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Simplified methods and a posteriori error estimation for the 
homogenization of representative volume elements (RVE) 

Nicolas Moesa, J. Tinsley Oden,a·*, Kumar Vemagantia, Jean-Fran�ois Remacleb 
'The Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, Austin, TX 78712, USA 

bEco/e polytechnique de Montreal, Departement de genie micanique, Campus de l'Universite de Montreal, 13T 114 Montreal, Quebec, 
Canada 

Homogenization techniques usually rely on solving a boundary value problem on the representative element volume (RVE). This problem 
is generally complex to solve when the micro-structure is realistic, especially in three dimensions. In this paper, we develop two simplified 
methods providing approximate micro-fields over the RVE. These fields yield upper and lower bounds to the exact homogenized property. 
The a posteriori estimation of the modeling error introduced by the simplified methods is thus straightforward. Both simplified methods are 
based on a two-scale strategy. The RVE is decomposed into subdomains over which the solution is sought as a smooth part (meso-scale) plus 
a correction (micro-scale). The correction is expressed in terms of smooth part through a prolongation operator. This operation is performed 
independently on each subdomain and is thus readily parallelizable. Then, the smooth part of the solution is obtained by solving a 'meso' 
problem involving all the subdomains. In the numerical experiments, we consider 2-D linear scalar diffusion problems with periodic 
boundary conditions on the RVE. The RVE is made of a two-phase material consisting of a matrix in which circular or elliptical inclusions 

are distributed randomly. Numerical examples are computed in a parallel computation done on a cluster of 16 Intel P.C.

1. Introduction 

We are interested in the linear multi-scale problems of the type suggested in the sketch in Fig. 1. The structure
(macro-scale) is assumed to be obtained by the periodic repetition of the representative volume element 
(meso-scale). The RYE is considered to be complex so that it may decomposed into micro-scale entities. 
Roughly speaking, the meso-scale involves the inclusions interactions whereas the micro-scale involves the 
inclusion-matrix interactions. 

The size of the RYE is assumed to be small compared to the macro-scale so that the 'asymptotic' 
homogenization theory applies [l]. The homogenized properties are obtained by solving a periodic boundary 
value problems on the RYE. This problem is difficult when the micro-structure is complex so that simplified 
techniques have been proposed in the literature [2-4]. 

In this paper, we introduce a new method in which the solution over the RYE is modeled as the sum of two 
components: meso-scale and micro-scale components. One of the main concerns in the development of the 
method is to be able to obtain an a posteriori estimate of the modeling error introduced. In this sense, the present 
work is related to previous work on hierarchical modeling of heterogeneous bodies by Oden et al. [5-7]. We 
also note that a similar approach to homogenization techniques for porous media is being developed by 
Arbogast [8] using mixed finite element techniques. 

* Corresponding author. 
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Macro-scale Meso-scale CRVEJ Micro-scale 
Fig. I. The different scales associated to the model problem. 

The proposed approach consists of five steps: 
(I) The RVE is decomposed into subdomains whose sizes are approximately the size of the micro features in

the RVE, Fig. 3. 
(2) On each subdomain, the solution is expressed as the sum of a meso-scale and a micro-scale component. 
(3) Still on each subdomain, the micro-scale part of the solution is expressed in terms of the meso-scale part 

through a boundary value problem (homogenization step). 
( 4) The subdomains are assembled to define a meso-scale problem to be solved on the RVE.
(5) The meso-scale being known, one recovers the micro-part of the solution on each subdomain using the 

results of the third step above (localization step). 
By properly choosing the type of boundary conditions used in step 3 and the way the subdomains are assembled 
to create the meso-problem in step 4, it is possible to obtain lower and upper bounds to the exact homogenized 
properties of the RVE. The modeling error is thus easy to estimate. 

Concerning the practical implementation of the methods, parallel computing resources are used, especially for 
steps 3 and 5. Also, for flexibility, finite elements are used in step 3. 

The plan of the paper is as follows. In Section 2, the problem to be solved on the RVE is detailed, first in the 
strong form and then in two equivalent variational forms: primal and hybrid. Section 3 introduces the two 
simplified methods to model the reference problem and the bounds on the homogenized property are derived. 
Then, Section 4 is devoted to the practical case of the use of the finite-element method to solve the boundary 
value problems appearing in the simplified strategies. Numerical experiments are carried out in Section 5 and the 
major points of the paper are summarized in the conclusion. 

2. Description of the problem 

Scalars will be italic and vectors bold. For instance, the temperature will be denoted by u and the heat flux
and the temperature gradient will be denoted by u and E, respectively. More complex operators will be 
uppercase (e.g. E for the conductivity tensor). We consider a cell n = (-1, l )n, n =I, 2, 3, occupied by a
heterogeneous linearly-conductive material, Fig. 2. We assume that n contains no holes or cracks. We denote by
an the boundary of n and n the outward unit normal along an. We define an# as the set of pairs of point
facing each other on the boundary of fJ: 

a!J#={(x, x'):x, x'Eu!J, x#x', (x-x')An n outward normal at x} 

The average over n of a field a defined on n will be denoted by (a). 
Assuming periodic boundary conditions, the homogenization problem to be solved on il is to find a triple

(u, E, u) such that the temperature constraints, the conservation law and the constitutive law hold:
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Fig. 2. Geometry of the RVE problem. 
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Fig. 3. Domain decomposition. 

E=E+Vu on 11, (E)=E 
div u=O on n (u)=u 
u(x)=u(x') V (x,x')EiJ!J# (1) 
u(x)·n = u(x')-n' V (x,x')EiJ!J# 
u=EE on n 

Either E or u is given. In the sequel we shall consider E as given. The conductivity_lensor E is a function of
position x i.e. E = E(x) EL "'(!J)nxn and E is symmetric and eUiptic; i.e. for a.e. x E!J, there are constants a0, 
a1 >0, such that a0a1a�a1E(x)a�a1a'a for any aEIRn. Problem (1) corresponds to a heat transfer
homogenization procedure problem if - u is understood as the heat flux. 

REMARK. Let (u, E) be a heat flux, temperature gradient pair satisfying the first four equations of the problem
( 1 ) . This pair satisfies Hill's macrohomogeneity equality (see [9)):

(2) 

This equality expresses the equality of virtual work between the microscopic scale and the macroscopic scale. 
The remainder of this Section is devoted to the description of two variational formulations associated to the 

strong form ( 1 ). The first is the classical primal formulation which corresponds to the minimization of the
potential energy. The second is the primal hybrid formulation which involves a saddle-point problem. 

2.1. Primal formulation 

Using the convenient notation, u = E · x, and eliminating E and u in ( 1), we obtain a formulation involving
only the temperature field: 
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div(EV(u+u))=O
} u(x)::::u(x') V(x,x')Eail# 

((EV(u +u))-n') Ix +((EV(u +u))·n')lx' =0 V (x, x')EiJil# 
A weak fonnulation of problem (3) is to find uE r# such that

B(u +u,v)=O VvE"fl'# 
where 

B(u, v)= L EVu·Vv dx 

Owing to the assumed properties of E, B( ·, · ) is symmetric coercive and induces the energy norm on '11': 

llvllEW) ={B(v, v)}112

(3) 

(4) 

(5) 

Problem ( 4) possesses a unique solution for given u and, as is well known, this solution also minimizes the total 
potential energy J(v) =tB(v +u, v +u) 

J(u)= inf J(v) ver,,. (6) 

REMARK. The minimization problem (6) defines the solution u as a function of the data E: u = u('E). There
exists a linear symmetric and elliptic operator EHoM such that

J(u(i)) 1 
HOM-E E·E, 

and the homogenized constitutive relation associated to the RYE is u=EHOM E (see [l]).

2.2. Primal hybrid formulation 

(7) 

This type of fonnulation has been introduced in [10, 1 1] and mathematically studied in [ 12, 13]. We need a 
partition [!/' of the domain il into N subdomains ilk, 1 �k�N:

k#l (8) 

For any ilk C[J, we denote by ank the boundary and nk the unit outward nonnal along ilk. iJil,, is assumed to be
Lipschitz. Each ilk is assumed to be the image of a master element fJ under an affine invertible map Fk,
1 �k�N. We need three spaces: the space °If' of non-confonning temperatures 

(9) 

where w* is the restriction of w to Ilk, the space .Ji of continuous heat fluxes across the boundary of the
subdomains 

and the subspace .Ji# C.Ji of anti-periodic fluxes on ail 
.Ji# ={µE.Ji : µ(x)+ µ(x')=O V (x, x')E all#} 

The primal hybrid fonnulation is to find a pair (w, A)E "WX.Ji# such that

{A(w+u,v)+C(v, A)=O VvE"W 
C(w, µ)=0 V µE.Ji# 

( 10) 

( 11) 
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where 

A(w, v) = ± f EVw ·Vv dx, k=I Jnk C(v, µ)= �1 in* µv ds (12)

Here 'fan* µv ds' denotes the duality pairing on H-112(iJ{}k) and H112(iJ{}k). Using the results in [12], one can
show that 

• problem ( 1 1) has a unique solution (w, A); the solution w belongs to "If'# and is equal to the solution u of
(4);• problem ( 11) is equivalent to the saddle point problem

L(w, A.)= inf. sup L(v, µ)= sup inf L(v, µ) uE '# µ,E.!ll!I' µ,E.Al;;; uE 'W 

where 

L(v, µ)=J(v) + C(v, µ) 

• the solution (w, A.) to ( 1 1) and the solution u to ( 4) satisfy the equality

L(w, A)=J(u) 

(13) 

(14) 

( 15) 

It is clear that if w is sufficiently smooth, the multipliers A are the boundary fluxes A=(EV(w + u))·n on 
subdomain boundaries. 

3. Two-scale modeling strategy 

The goal is to replace the spaces "If'# and .;f,f,# by the subspaces fr# C "If'# and ;{.{,# C .;f,f,# so that the
approximate solutions ii and (w, A) defined by 

J(ii)= inf J(v) (16) 
uEY# 

L(w, A)= inf sup L(v, µ) uE 'W µ,E.it# 
( 17) 

yield upper and lower bounds to the exact energy 

L(w, A)�L(w, A)=J(u)�J(ii) ( 18) 

and thus upper and lower bounds to the homogenized properties owing to (7). 
The construction of the subspaces uses a two-scale representation of the solution: a meso-scale component 

will take into account the interaction between the subdomains and a micro-scale component will depend on the 
micro-structure of each subdomain. In the sequel, the superscript 'M' shall denote meso-scale related quantities 
and the superscript 'm' the related micro-scale quantities. 

3.1. Upper bound 

We particularize the partition [!f> by assuming that it is a triangulation of the set {} and that each subdomain
{}k is a polyhedron. As indicated earlier, each {}k C {} is the image of fl through an affine invertible mapping

Fk. The boundary of each ii will be denoted by ail. The approximate temperature field ii is sought as the sum of 
a smooth conforming temperature field uM which is polynomial over each subdomain and a 'rough' correction 
field um having a zero value on the boundary of each subdomain. More precisely, on each subdomain nk, we
define the spaces "If'� and r: such that
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r� ={v EH1(flk): v = 0 °F;1, 0 E PP(i})}
r: ={v EH1(flk): vk = 0 on a.q} 

(19) 

(20) 

where P (n), p 2:: I, is the space of polynomials of degree � p in the n variables x11 • • •  , xn defined over fJ. p -
We also define the corresponding global spaces 'V� and r: and the space of approximation 'V# 

'V� ={v E 'V#: vk E 'V�, 1 � k �N} n C0(fl) 
r: ={v E "/!'#: vk E r;, I �k�N} 

M m M E <¥/"M m cyf"m} v + v : v r #• v E r # 
It is not difficult to show that the inclusion r# c 'V# holds.

Let us now detail the practical treatment of (16). Using the decomposition (23), we obtain 

inf J(V) inf inf J(VM + Vm) 
vE'Y# vMer� vmer:;J 

The second infimum may be split into a sum of independent infima: 

N 

where 

2: inf Jk(v� + v;) k=l u}i'E'r}i' 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

In the minimization problem (25), v� is considered as an imposed parametric function belonging to 'V�. For
each subdomain, the infimum is given by v; = u:(v�) +u; where u;(v�) is defined for all v� E 'V� by the 
problem 

u:(v�) E r;: Bk(v� + u;(v�), v:) = 0 'rt v: E r: 
and u; is defined by the problem

We can introduce the local homogenized potential by 

J�0m(v�) = J*(v� + u;(v�) +u;)

Noting that "/!'� C f1�= 1 'V�, the minimization problem (16) takes the form

N J(ii) 2: J�om(v�)k=l 
3.2. Lower bound 

We need to build the subspace it,# C Ad# where Ad# is recalled below:

.4t# ={µ E Ad:µ(x) + µ(x') = 0 'rt (x, x') E an#} 
Ad ={µ E fi H-112( aflk); 3T E H(div; fl) s.t. T · nk =µon an*' I �k �N} k=l 

(27) 

(28) 

(29) 

(30) 

This is done using the ideas developed for hybrid finite elements, (see [12,13]). First, we design a subspace 

Ad� CH-112( aflk). We denote Sm(iJ!J) the set of all functions defined over an whose restrictions to any

(n -1 )-dimensional face n1 of an are polynomials of degree � m. 
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Then, we build .it# .;f;{ � C .;f;{# as

.;f;{� ={µ E Al,M: µ(x) + µ(x') = 0 V (x, x') E an#} 

.;f;{M ={µED .;f;{�; µIan,+ µIan/= 0 on flk n n,, v flk, n, s.t. nk nn, :;i: 0}
The saddle-point problem (3.2) now reads 

L( w, ,\ M) = inf sup L(v, µM) vE'W ,,Me.M �

This problem may be proved to be well posed using the results in [12,13].

(31) 

(32) 

(33) 

(34) 

For the implementation of the saddle-point problem (34 ), it is useful to decompose the space °JI! into meso
and micro components: 'W'M and wm. The decomposition is performed independently in each subdomain and
must satisfy the direct sum relation 

which must be understood in the following algebraic sense 

{ w� n w; = {o}
\./ M O/Jl'M m "IJl'm M m "IJI' vv Errk,v E/frk:v +v En•k 
v v E 'W'k: 3!vM E 'W'�, vm E w:: v = VM + vm 

(35) 

(36) 

EXAMPLE. As an example of such a decomposition, we may take 'W'� = 'V� defined previously equation (19)
and w; as the orthogonal complement in the H1(lJk) inner product, all the constant modes being excluded:

(37) 

Note that for a given choice of 'W'�, the choice of w: satisfying the conditions (36) is not unique. The
choice in the example above is particular since orthogonality is not required. 

The local decomposition (35) leads to the global decomposition 'W' WM EB w m where

°JYM ={v EL 2(lJ); vk E 'W'�, } ,,,;;; k �N} (38) 

'W'm ={v EL 2(fl); v* E w;, 1..:;;; k..:;;; N} (39) 

Introducing the decomposition of 'W' in the saddle-point problem (34), we obtain

inf sup L(v, µM) = sup inf L(v, µM) uE'W µME.Jl � µMe..«� vE'W 

N 
sup inf L inf Lk(v� + v;, µ�)  µ.Me,«;;! vMewM k=l u);'EW);' 

where 

(40) 
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We define on each subdomain the homogenized functional 

Lhom(vM M) - i·nf L (vM + vm M) '-' (vkM' "kM) E OfH'kM X s;kM k k ' µk - k k k ' µk ' v ,..., ff Jiit vr1E'U'"r:' 

Noting that 

N 
w � = f1 w�,k=l 

the saddle-point problem (3.19) finally takes the form 

L(w,AM)=Lhom(wM,AM)= inf sup Lhom(VM,µM) vME'wM J.LME.Jt ;;! 

where 

N L hom(VM M) ="' L hom(VM M) ' µ .:::.,, k k ' µk 'k=I 

(41) 

(42) 

(43) 

(44) 

REMARK. The problem (43) is well posed since the problem (34) is well posed and the fact that the direct sum
condition (35) is imposed. On the contrary, the following saddle-point problem is not necessarily well-posed 

(45) 

The construction of the homogenized functional L horn somehow ensures automatically the satisfaction of the 
LBB condition. 

4. Finite element approximation 

We now consider the practical case in which the subdomains ilk , I � k � N are meshed using finite elements,
defining local finite element spaces W� C 'W',, = H 1 (ilk ). We assume that the meshes are conforming from
subdomain to subdomain and that the periodicity condition may be exactly imposed. More precisely, the local
finite element spaces w;, 1 � k � N are assumed to be such that

'Y� = {v E C0(il): vk E WZ, v(x) = v(x') 'rJ (x, x') E ail,..}-::/' {O} 
The primal reference problem (2.6) now reads 

J(uh) = inf J(v) 
vE'Yi 

whereas the primal hybrid formulation (13) is now 

L(wh, Ah)= inf sup L(v, µ) 
vEWh J.LEAI.# 

where wh is defined by

°JJl'h ={w EL 2(il); wk E w:, 1 � k �N} 
We have the properties 

(46) 

(47) 

(48) 

(49) 

• the saddle point problem (48) has a unique solution wh. This solution belongs to 'Y� and is equal to the
solution uh of ( 47); the solution Ah is not necessarily unique. • the following equality holds: L(wh, Ah)= J(uh). 

As before, the goal is to compute approximate solutions (wh, A1) and iih providing lower and upper bound to 
the true energy i.e. 
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4.1. Upper bound 

The upper bound is obtained by constructing a subspace r:, C 'V� and by defining ii h as 

J(iih) = inf J(v) 
ver� 

r: is built as follows. On each subdomain fJk, we define the spaces 'V�·h and r;:·h such that 

r�·h ={v E 'W'�: 3vM E 'VM: v = �vM} 
r:·h ={v E 'W'�: vk = 0 on ank} 

� is a projection operator defined by

ll. GYl'M GY/'M.h . M M,h, M,h _ M ,. n 
dB ( M,h ) _ B ( M )l.i E ctf'm,h k' r k -t r k • u -tu . u - u on uHk an • u , v - k u , v v v r k 

(50) 

(51) 

(52) 

(53) 

If the condition UM.h = UM On ()flk does not hold, other types of projections may be Considered. The
corresponding global spaces are 

'V�,h ={v E r:: vk E 'V�.h, 1::;;; k.:;;; N} n C0(fJ) 
r:·h ={v E 'V�: vk E r;·h, 1::;;; k::;;; N} 
� ={v = VM + Vm: UM E 'V�'h, Vm E r:·h} = 'V�,h + r:·h

(54) 

(55) 

(56) 

and the inclusion r:, C r: holds. The practical computation of (51) follows the same step as in Section 3.

4.2. Lower bound 

The lower bound in (50) is given by 

L(wh, Xh) inf sup L(v, µM) 
vE'W µ,E.if.# 

(57) 

where .it.#= At,� CA(,# was defined in (32). Using the results in [12,13], the solution to the saddle-point
problem (57) exists and is unique if the following condition is satisfied for all k, 1.:;;; k.:;;; N 

{µEAt,�;VvE'W'�f µvds o} {O} iJ!lk (58)

A way to ensure this condition in practice is to require that number of degrees of freedom charactering the 
temperature field on the boundary ank is strictly larger than the number of degrees of freedom characterizing the
flux on ank. 

The practical computation of (57) follows the step detailed in Section 3. We work with the spaces 'W'�,h and w:·h on each subdomain that must satisfy the direct sum condition

EXAMPLE. We take 'W'�,h 
lYIJ'm ,h ' YJI k 

(59) 

(60) 
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5. Numerical experiments 

We consider two 2-D numerical experiments. In both experiments, the domain is decomposed into 
quadrilateral subdomains over which a bilinear finite element type representation of the meso-scale temperature 
is used (in both primal and hybrid approach). For the hybrid approach, the micro temperature space is defined by 
(60) and the fluxes along the edges of the quadrilateral are constant.

5.1. RVE with circular inclusion 

As a first simple problem, we consider the RVE shown in Fig. 4 containing 7 circular inclusions. The matrix 
and the inclusions are made of an isotropic heat conductor material whose conductivities are 1 and I 00, 
respectively. The imposed temperature gradient is E = (1, 0). The computation on the full mesh shown Fig. 5
gives the reference solution, Fig. 6. The reference homogenized heat conductivity in the x direction is 
K= 1.4399. 

The RVE is decomposed into 9 subdomains along the lines shown Fig. 4. The computation needed for the 
conforming and hybrid approach is split among 9 processors of a cluster of Intel machines running Linux. The 
conforming and hybrid approaches give the solutions shown in Figs. 7 and 8, respectively. The bounds obtained 
on the homogenized conductivity are 

K _ = 1.3903 ::;:; K = 1.4399 ::;:; K + = 1.4787 (61) 

whereas the Reuss and Voigt bounds are 1.09 and 18.92! The error on the average, (K)= (K+ + K_ /2) 1.4345, 
is bounded by £K = (K+ - K_)/(K+ + K_) = 3.08%. 

In Figs. 9 and 10, we observe, as expected, that the 'conforming' temperature field is continuous whereas the 
'hybrid' temperature field is not. On the other hand, the hybrid approach yields continuous heat fluxes but the 
conforming approach does not. 

Concerning the quality of the micro-field, the energy error in the difference of the conforming and hybrid 
temperature field is 

0 

0 

0 oo 
Fig. 4. RVE with circular inclusions: geometry of the problem 
and domain decomposition. 

(62) 

Fig. 5. The mesh defining the reference solution (4 141 DOF). 
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Fig. 6. Reference temperature field. 

1.683E·01 

8.316E·02 

·2.010E·03 

·8.718E·02 

·1.724E·01 

1 .652E-01 
7.777E-02 

-9.615E-03 
·9.700E-02 
-1 .844E-01 

1.683E·01 

8.316E·02 

·2.010E·03 

·8.718E·02 

·1.724E·01 

Fig. 7. Temperature field obtained by the conforming approach. Fig. 8. Temperature field obtained by the hybrid approach. 

The h index is omitted for the sake of simplicity of notation. The quantity €rn /2 12.02%, gives the exact error 
on the average in the two solutions: 

(63) 

The proof may be found in [14] and uses the Prager-Synge hypercircle theorem [15]. 
The errors discussed above are modeling type errors. They come from simplified assumptions on the fluxes or 

temperature on the boundary of each subdomain. Table 1 gives the influence of the quality of the mesh on these 
modeling error. We observe a strong stability of the modeling errors when the mesh is refined. 
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Fig. 9. x component of the heat flux obtained by the conforming 
approach. 

Fig. 10. x component of the heat flux obtained by the hybrid 

approach. 

Table l 

Influence of the number of degrees of freedom in the mesh on the modeling errors (c0 = ((K) - K)I K). 
D.O.F. K K K+ (K} EK(%) Eo (%) em(%) €� (%) 

188 1.5206 1.5782 1.5965 l .5585 2.44 -l.25 20.82 10.41 
1018 1.3983 1.4502 1.4902 1.4443 3.18 -0.41 24.30 12.15 
4141 1.3903 1.4399 1.4787 1.4345 3.08 �0.38 24.03 12.02 

16376 1.3884 1.4374 l .4756 1.4320 3.05 -0.38 23.91 11.96 

65507 1.3876 1.4362 1.4743 1.4309 3.03 -0.43 23.85 11.93 

5.2. RVE with elliptic inclusions 

The second example involves a more complex micro-structure, Fig. 11. The heat conductivity properties of 
the inclusions and the matrix are the same as in the previous example. The imposed temperature gradient is E = (1, 0). The volume fraction of the inclusions is 3%. The mesh involves 276 875 DOF. The reference 
homogenized conductivity is K = 1.1004. The computation needed for the conforming and hybrid approaches is 
split over 14 processors. The bounds obtained are 

0 � ci 
tJ ' t/ t/ = c <::::::, ' 

(} � 

t7 0 � � 0 

� <::;:::::, tJ c:? c:::::> c:::, c:::> 
--

(} 0 = � t7 0 �

0 t7 0 0 

0 = <::;:::::, (} 0 

Fig. 11. RVE with elliptic inclusions: geometry of the problem and domain decomposition. 
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0.25 

> 0 

-0,25 

-0,5 

-0.75 

Fig. 12. Temperature field obtained by the conforming approach. 

0.75 

0,5 

-0.75 

-0,5 0 0.5 
x 

Fig. 14. Heat flux lines obtained by the hybrid approach. 
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Fig. 13. Zoom on the temperature field obtained by the conform­

ing approach. 
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Fig. 15. Zoom in one subdomain: heat flux lines and x component 

of the heat flux. 

(64) 

whereas the Reuss and Voigt bounds are 1.03 and 3.97. The error on the average is bounded by EK 0.29% and 
the error on the average of the micro-field is €� = 3.87%.

The Figs. 12 and 13 shows the iso-contour of the confonning temperature solution. Fig. 14 gives the heat 
fluxes lines (lines tangent to the heat flux at each point). They tend to concentrate in the inclusions. Fig. 15 
shows the x component of the flux in one subdomain. The parallel heat flux lines in the inclusion indicates that 
the flux is constant in the inclusion. 

6. Conclusion 

Two simplified methods to analyze linear representative volume elements have been introduced. They are 
based on a two-scale decomposition of the sought approximate solution and yield upper and lower bounds to the 
exact homogenized properties. Due to this bound property, the a posteriori error estimation of the modeling error 
is straightforward. Moreover, the exact energy error associated to the average of the two approximate 
micro-fields may be computed using the Prager-Synge theorem. 

The implementation of the methods uses finite elements for flexibility and parallel resources for speed. The 
interaction between the modeling error (the main concern in this paper) and the numerical errors should be 
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investigated in future work. In a first example, a strong stability of the modeling error with respect to the 
numerical error is observed. 
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