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We describea strategyfor detectingdiscontinuitiesand for limiting spuriousoscillationsnearsuchdiscontinu-
ities whensolving hyperbolicsystemsof conservatiordaws by high-orderdiscontinuousGalerkinmethods.The
approachs basedon a strongsuperconvergencat the outflow boundaryof eachelementin smoothregionsof
theflow. By detecting discontinuities isuchvariables aslensityor entropy ,limiting may beapplied onlyin these
regions;thereby,preservinga high order of accuracyin regionswheresolutionsare smooth.Severalone-and
two-dimensional flow problems illustrate the performance of these approaches.

1. Introduction

High-order numerical schemes produce spurious oscillations near discontinuities, which may,
indeed, lead to nonlinear (numerical) instabilities and unbounded computational solutions. Less severe
oscillations may produce nonphysical solutions, such as negative pressures or temperatures, whict
would generally lead to physical instabilities. First-order schemes are the only approaches that maintain
a monotonic solution structure at discontinuities [10,11]. Unfortunately, these schemes represent the
solution with an excessive amount of dissipation. The goal, of course, is to produce a solution with
neither excessive diffusion nor spurious oscillations.

Solution or flux limiting strategies [19,20,5,3,17] are designed to restrict or suppress oscillations near
discontinuities. Limiting is a nonlinear procedure even for linear problems so the numerical scheme
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may become both high order and monotonic. Common limiting procedures are based on comparing
elemental solution features, such as slopes or curvatures, with those of neighboring elements [5,9].
When slopes, etc. exceed a specified threshold, spurious behavior is deemed present and the rang
of the excursions is limited. Unfortunately, such limiters frequently identify regions near smooth
extrema as requiring limiting [3] and this typically results in a reduction of the optimal high-order
convergence rate. It would, thus, be helpful to distinguish regions where solutions are smooth and
discontinuous. With such knowledge, limiting would only be used near discontinuities and high-order
accuracy would be preserved in smooth regions. The desired procedure will be called a “discontinuity
detector”.

Recent investigations [1,8,15] have identified a “strong” superconvergence property of the discontin-
uous Galerkin method (DGM) whereby smooth solutions at outflow boundaries of elements converge at
a highO(h?r*+1) rate on elements of sizewith piecewise-polynomial approximations of degpee: 0.

This is to be compared to a global (e.g2) convergence rate @ (k7 +1). With this, we show (Section 3)

that jumps in the solution across neighboring element edges have different magnitudes in the presence
or absence of discontinuities and these may be used to detect solution discontinuities. Dolejsi and Feis-
tauer [7] used a similar strategy to detect shocks between first- and second-order solutions. Likewise,
Karni et al. [13] suggested a related indicator based on the weak local truncation error analysis of a
central-upwind scheme.

When limiting is needed, we use a slope [5,9] and curvature [2] limiting scheme (Section 3.2) in
one and two dimensions, respectively. With limiting restricted to the vicinity of discontinuities, other
limiting strategies [19,20,5,3,17] would also suffice. We use the discontinuity detection scheme with both
density and entropy as detection variables and show (Section 4) that entropy detection is slightly more
robust in that it reliably identifies contact discontinuities as well as shocks for several one- and two-
dimensional problems. Limiting only where suggested by either detection strategy is far superior than
limiting everywhere. Diffusion is limited to discontinuity regions and high-order accuracy is maintained
where solutions are smooth.

2. Formulation

We consider the solution of hyperbolic conservation laws of the form
8,u+div|3(u):r(u), xef, t>0, (1a)
u=u’, =0, (1b)

with appropriate well-posed boundary data prescribeds@nVariables with a superimposed arrow refer
to physical vectors im?, d = 1, 2, 3, and those in bold type refer to a continuous fieldH1)”. The
flux matrix is

Fu) := [Fw), B, ..., Fu(W)], (1c)
whereﬁ(u) is theith component of the flui%, and
div := [div, div, ..., div]", (1d)

is the vector valued divergence operator.



Although the formulation applies to arbitrary conservation laws, our motivation is compressible,
inviscid flow governed by the Euler equations. These have the form (1) with

u=p, pu, pv, pw, E1', (2a)

F=[p0, puv + Pé,, pvv + Pé,, pwd + Pé., ¥(E + P)], (2b)

wherep is the fluid densityy is the velocity vector with Cartesian components, andw; E is the
internal energyp is the pressure; ard, Ey, ande, are unit vectors in the Cartesian coordinate directions.
For the computational results of Section 4, we assume the fluid to be an ideal polytropic gas satisfying
the equation of state

=12
P:(y_l)[E_pII;)II ] 20)

wherey is the adiabatic exponent, which was set to 1.4 for the examples.
A DGM formulation [4,5] requires dividing?2 into a collection of elements

2=, (3)

and constructing a Galerkin problem on one elem@ntby multiplying (1a) by a test function e
(£2(52j))’", integrating the result of2;, and using the divergence theorem to obtain

(v, 9;W)e, — (gradv, Iz(u))gj + (v, Izn>39j =(V.Ng,, Wve(LX2))". (4a)

The £2 volume and surface inner products are

(V, U)g, =fvTu dr, (V, Uhse, = / viudo. (4b)

2; 92;

To complete the numerical formulation, is approximated byJ € P,(£2;), whereP, consists of
polynomials of degreg on £2;. A basis forP,(s2,) is chosen to be orthogonal i#¥ [16,8,15] ons2;
and this leads to the Dubiner basis commonly used with spectral methods [14]. With a discontinuous
basis, the normal fluk, = IE(u) -1, wherer is the normal vector t0£2;, is not defined o $2;. The
usual strategy is to approximate it by a numerical fixU;, U,,;) that depends on the solutity on £2;
andU,;,; on the neighboring elemet?,;,; sharing the portion of the bounda#y?; ,,, common to both
elements. Several choices are possible [4,5] and in this investigation we use Roe’s flux [17] obtained
by solving a linearized Riemann problem across the interface between the two elements. Volume and
boundary inner products appearing in (4) are done by Gaussian quadrature of grderd 2p+ 1,
respectively. Time integration is performed by an explicit total variation bounded (TVB) Runge—Kutta
integration scheme [5].



3. Discontinuity detection and limiting
3.1. Discontinuity detection

For a given linear or nonlinear problem, partitios2; into portionsds2;” and 852/.+ where, respec-
tively, the flow is into § - 7 < 0) and out of { - 7 > 0) £2;. As noted, smooth DGM solutions of (4)
exhibit a strong superconvergence phenomena at outflow boundaries [1,15] such that

1 / 2p+1
—5 [ (Qj—q)ds=0(r**), (5)
a%2]] '

+
B.Qj

Where|8.(2j+| is the length (area) cH.Qj*, g is a solution component or a derived quantity from a solution
component (e.g., a characteristic variables, the density, or the entropy)) amlthe discontinuous
Galerkin value of7 on £2;.

To use this information as a discontinuity detector, consider the jungp;iacross the inflow edges
(faces) ofs2; and examine

L= [@-owid=[@-as+ [ @-om ©)

- - +
02; 0%2; 092,

Using (5), the second integral@(»%*+V) while the first, across the inflow boundary(h7+2) [1,15].
Thus, I; = O(h”*?) across edges or faces where the solution is smooth.isf discontinuous in the
immediate vicinity ofd$2;, then either or both of — Q; andg — Q,,; areO(1); hence,

;. [O(7¥2). if qlag, is smooth,
71 Oh), if glae; is discontinuous.

()

We construct a discontinuity detector by normalizidg relative to an “average’O(hP*1/2)
convergence rate and the solution@n to obtain

|f39;(Qj — Qup;) ds|
P .
J —
he+D23 27110,
In examples, we choodeas the radius of the circumscribed circle in eleme&nt and use a maximum
norm based on local solution maxima at integration points in two dimensions and an element average in
one dimension.

Using (7),Z; — 0 as eitherh — 0 or p — oo in smooth solution regions, whereds — oo near a
discontinuity. Thus, the discontinuity detection scheme is

(8)

if Z; > 1, ¢ is discontinuous, 9
if Z; <1, g issmooth. ©)
3.2. Limiting

With limiting only used near discontinuities, we need not be as concerned with maintaining a high
order of accuracy; thus, we focus on the slope limiting procedure introduced by Cockburn and Shu [5]



for one-dimensional problems and the curvature limiting schemes of Barth and Jespersen [2] in multiple
dimensions. Slope limiting compares solution gradientssdnwith average solution gradients on
neighboring elements. The computed and average gradients are compared and elemental slopes al
restricted to the range spanned by neighboring averages when all have the same sign. Slopes are s
to zero should signs disagree [5,19,20]. For scalar problems on a uniform mesh, these conditions may be
summarized by letting

ng:Uj(f,l)—Uj, E=-1,1, (10)
whereU; is the solution average a2;. We calculate modified slopes at the engls; andx; of £2; as

Sl,jzmianC(Uj(xj,t)—Uj,Aﬁj,VUj), (113.)

S_]_,j :mianC{ﬁj — Uj(xj_l, l‘),Aﬁj,Vﬁj), (11b)
where

Aﬁj::ﬁj+1—(7j, Vﬁj ::(71'—[7}'_1, (11c)
and

minmoda., b, ¢) := | S9@ min(lal, |51, |c]).  if sgn(a) = sgnb) = sgn(c), (11d)

0, otherwise.

The modified slopes are used to alter solution coefficients (cf., e.g., (12)). Assuming the average solution
l7j remains unchanged, (11) provide two equationsgf@mknowns; thus, unigque solutions do not exist
when p > 2. The problem can be closed by either setting higher order coefficients to zero ordising
projection [5].

The resulting solution is total variational diminishing (TVD), which implies that the order of accuracy
is reduced near smooth extrema [5]. As noted, avoiding limiting in smooth solution regions avoids this
loss. Another possibility is the limiting of the highest order coefficients through the computation of
moments [3].

With vector systems, the simple strategy of applying limiting component-wise is not TVD [4]. Instead,
limiting should be applied to characteristic variables obtained by diagonalizing the system Jacobian [3,4].

Turning now to solution limiting on unstructured two-dimensional triangular meshes, consider a

(scalar) solution represented on elementin terms of an orthogonal basjg; (})},]fil [8] as

N

Uj(E.0) =Y cr;(Ope(E). (12)

k=1

Following Barth and Jespersen [2], slopes are limited so that the solution at the integrationxppints
i=12,..., Ky, 0n0d82; isin the range spanned by the neighboring solution averages. The modified
solution for piecewise-linear polynomialg & 1) is

Uj(x, 1) = c1,j(0)@1(X) + e ez (D2(X) + 3, (De3(X)], (13a)
where
a= 1<ir2|12)9j max(«;, 0), (13b)



MU i U (F) — M >0,

it (130)
O[l- = m—Uj H (R C

UGH-T, if U; (xi-) m <0,

1, otherwise,

andm andM are the minimum and maximum solution averages on the elements sharing edges with
For p > 1, we set the higher-order coefficients in (12) to zero and apply (13) to the remaining solution
whenevera # 1. Applying limiting to characteristic variables may produce negative pressures; thus,
rendering the solution unstable. Should such nonphysical solutions result, Wpseﬁj.

4. Computational results

We apply the discontinuity detection and limiting procedures (Section 3) to several one- and two-
dimensional examples involving the Euler equations (2).

4.1. One-dimensional examples

Example 1. Consider a shock tube of unit length with a membrane 2t0.5 separating gas with the
pressures and densities

1, 0, 1), 0<x <05,

(p,u, P)(x,0) = { (0.1, 0, 0.01), 05<x<1. .

The membrane is ruptured at time- 0 and the solution breaks into a shock wave moving into the low-
pressure gas, a rarefaction wave expanding into the high-pressure gas, and a contact surface separatir
the two [21].

We solved problems using density and entropy as discontinuity detection variables. Densities are
shown in Fig. 1 at = 0.25 for computations performed with piecewise-quadrapic=2) polynomials
on meshes having 50 uniform elements. Those elements identified for limiting (Section 3.2) are indicated
with a plus sign at unity. Numerical solutions are shown with three diamonds per element. We additionally
show the values of the two discontinuity detectors on the lower portion of Fig. 1.

The solutions obtained using the two discontinuity detection schemes are nearly identical (Fig. 1,
top). Both discontinuity detection variables correctly identified the shock region. The indicators are well
above unity near the shock and approximately zero in smooth flow regions (Fig. 1, bottom). The density
detection strategy applied no limiting in the contact region. This was not always the case and the density
detector exceeded its threshold at some times. At any rate, limiting appears not to be necessary in the
contact region at this time.

Additional solutions were computed using the two discontinuity detection strategies and the more
traditional strategy of limiting everywhere. Computations were performed gt on uniform meshes
with 100, 200, and 500 elements and ttfeerrors in density are shown in Table Irat 0.25. The results
differ by less than 5% on the coarsest and 3% on the finest meshes. This solution does not possess smoof
extrema; thus, discontinuity detection does not provide significant accuracy advantages. However, the
simple structure of the solution and known analytical solution provide a valuable frame of reference.
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Fig. 1. Density for Example 1 at= 0.25 computed witlp = 2 andN;, = 50 using density detection (upper left) and entropy
detection (upper right). Elements where limiting occurred are marked+witign at unity. Values of the density (lower left)
and entropy (lower right) detectors.

Table 1
£2 error in density for Example 1 at= 0.25 for computations performed with = 2 and
Ny, =50, 100, 200, and 500 using moment limiting, density detection, and entropy detection

Ny, Density error
Limiting Density detection Entropy detection
50 1.76e-3 1.70e-3 1.69e-3
100 9.40e-4 9.28e-4 9.17e-4
200 4.76e-4 4.73e-4 4.64e-4
500 1.82e-4 1.81e-4 1.78e-4

Example 2. Consider the Euler equations (2) subject to the initial data [18]

(3.857143,-0.920279, 10.33333), x< 0,
(p,u, P)(x,0)= (1 + 0.2sin(5x), —3.549648, 1.0000(), 0<x <10, (15)
(1.0000, —3.549648,1.00000), x> 10.

This example involves the interaction of a stationary shoak-at0 with a leftward-moving flow having a
sinusoidal density variation. As the density perturbation passes through the shock, it produces oscillations
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Fig. 2. Entropy-density (left) and velocity (right) for Example 2rat 2.0 for computations performed with = 2 and
Nj, = 1024 using moment limiting (top), density detection (middle), and entropy detection (bottom). Elements where limiting
occurred are marked with sign at unity.

developing into shocks of smaller amplitude. A poor limiting strategy would damp the oscillations and,
thus, the aim is to avoid this.

We solved (2, 15) or-10< x < 10, O< ¢ < 2 using a 1024-element mesh wiph= 2 using limiting
everywhere, limiting where indicated by density detection, and limiting where indicated by entropy
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Fig. 3. Density for Example 2 at=2.0 on—3 < x < 0 computed witlp = 2 andN;, = 500 using limiting everywhere, density
detection, and entropy detection.

detection and present results in Fig. 2. Density detection identified both the strong shock @t

and the weaker ones on the negative axis. The shocks are well-captured without visible overshoots or
undershoots. Entropy detection identified the strong shock but did not activate near the weaker shocks
because the jumps at these locations were too small. This has resulted in slight loss of monotonicity near
these weaker shocks. Universal application of limiting has dissipated the solution in the oscillatory region
relative to those with density and entropy detection.

To amplify differences, we compare solutions with universal limiting and with the two discontinuity
detection strategies on a coarser 500-element meshpwit2 and present results for the density at 2
in the high-frequency region+3 < x < 0) in Fig. 3. The computed solution witk, = 1024,p = 2, and
entropy detection is regarded as an exact solution.

The solution with limiting everywhere has too much dissipation and has greatly reduced the amplitude
of the oscillations. Both density and entropy detection gave similar results with sharp detection of the
strong shock and its confinement to two elements. Neither detection scheme located the weaker shocks
and, thus, they produced some minor overshoots.

Example 3. Consider the Euler equations (2) with the initial data
(1, 0, 1000), 0<x <0.1,
(p,u, P)(x,00=1 (1, 0, 0.01), 0.1<x<0.9, (16)
(1, 0, 100), 09<«x<1,
where the solution involves interactions between strong shocks, expansions, and contact discontinu-
ities [22].
An exact solution of this problem is not known, so, following Woodward and Colella [22],
comparisons were done relative to a numerical solution computedNyite 3072 uniform elements,
p = 2, and entropy discontinuity detection. We compare solutions for the density with those obtained
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p =2, N, =400 (left), andN;, = 800 (right) using entropy detection. Elements where limiting occurred are markedrwith
sign at unity.

using N, = 400 and 800p = 2, and entropy detection at= 0.016, 0.028, and 0.038 in Fig. 4. Solutions
calculated with density discontinuity detection and limiting everywhere followed the trends of the two
previous examples and have not been shown.
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Discontinuities are identified and limiting is confined to these regions. Computational values of the
density withN,, = 400 and 800 are showing some dissipative effects near extrema due to diffusion of the
contact surfaces. The resolution of these (third-order) solutions is significantly higher than that obtained
with a (third-order) WENO-RF-3 scheme and is close to that obtained by a (fourth-order) WENO-RF-4
scheme on the same meshes [12].

4.2. Two-dimensional examples

Example 4. The propagation of sound in air satisfies the linearization of the Euler equations (2)

5 P 5 poczu 5 poczv
a u + a P//Oo + a— 0 = O, (17)
v 0 YL P/po
wherepq is the density of the fluid; is the speed of sound in the fluid, afd«, andv are now regarded
as perturbations to the pressure and velocity components, respectively.
We solve (17) using the DGM with a numerical flux that is the exact solution of an associated one-

dimensional Riemann problem. Thus, consider an interface with naredh., n,) separating elements
having pressures and normal velociti®$, v/ and P",v". The solution of the associated Riemann

> vn > vn”t

problem is
l r l r l r l r
:PJ;P +pocvn2vn, Un:anzrvn_i_p_icP 2P, (18)
and the numerical flux is
poc? (vl + v7) (P'—P")
Fu=35| (P'+ P)ne/po | +5¢ (v, — vy | (18b)
(P'+ P")ny/po () — v,

We solve an acoustic problem in @0« 1 rectangular cavity. The left edge £ 0) of the domain is a
vibrating wall prescribing the velocity

1
u@,0)=1+ > sin(2r ft), (29)
with the frequencyf = 1500 Hz. An admittance boundary condition
u(l,1)= Pa. t), (20)
pPocC
is used at the right edge & 1) of the domain. Horizontal edges= +0.05 are rigid walls; hence,
v(£0.05,7)=0. (21)

The medium has the sound speeg 340 nysec and densityg = 1.224 kg/m°. The wavelength is
A =c/f =0.2266 m. The gas inside the cavity is initially at rest,Be- u = v = 0. The solution of the
problem features smooth oscillations and a discontinuity; at cz.

The solution is independent gfand, hence, one dimensional; however, we solve it on an unstructured
triangular mesh (Fig. 5) using elements with edges of lengi®.his gives a mesh with approximatively
10 elements per wavelength, which is the minimum resolution typically required for a second-order
(p = 1) method.

11



Fig. 5. Mesh used for the acoustic cavity of Example 4.
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Fig. 6. Normalized pressurB/pgc vs.x att = 1.5 x 1073 for Example 4 withf = 1500 Hz andp = 1. The exact solution,
solution with limiting everywhere, solution with no limiter, and solution with the detector-limiting strategy are shown.

Results in Fig. 6 show the normalized pressBrgoc as a function of at timer = 1.5 x 1073, With
limiting applied everywhere, smooth extrema are flattened and the amplitude of the wave is decreased.

Convergence occurs at a reduced first-order rate. Without limiting, oscillations develop fear but
the solution is accurate at smooth extrema. The solution with discontinuity detection only applied limiting
near the discontinuity; thus, producing an optimal result without spurious oscillations and excessive

diffusion near local extrema.

Next consider the solution of a problem with = 5000 Hz ¢ = 0.068) using piecewise-cubic
polynomials ¢ = 3) on the mesh of Fig. 5. Thus, there are approximately three elements per wavelength;
however, cubic polynomials can capture sinusoidal data with three elements per wavelength.

Results shown in Fig. 7 indicate that limiting everywhere has failed to resolve the high-frequency
portion of the solution and renders the use of a high-order approximation useless. Accuracy has been
reduced to first order. The detector-limiter procedure does a much better job with only slight dissipation

noticed in the oscillatory region. Near the discontinuity, the solution with no limiting can re-establish
itself to the continuous solution with less spread than the limited solutions. It does, however, produce
spurious oscillations. Clearly, we would like to decrease the spatial zone where limiting is applied.

12
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Fig. 7. Normalized pressurB/pgc vs. x att = 1.5 x 103 for Example 4 withf = 5000 Hz andp = 3. The exact solution,
solution with limiting everywhere, solution with no limiter, and solution with the detector-limiting strategy are shown.

At present, this can be done using adapfiveefinement, where the mesh is refined in the vicinity of
discontinuities.

Example 5. We consider the reflection of a Mach 10 planar shock by a wedge having a half-angle of
30°. This problem, satisfying the two-dimensional Euler equations (2), is referred to as a double Mach
reflection and provides a popular benchmark [22,6,12]. To avoid geometrical complicationsx the 4
rectangular computational domain is rotated to lie along the upper surface of the wedge. With this, the
Mach 10 shock is initially placed at=1/6, y = 0 at 60 relative to thex-axis of the computational
domain. The surface of the wedge lies at the bottom of the computational domaixfbf6, y = 0 and

is assumed to be a reflecting boundary. Boundary conditions at the tefd)] correspond to the exact
motion of a Mach 10 shock. Physical parameters for the gas ahead of the shégk=ateand g = 1.4.

The Rankine—Hugoniot relations

vy =M\/yPi/p1=10,  P/Pi=(2yM?—(y —D)/(y +1), (22a)
p2/p1=(y +DM2/((y —DM?+2),  prvs = p2(v5 — v2), (22b)

define the post shock conditions.

Problems are solved on uniform meshes with spaciigs= Ay = 1/30 andAx = Ay = 1/60 using
limiting everywhere and limiting with entropy discontinuity detection. Density and pressure contours are
shown in Figs. 8 and 9 at= 0.2 for computations performed with = 1 on the two meshes. Contours
are plotted using the discontinuous solutions with no smoothing.
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Fig. 8. Pressure (top) and density (middle) contours obtained with limiting everywhere (left) and where indicated by entropy
detection (right) for Example 5 at= 0.2 with Ax = Ay = 1/30 andp = 1. Elements where limiting was applied with entropy
detection are marked on the figure at the bottom.

Fig. 9. Pressure (top) and density (middle) contours obtained with limiting everywhere (left) and where indicated by entropy
discontinuity detection (right) for Example 57a& 0.2 with Ax = Ay = 1/60 andp = 1. Elements where limiting was applied
with entropy detection are marked on the figure at the bottom.
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With the entropy detection strategy, the contact surface that emanates from the triple shock intersection
and forms the jet in the density profile is well resolved on both the coarser and finer meshes. The weak
shock from the main reflected shock to the triple point is also sharp on both meshes, but is better resolved
with entropy detection than with limiting everywhere. The jet formed by the double Mach reflection is
clear on the finer mesh and less so on the coarser one. The pressure contours in region containing the je
are well resolved on both the coarse and fine mesh. The pressure contours on the finer mesh exhibit &
nonphysical structure near the main reflecting shock when limiting everywhere. This is not present when
using entropy detection. The contact region is clear and sharp on the refined mesh.

5. Discussion and conclusion

We have developed a strategy for detecting discontinuities when using the DGM to solve hyperbolic
systems of conservation laws. The strategy is based on a posteriori error estimates [1,15] involving jumps
in solution quantities across element boundaries. With successful detection of discontinuities, solution
or flux limiting, needed to suppress spurious oscillations, may be restricted to those regions containing
discontinuities. This strategy is superior to the practice of limiting everywhere, which typically introduces
far more diffusion than necessary in smooth flow regions. For flow problems, we have based discontinuity
detection on either jumps in the fluid density or entropy. Both work well for a number of standard test
problems for the Euler equations. Using entropy as a discontinuity detector works reliably near shocks
and contact discontinuities and, generally, performed slightly better than detection with density.

These discontinuity detection strategies have greatly reduced the need for limiting with high-order
DGMs. This, in turn, has dramatically improved the performance of the DGM in smooth flow regions
where the solution has complex structure. Accuracy near smooth extrema, in particular, is remarkably
better without limiting and is maintaining the optimal convergence rate.

There is some arbitrariness associated with threshold value of the discontinuity detector (8). This might
be eliminated by scaling relative to approximations obtained for jumps associated with weak shocks [21]
or other discontinuities. We will investigate this possibility.
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