2GgpNc (38)

and obtained from the von Mises criterion

½se � 2GgpNc� : ½se � 2GgpNc� ¼ 2

3
½Snþ1

v ðgpÞ�2. (39)

The final rotation scheme leads to

R
nþ1 ¼ Rnþ1

n R
cnþ1Rnþ1

n

T
. (40)

Let us note that such a formalism can be obtained with an heredity tensor defining the kinematic

hardening [9].

4.2. Expression of the internal forces

The internal forces at time tn are expressed by Eq. (15). In [9], we have proposed the following

expression of the internal forces for the EMCA integration scheme

½~F nþ1=2

int �x ¼ 1

2
½~F�

int þ ~F
��
int�x,

10



½~F�
int�x ¼

1

2

 Z

V0

f½Iþ Fnþ1
n �½RnT þ C��fn0

T~D
x
Jn
0gdV0,

½~F��
int�x ¼

1

2

Z

V0

f½Iþ fnþ1
n �½Rnþ1T þ C���fnþ1

0

T~D
x
Jnþ1
0 gdV0, ð41Þ

where C� and C�� are two correcting tensors resulting from the plasticity.

4.2.1. Conservation of linear momentum

Conservation of the linear momentum discretized in Eq. (26) is directly obtained from Eq. (41)

since
P

x
~D
x ¼ 0.

4.2.2. Conservation of angular momentum

Conservation of the angular momentum discretized in Eq. (28) results from the symmetric

nature of R, C� and C��. Effectively, after some algebra [9], and if � is the third-order permutation

tensor such that ~a ^ ~b ¼ � : ½~a� ~b�, with operation ½~a� ~b�ij ¼ ~ai~bj, Eq. (41) yields

½~xnþ1=2�x ^ ½~F�
int�x ¼

1

4
� :

Z

V0

f½Iþ Fnþ1
n �½Rn þ C��½Iþ Fnþ1

n �TJn
0gdV0

¼
Z

V0

f� : HJn
0gdV0 ð42Þ

that is equivalent to zero sinceH ¼ ½Iþ Fnþ1
n �½Rn þ C��½Iþ Fnþ1

n �T is a symmetric tensor and � is an

antisymmetric tensor. The same technique leads to ½~xnþ1=2�x ^ ½~F��
int�x ¼ 0.

4.2.3. Conservation of energy

The first thermodynamics principle discretized by (32) cannot be directly obtained for an

hypoelastic model since no internal potential can be defined. Some algebra [9] yields

½~F nþ1=2

int �x � ½~xnþ1 � ~xn�x

¼ 1

2

Z

V0

fGLnþ1
n : ½Rn þ C��Jn

0 þ Anþ1
n : ½Rnþ1 þ C���Jnþ1

0 gdV0 ð43Þ

that has to be equal to Unþ1
int �Un

int þ Dint to verify Eq. (32). In [9], we have proposed to study

Eq. (43) on a two-step cycle. The first step is an elasto-plastic loading step resulting in an internal

dissipation Dint, and the second step is an elastic unloading. Let Eel be the elastic part of the

natural deformations and Uel
n

nþ1
be the elastic part of the deformation

H : Eel
n

nþ1 � H : Enþ1
n � sc and Eel

n

nþ1 � 1
2
ln½Uel

n

nþ1
Uel

n

nþ1�. (44)

The existence of Uel
n

nþ1
is ensured from the symmetric nature of Eel

n

nþ1
. Therefore elastic tensor

GLel
n

nþ1
and Ael

n

nþ1
are defined from Uel

n

nþ1

GLel
n

nþ1 � 1
2
½Uel

n

nþ1
Uel

n

nþ1 � I�,

Ael
n

nþ1 � 1
2
Rnþ1

n ½I�Uel
n

nþ1�1

Uel
n

nþ1�1

�Rnþ1
n

T
. ð45Þ
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Elastic parts GLel and Ael of, respectively, GL and A, contribute to an increase of the reversible

energy (i.e. energy that is stored as internal energy and could be released by the material [9]).

Plastic part GLpl and Apl of, respectively, GL and A are obtained from

GLpl
n

nþ1 � GLnþ1
n �GLel

n

nþ1
and Apl

n

nþ1 � Anþ1
n � Ael

n

nþ1
. (46)

We have proved in [9] that Eq. (43), studied on the loading unloading cycle yields to

Dint ¼
1

2

Z

V0

fGLpl
n

nþ1
: R

nJn
0gdV0 þ

1

2

Z

V0

fGLnþ1
n : C�Jn

0gdV0

þ 1

2

Z

V0

fApl
n

nþ1
: R

nþ1Jnþ1
0 gdV0 þ

1

2

Z

V0

fAnþ1
n : C��Jnþ1

0 gdV0. ð47Þ

To be physically consistent, Eq. (47) has to be related with a physical quantity. The

positive internal plastic dissipation can be expressed from a volumic dissipation Dint obtained

from [10]

Dint ’ 1
2
epn

nþ1Snþ1
v Jnþ1

0 þ 1
2
epn

nþ1Sn
vJ

n
0. (48)

Let us define the tensors C� and C�� such that [10]

C� ¼ ðDint=J
n
0Þ � R

n : GLpl
n

nþ1

GLnþ1
n : GLnþ1

n

GLnþ1
n ,

C�� ¼ ðDint=J
nþ1
0 Þ � R

nþ1 : Apl
n

nþ1

Anþ1
n : Anþ1

n

Anþ1
n . ð49Þ

These tensors are symmetric (leading to the conservation of the angular momentum) and are

equal to zero when no plastic deformation occurs, as assumed. Therefore Eq. (47) can be rewritten

Dint ¼
Z

V0

fDintgdV0X0 (50)

that is consistent with the first thermodynamics principle.

4.3. Expression of the dissipation forces

In the previous section, it was shown that tensors C� and C�� defined in Eq. (49) and used in

Eq. (41), control the internal dissipation through Eq. (47). Therefore, we can control the

numerical dissipation in the following way. Let DW be a volumic potential. We propose the new

formulation of the dissipation forces

½~F nþ1=2

diss �x ¼ 1

2
½~F�

diss þ ~F
��
diss�x,

½~F�
diss�x ¼

1

2

Z

V0

f½Iþ Fnþ1
n �D�fn0

T~D
x
Jn
0gdV0,

½~F��
diss�x ¼

1

2

Z

V0

f½Iþ fnþ1
n �D��fnþ1

0

T~D
x
Jnþ1
0 gdV0 ð51Þ

12



with

D� ¼ ðDW=Jn
0Þ

GLnþ1
n : GLnþ1

n

GLnþ1
n and D�� ¼ ðDW=Jnþ1

0 Þ
Anþ1

n : Anþ1
n

Anþ1
n . (52)

The potential DW must verify the following conditions:

DW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GLnþ1
n : GLnþ1

n

q ! 0 if Unþ1
n ! I,

DW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Anþ1
n : Anþ1

n

q ! 0 if Unþ1
n ! I. ð53Þ

The algorithm will be second-order accurate if ~Fdiss ¼ OðDt2Þ. Therefore, the algorithm is second-

order accurate if DW ¼ OðDt3Þ and is first-order accurate if DW ¼ OðDt2Þ. We propose the

following expression of DW , that satisfies Eq. (53), and that leads to a first-order accurate scheme.

DW ¼ w

2
Eel
n

nþ1
: H : Eel

n

nþ1
Jn
0X0, (54)

where w is a user-defined parameter that controls the numerical dissipation. Its variation range will

be studied in a future section. A second-order accurate algorithm could be reached if Eq. (54) is

substituted by DW ¼ w
2
E�
n
nþ1

: H : Eel
n

nþ1
Jn
0 where E� is computed from an intermediate

configuration ~x� ¼ ~xn þ OðDt2Þ. Nevertheless, such an algorithm leads to an increase of the

number of equations to be solved and is therefore more expensive [12]. In this paper we focused on

first-order accurate schemes.

4.3.1. Conservation of linear momentum

Conservation of the linear momentum discretized in Eq. (26) is directly obtained from Eq. (51)

since
P

x
~D
x ¼ 0.

4.3.2. Conservation of angular momentum

Conservation of the angular momentum discretized in Eq. (28) results from the symmetric

nature of D� and D��. Proceeding such as with the internal forces, Eq. (51) yields

½~xnþ1=2�x ^ ½~F�
diss�x ¼

1

4

Z

V0

f� : ½Iþ Fnþ1
n �D�½Iþ Fnþ1

n �TJn
0gdV0, (55)

that is equivalent to zero since ½Iþ Fnþ1
n �D�½Iþ Fnþ1

n �T is a symmetric tensor and � is an

antisymmetric tensor. The same technique leads to ½~xnþ1=2�x ^ ½~F��
diss�x ¼ 0.

4.3.3. Evaluation of the numerical dissipation

The forces part of the numerical dissipation (DW ) expressed in Eq. (33) is obtained directly from

Eq. (51)

DW ¼ ½~F nþ1=2

diss �x � ½~xnþ1 � ~xn�x

¼ 1

2

Z

V0

fGLnþ1
n : D�Jn

0 þ Anþ1
n : D��Jnþ1

0 gdV0 ¼
Z

V0

fDW gdV0, ð56Þ
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that is always positive. The next goal to achieve is to determine the expression of the dissipation

velocities.

4.4. Expression of the dissipation velocities

The dissipation velocities have to verify Eq. (29) and the velocity part of Eq. (33).

Moreover, the expression of the dissipation velocity must lead to a spectral analysis

without bifurcation of the spectral eigenvalues to achieve the numerical dissipation of the high

frequencies. Armero and Romero [11,12] propose the following expression of the dissipation

forces:

Mxm½~Gnþ1=2

diss �m ¼
Z

V0

r0j
xDK

_~x
nþ1 þ _~x

n

k _~xnþ1k2 � k _~xnk2

( )

dV0 (57)

with _~x ¼ jx _~x
x
and k _~xk ¼ jxk _~xxk and with the specific kinetic potential DK that must verify

Dx
K

k½ _~xnþ1�xk � k½ _~xn�xk
! 0 if k½ _~xnþ1�xk � k½ _~xn�xk ! 0. (58)

Since the dissipation velocities are first-order accurate, the dissipation forces are also chosen first-

order accurate. Therefore we want DK ¼ OðDt2Þ such as

DK ¼ w
1

2
½k _~xnþ1k � k _~xnk�2X0. (59)

This expression differs from the one proposed by Armero and Romero (i.e. DK ¼ wk _~xnþ1 � _~x
nk2)

that does not lead to zero for an uniform rigid body rotation. A lumped expression of Eq. (57) can

also be used to improve the performance of the algorithm. It leads (without sum on superscript x,

but with velocities evaluated at node x)

½~Gnþ1=2

diss �x ¼ Dx
K

k½ _~xnþ1�xk2 � k½ _~xn�xk2
½ _~xnþ1 þ _~x

n�x
2

. (60)

Therefore, one gets (with the lumped mass matrix m such that Mxm ¼ mxdxm)

X

m

Mxm½~Gnþ1=2

diss �m ’ dxm
X

m

mmD
m
K

k½ _~xnþ1�mk2 � k½ _~xn�mk2
½ _~xnþ1 þ _~x

n�m
2

. (61)

Actually, combination of Eqs. (59) and (61) leads to the expression of the dissipation velocity

½~Gnþ1=2

diss �x ¼ w
k½ _~xnþ1�xk � k½ _~xn�xk
k½ _~xnþ1�xk þ k½ _~xn�xk

½ _~xnþ1 þ _~x
n�x

2
. (62)
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4.4.1. Conservation of angular momentum

Conservation of angular momentum Eq. (29) is verified since

X

m

X

x

½ _~xnþ1 þ _~x
n�x ^Mxm½~Gnþ1=2

diss �m

¼
X

m

mmD
m
K

k½ _~xnþ1�mk2 � k½ _~xn�mk2
½ _~xnþ1 þ _~x

n�m
2

^ ½ _~xnþ1 þ _~x
n�m ¼ 0. ð63Þ

4.4.2. Evaluation of the numerical dissipation

The velocity part of numerical dissipation (DK ) defined by Eq. (33) is evaluated by (using

Einstein’s notations)

DK ¼ ½ _~xnþ1 � _~x
n�x �Mxm½~Gnþ1=2

diss �m ¼ mmD
m
K ’

Z

V0

fr0DKgdV0X0. (64)

4.5. Spectral analysis

At this point, we have proved that our formulation is physically consistent and

numerically dissipative in the non-linear range. Now, we have to achieve the spectral analysis

to prove that the high frequencies are numerically dissipated. The spectral analysis leads to

properties of linear oscillators. So we restrict this demonstration to linearity. We expect

these properties to be still verified in the non-linear range. Let us assume a small transformation,

without plasticity, hypothesis with eij ¼ 1
2
ðq~xi=q~xj þ q~uj=q~xiÞ the small strain tensor. Therefore

one gets

Jnþ1
0 ’ Jn

0 and Rn
0 ’ I,

e
el
n

nþ1 ’ GLel
n

nþ1 ’ Ael
n

nþ1 ’ Eel
n

nþ1
,

Eel
0

nþ1 ’ Eel
0

n þ Eel
n

nþ1
and R

n ’ H : Eel
0

n
. ð65Þ

Let us assume a uniform tension problem with a displacement x. The elements are decomposed

with linear shape functions. Therefore, it comes, for one element of length l and of cross-section

A, the following incremental deformation tensor holds:

e
nþ1
n ¼ Fnþ1

n � I ¼ xnþ1 � xn

l

1 0 0

0 2G�3k
6kþ2G

0

0 0 2G�3k
6kþ2G

0

B
B
@

1

C
C
A

(66)

with k the bulk modulus and G the shear modulus. Only the first component of the stress tensors

is different from zero and it comes

R
n
11 ¼

xn

l

9kG

3k þ G
and R

nþ1
11 ¼ xnþ1

l

9kG

3k þ G
. (67)
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The first components of the forces vectors (41) and (51) become (at the first-order in x) with

Y ¼ ð9kGÞ=ð3k þ GÞ the Young’s modulus

½~Fnþ1=2

int �1 ¼
YA

l

xnþ1 þ xn

2
and ½~Fnþ1=2

diss �1 ¼
YA

l
w
xnþ1 � xn

2
. (68)

For a translation motion, the kinematic potential (59) is rewritten as DK ¼ w 1
2
½ _~xnþ1 � _~x

n�2 that is
correct while the velocity keeps the same direction between two steps. Since the lumped mass m

associated for each extremity is equal to rlA=2, if o2 ¼ 18kG=ð½3k þ G�rl2Þ, then Eqs. (17)–(19)

lead to

xnþ1 ¼ xn þ Dt

2
1þ w

_xnþ1 � _xn

_xnþ1 þ _xn

� �

½ _xnþ1 þ _xn�,

_xnþ1 ¼ _xn þ Dt

2
½ €xnþ1 þ €xn�,

€xnþ1 ¼ � €xn � o2 1þ w
xnþ1 � xn

xnþ1 þ xn

� �

½xnþ1 þ xn�. ð69Þ

This system of equations is equivalent to the one obtained by Armero and Romero [11] for a

spring model, and leads to the spectral matrix AsðOÞ

xnþ1

Dt _xnþ1

Dt2 €xnþ1

0

B
@

1

C
A ¼

1�O2

4
½1�w2�

DðOÞ
1

DðOÞ 0

�O2

DðOÞ
1�O2

4
½1�w2�

DðOÞ 0

�2O2

DðOÞ
�O2½1þw�

DðOÞ �1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AsðOÞ

xn

Dt _xn

Dt2 €xn

0

B
@

1

C
A (70)

with DðOÞ ¼ 1þ O2=4½1þ w�2 and with O ¼ oDt. This system is reduced to a two-dimensional

(2d) system with the two conjugate complex eigenvalues

l ¼ 1� O2=4½1� w2� 	 iO

DðOÞ . (71)

Armero and Romero [11,12] pointed out the necessity of considering dissipation velocities unless

there exists a bifurcation limit Ob that leads to real eigenvalues. Let Od and xd, respectively, be the

a-dimensional pulsation of the solution and the damp ratio of the solution

Od ¼ arctan
Il1

Rl1

� �

’ O� 1

4
w2 þ 1

3

� �

O3 þ OðO4Þ,

xd ¼
� lnð½Il1�2 þ ½Rl1�2Þ

2Od

’ w

2
Oþ OðO2Þ. ð72Þ

It comes directly that the error on the pulsation eO ¼ ðOd � OÞ=O and that the error on the

damping ratio ex ¼ xd are both first-order in Dt, leading to a first-order accurate scheme. The
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spectral radius of the response is then evaluated by

rdðOÞ ¼ klk ¼ 1

1þ ðO2=4Þ½1þ w�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� O2

4
½1� w2�

� �2

þ O2

s

. (73)

If 0pwp1 the spectral radius is always lower than unity. It is close to unity for the low frequencies

and tends to its minimal value r1 ¼ ð1� wÞ=ð1þ wÞ for the high frequencies.

5. Numerical examples

In this section, we will analyze the results obtained with the developed formulation and with the

traditional Newmark family on an academic case: the Taylor bar problem. Let us note that the final

purpose of this paper is to demonstrate the accuracy and robustness of the implicit scheme. We have

in mind combining the implicit scheme with an explicit one and therefore we need efficient time

integration. We do not claim better results than an explicit method, but we also compared the

solutions with a traditional central difference scheme. The following step will be to prove that our

formulation is able to simulate a more complex problem such as a blade loss problem.

5.1. Example 1: The Taylor bar

The problem consists in a cylindrical bar (external diameter de ¼ 6:4mm, length l ¼ 32:4mm)

made of an elasto-plastic material (Young’s modulus Y ¼ 117E9N=m2, Poisson’s ratio

n ¼ 0:35, density r ¼ 8930kg=m3, initial yield stress S0 ¼ 400N=mm2, hardening parameter

h ¼ 100N=mm2) that impacts a rigid wall with an initial velocity ( _x0 ¼ 227m=s). We study one

quarter of the cylinder. We use the discretization proposed by Meng and Laursen [8]. It is

discretized into 12 times 48 ¼ 576 elements (Fig. 1). The simulation occurs in 80ms. We will

compare the results obtained with 4 algorithms. For each algorithm, the spectral radius for an

infinite frequency is chosen as r1 ¼ 0:7. The different algorithms are

– the first-order accurate EDMC algorithm (EDMC-1) with w ¼ ð1� r1Þ=ð1þ r1Þ;
– the Newmark algorithm [1] with the first parameter b ¼ 1=ð½1þ r1�2Þ and the second

parameter g ¼ ð3� r1Þ=ð2þ 2r1Þ;
– the Hilber–Hughes–Taylor (HHT) [4] algorithm with the first Newmark parameter

b ¼ 1=ð½1þ r1�2Þ, the second Newmark parameter g ¼ ð3� r1Þ=ð2þ 2r1Þ and with the

internal forces interpolation parameter aF ¼ ð1� r1Þ=ð1þ r1Þ;
– the Chung–Hulbert (CH) [4] algorithm with the first Newmark parameter b ¼ 1=ð½1þ r1�2Þ,
the second Newmark parameter g ¼ ð3� r1Þ=ð2þ 2r1Þ, with the internal forces interpolation

x
0

Fig. 1. Mesh of the Taylor bar.
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parameter aF ¼ r1=ð1þ r1Þ and with the inertial forces interpolation parameter aM ¼
ð2r1 � 1Þ=ð1þ r1Þ;

– the explicit central difference scheme.

For each implicit algorithm we study the influence of the time step size that evolves in a range

from 0.1–1ms. For a time step size equal to 1:25ms, only the Newmark and the EDMC-1

algorithms have converged. Final results are reported in Table 1 and compared to an explicit

Table 1

Final results of the Taylor bar

Scheme Dt ðmsÞ Radius Length Maximal ep

EDMC-1 1 0.006499 0.02211 2.43

Newmark 1 0.006628 0.02166 2.52

HHT 1 0.006636 0.02157 2.52

CH 1 0.006609 0.02152 2.47

EDMC-1 0.5 0.006535 0.02189 2.43

Newmark 0.5 0.006628 0.02166 2.51

HHT 0.5 0.006601 0.02158 2.46

CH 0.5 0.006575 0.02154 2.44

EDMC-1 0.1 0.006555 0.02166 2.40

Newmark 0.1 0.006593 0.02162 2.48

HHT 0.1 0.006555 0.02166 2.38

CH 0.1 0.006549 0.02156 2.38

Central difference 0.053–0.061 0.006837 0.02163 2.54

Fig. 2. Final results (after 80ms) for the Taylor bar: difference with the explicit simulation.
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solution. If we compare the final length (Fig. 2a) it appears that the length difference with the

explicit scheme increases with the time steps size and is positive for the EDMC-1 scheme. It can be

easily understood since the energy numerically dissipated does not lead to deformation of the

cylinder. For the other schemes the tendency is less clear. We have the same conclusions when

analyzing the final radius (Fig. 2b). For the EDMC scheme, if the time step increases, the

deformation of the beam decreases and the final radius is less important. This tendency is not

respected for the other schemes. Finally, let us note that the differences are always lower than 5%.

That allows us to consider that since the deformation is directed due to the wave propagation, this

last one is correctly integrated with the implicit scheme. This is confirmed when analysing the
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energy. Fig. 3a represents the evolution, with the time step size, of the physically (plastically)

dissipated energy and Fig. 3(b) represents the energy numerically dissipated. In accordance with

the theory, since there are no bifurcation in the spectral analysis, if the time step size is increased,

the a-dimensional pulsation is increased and the energy numerically dissipated is increased.

Surprisingly, if the numerical dissipation is increased, the CH scheme overestimates the plastically

dissipated energy (Fig. 3a). For the other schemes, since a part of the initial kinetic energy is

numerically dissipated, the plastically dissipated energy is underestimated. Fig. 4a illustrates the

energy of the system (sum of the kinetic energy and the work of the internal forces minus the

plastically dissipated energy) of the bar. We can see that only the EDMC-1 leads to positive

energy for all the time step sizes, for the other schemes, if the time step increases, the plastically

dissipated energy becomes larger than the work of the internal forces. Thus, these schemes violate

the first principle of the thermodynamics. Fig. 4(b) illustrates the error on the system energy. All

the scheme leads to first-order accurate solutions, while a linear theory predicts that the CH and

of the HHT schemes are second-order accurate. We assume that in the non-linear range, the

second-order accuracy is no longer ensured. Equivalent plastic strains of the final configurations

are illustrated on Fig. 5. The solution obtained with a time step size equal to 1ms and with the

EDMC-1 algorithm is equivalent within less than 1% to the solution obtained with a time step

size equal to 0:1ms. For the other schemes, solutions with D ¼ 1ms overestimate the equivalent

plastic strain of about 5%.

From this example it clearly appears that the proposed scheme leads to positive numerical

dissipation and to accurate time integration for all the time steps studied. Nevertheless, it also appears

that the accuracy of the scheme depends on the size of the time step. Therefore when dealing with

complex problems we need to estimate the time step size from an integration error. We use a technique

that constantly adapts this size to the dynamics [20,21]. Then, we can claim that the algorithm is stable

and that the time step is small enough to correctly take into account the dynamics.

5.2. Example 2: Blade loss problem in an aero engine

A turbo-engine is modelled with a shaft that has an imposed revolution motion on one

extremity. At the other extremity, there is a disk with 24 blades. The shaft, the disk and the blades

are part of the rotor, which is in rotation in a stator. The stator is composed of a casing and a

bearing.

The rotor has a cyclic symmetry of 15 degrees (24 blades). Fig. 6a illustrates a 15-degree-sector.

The blade is defined thanks to a ruled surface that has two splines for extremities. The two splines

are described in Table 2. The blades are made of an alloy (density r ¼ 3600kg=m3, Young’s

modulus Y ¼ 88 000N=mm2, Poisson’s ratio n ¼ 0:31, initial yield stress S0 ¼ 880N=mm2 and

hardening parameter h ¼ 26 700N=mm2). The disk and the shaft are composed of another alloy

(density r ¼ 6300kg=m3, Young’s modulus Y ¼ 165 000N=mm2, Poisson’s ratio n ¼ 0:31, initial
yield stress S0 ¼ 800N=mm2, hardening parameter h ¼ 271N=mm2). The blade is discretized with

99 elements: 11 in length (elements at the head of the blade are 50% smaller than at the root), 9

elements in height and 1 element through the thickness. The disk has 2 elements through the

thickness and 72 elements on the circumference. The shaft has 1 element on its thickness and 11

elements on its length (8 for the constant section shaft and 3 for the conical part). The shaft has 72

elements on its circumference. The elements are 8-node bricks with constant pressure.
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At time t ¼ 0 s, the initial configuration of the rotor is equilibrated for a rotation velocity of

4775 rpm. This initial configuration is computed with a Newton–Raphson scheme where the

external forces are the analytical inertial forces computed from the nodes position and from the

imposed rotation velocity. The von Mises stresses resulting from this uniform rotation velocity are

illustrated in Fig. 6b. The blade pointed by an arrow is independent from the disk. To evaluate the

initial configuration, it is linked to the disk through an adhesion law (normal penalty kp ¼ 109,

Fig. 5. Deformation and equivalent plastic strain (after 80ms) for the Taylor bar.
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tangential penalty kT ¼ 108). After the initial configuration is evaluated, in order to simulate the

blade loss, this link is numerically removed thus creating some unbalance in the system and the

free blade interacts with the other blades and with the casing. The interaction between the blades

Table 2

Coordinates (mm) of the splines

Point Spline 1 Spline 2

1 ~x ¼ ð200; 0; 0Þ ~x ¼ ð791:9;�113:4; 8:9Þ
2 ~x ¼ ð199:3; 8:9; 19:7Þ ~x ¼ ð793:9;�94:7; 28:2Þ
3 ~x ¼ ð198:8; 16:3; 39:9Þ ~x ¼ ð795:1;�75:9; 47:5Þ
4 ~x ¼ ð198:3; 22:1; 60:7Þ ~x ¼ ð796:4;�57:0; 66:7Þ
5 ~x ¼ ð198; 26:3; 81:9Þ ~x ¼ ð797:6;�38:2; 85:9Þ
6 ~x ¼ ð197:9; 28:9; 103:4Þ ~x ¼ ð798:8;�19:4; 105:2Þ
7 ~x ¼ ð197:8; 29:7; 125Þ ~x ¼ ð800:;�0:6; 124:4Þ
8 ~x ¼ ð197:9; 28:9; 146:6Þ ~x ¼ ð799:8; 18:3; 143:7Þ
9 ~x ¼ ð198; 26:3; 168:0Þ ~x ¼ ð799:1; 37:1; 162:9Þ
10 ~x ¼ ð198:3; 22:1; 189:2Þ ~x ¼ ð798:0; 55:7; 182:3Þ
11 ~x ¼ ð198:8; 16:3; 210:1Þ ~x ¼ ð796:5; 74:3; 201:8Þ
12 ~x ¼ ð199:3; 8:9; 230:3Þ ~x ¼ ð794:6; 92:6; 221:4Þ
13 ~x ¼ ð200; 0; 0:25Þ ~x ¼ ð792:3; 110:7; 241:3Þ

Fig. 6. Description of the problem model.
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and the casing is simulated with a Coulomb friction law (normal penalty kp ¼ 109, tangential

penalty kT ¼ 107, friction coefficient mc ¼ 0:1). The interaction between the free blade and the

other blades is simulated with the same law. Contact interactions between attached blades are

simulated with a frictionless law (normal penalty kp ¼ 109).

The casing is a cylinder made of an aluminum alloy (density r ¼ 2710kg=m3, Young’s modulus

Y ¼ 55 200N=mm2, Poisson’s ratio n ¼ 0:31, yield stress S0 ¼ 550N=mm2 and hardening

parameter h ¼ 281N=mm2). Its geometry is illustrated in Fig. 7a. The bearing has a conical

geometry (Fig. 7a and b) and is made of an alloy (density r ¼ 3600kg=m3, Young’s modulus

Y ¼ 88 000N=mm2, Poisson’s ratio n ¼ 0:31, yield stress S0 ¼ 550N=mm2 and hardening

parameter h ¼ 2600N=mm2). The displacement of the shaft is restrained by the bearing thanks

to a central node (Fig. 7b). There are springs between the central node and the extremity nodes of

the bearing and there are springs between the central node and two rows on nodes of the shaft.

Each spring has a stiffness of 108N=mm and a mass M ¼ 0:05 kg is associated with the central

node. The bearing and the casing have 1 element through the thickness. The casing has 36

elements along the circumference and 8 elements through its length. The bearing has 3 elements

through its length and 20 along its circumference. The elements are 8-node bricks with constant

pressure.

We analyze the first revolution of the rotor after the blade loss with an EDMC (first-order

accurate) algorithm with a spectral radius equal to r1 ¼ 0:8. The time step size is computed from

an automatic criterion [20,21] and with an accuracy of 10�4 on the integration error [20,21] and

the choice of updating the Hessian matrix is computed from automatic criteria [20,21]. Each time

step is computed with a Newton–Raphson scheme (Tolerance 10�5) enhanced by a line-search

system [18] (Tolerance 10�3). The contact interactions are simulated with the physically consistent

penalty method proposed by Armero and Petöcz [22,23]. Let us note that we adapted this method

to normal-discontinuous surfaces [13]. We will compare the results obtained by this EDMC-1

implicit method with the results obtained by the explicit scheme proposed by Chung and Hulbert

[24] that also exhibits numerical dissipation (spectral radius at bifurcation rb ¼ 0:4).
Fig. 8 illustrates the configuration after a quarter of revolution. The free blade interacts with the

first next (attached) blade. Fig. 9 illustrates the configuration after half a revolution. The free

blade remains between the attached blades and the casing and the attached blades bend. The head

Fig. 7. Model of the stator (mm).
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Fig. 9. Configuration and equivalent plastic strain after 1
2
round.

Fig. 8. Configuration and equivalent plastic strain after 1
4
round.

24



Fig. 10. Configuration and equivalent plastic strain after 3
4
round.

Fig. 11. Configuration and equivalent plastic strain after 1 round.
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of the free blade enters into contact with the fifth linked blade. Fig. 10 illustrates the deformation

after three quarters of a revolution. The head of the free blade has led the fifth blade to bend

significantly, and the free blade is pushed towards the rear of the casing. Fig. 11 illustrates the

results after one revolution. The free blade was pushed away from the disk so that the remaining

interactions only occur between the linked blades and the casing.

The total force on the bearing is illustrated in Fig. 12a. It appears that this force is linear during

the first instants, when the bearing reacts to the presence of an unbalanced shaft. But when the

free blade interacts with both the linked blades and the casing, the force starts oscillating. Implicit

and explicit solutions have the same maximal values. The time evolution of the force on the casing

(Fig. 12b) results from the interaction of the blades on the casing and the force oscillates during

the whole simulation. Implicit and explicit solutions exhibit the same amplitude peak. This

example is an approximation of a real turbo-engine. So we can only compare the implicit solution

to the one obtained with an explicit code. But the dynamics is similar to what happens in a real

turbo-engine: once the blade is lost it hits the following blades and the casing becomes oval.

Fig. 12. Time evolution of the clamping forces.

Fig. 13. Computational cost of the blade loss.
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Finally Fig. 13a illustrates the time evolution of the time step size. Most of the time the time

step of the implicit method is more than ten times higher than the time step of the explicit method.

Since the contact algorithm is very expensive compared to the time needed to solve the explicit

scheme, the computational time of the implicit scheme is lower than the computational time of the

explicit method (Fig. 13b).

6. Conclusions

In this paper we have extended the Energy Dissipative Momentum Conserving algorithm to the

elasto-plastic hypoelastic model. We have proved mathematically that this method is stable in the

non-linear range and that the numerical dissipation is always positive. We have also performed a

spectral analysis in the linear range and have shown that no bifurcation occurs. Next, we have

illustrated the accuracy of the proposed method on an academic example. Even for large time step

sizes in the non-linear range the stability and the accuracy were preserved although the method is

only first-order accurate. By using an automatic time stepping algorithm that ensures accuracy

and by considering a physically consistent contact algorithm we were able to present a blade loss

problem. This demonstrates the ability of the method to simulate more complex dynamics

phenomena. We have compared the results obtained with the results of an explicit simulation.

Since the results are similar, we have now an efficient implicit algorithm. Our final purpose is to

use this implicit algorithm to achieve an implicit/explicit combination. This combination will be

useful when dealing with complex problems.

Appendix. The Jacobian matrix

To be able to evaluate analytically the Jacobian matrix defined by Eq. (22), we need to known

the expression of the dissipation velocities derivative (G) and the expression of the stiffness matrix

(K), both defined in Eq. (23).

Let us evaluate tensor Gð _xmÞ. Eq. (62) leads to

Gð _xÞ ¼ q

q _~x
nþ1

~G
nþ1=2

diss ¼ w
k _~xnk

k _~xnþ1k½k _~xnþ1k þ k _~xnk�2
½ _~xnþ1 þ _~x

n� � _~x
nþ1 þ w

2

k _~xnþ1k � k _~xnk
k _~xnþ1k þ k _~xnk

I.

ðA:1Þ
The stiffness matrix was evaluated for the internal forces in [10]. The part coming from

the dissipation forces is evaluated exactly in the same way. Therefore, in this paper we

only give the expression that differs. To derivate Eq. (41), one needs to know the derivation

of the dissipation Dint defined by Eq. (48). Because of the analogy between the internal

forces expressed by Eq. (41) and the dissipation forces expressed by Eq. (51), the only new

term to be evaluated is the derivation of the internal dissipation potential expressed by Eq. (54).

It leads to

qDW

q½~xnþ1�m
¼ w

2
Eel
n

nþ1
: H :

qEel
n

nþ1

q½~xnþ1�m
Jn
0 þ

w

2

qEel
n

nþ1

q½~xnþ1�m
: H : Eel

n

nþ1
Jn
0. (A.2)
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Let us define M̄ the fourth-order tensor such that

Rnþ1
n

q½H : Enþ1
n � 2GgpNc�
q½~xnþ1�m

Rnþ1
n

T
� �

ijk

¼ M̄ijkl ½fnþ1
0 �ml

~D
m

m. (A.3)

Its expression can be computed [25,19]: M̄ijkl ¼ kdijdkl þ g�dildjk þ g�dikdjl � ð2g�=3Þdijdkl �
2g�m�NijNkl with g� ¼ bG,

b ¼
ffiffiffi

2

3

r

Sv;nþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
se : se

p ; m� ¼ g�

1þ h
3g�þ½b�1�h

and h ¼ qSv

qep

nþ1

,

yielding

qDW

q½~xnþ1�m
¼ w½Rnþ1

n Eel
n

nþ1
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n
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[15] Noels L, Stainier L, Ponthot J-P. Combined implicit/explicit algorithms for crashworthiness analysis. Int J Impact

Eng 2004;30:1161–77.

28

http://www.dx.doi.org/10.1016/j.ijimpeng.2005.06.003


[16] Noels L, Stainier L, Ponthot J-P. Energy conserving balance of explicit steps to combine implicit and explicit

algorithms in structural dynamics. Comput Methods Appl Mech Eng, accepted for publication, doi:10.1016/

j.cma.2005.03.003.

[17] Antman S, editor. Non linear problems of elasticity. Berlin: Springer; 1995.

[18] Crisfield M. Non-linear finite element analysis of solids and structures, vol. 1. New York: Wiley; 2001.

[19] Ponthot J-P. Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and

elasto-viscoplastic processes. Int J Plasticity 2002;18:91–126.

[20] Noels L, Stainier L, Ponthot J-P, Bonini J. Automatic time stepping algorithms for implicit numerical simulations

of non-linear dynamics. Adv Eng Software 2002;33(10):581–95.

[21] Noels L, Stainier L, Ponthot J-P. Self-adapting time integration management in crash-worthiness and sheet metal

forming computations. Int J Vehicle Design 2002;30(2):67–114.
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