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ecause of their low mechanical wave speed, high strain rate testing of rubber is highly difficult. Indeed,
tress and strain homogeneity is hard to achieve. In this paper, a semi-analytic inverse solution is
roposed. This solution is based on a uni-axial stress state assumption in the specimen. Moreover, a
ew-Hookean law is assumed for rubber. The new method is successfully applied to a high strain rate
Hopkinson barest on a synthetic rubber.
. Introduction

High strain rate testing of rubber is highly difficult. Indeed, the
ime needed to achieve stress and strain homogneity is lengthy,
ecause of the low mechanical wave speed of rubbers (Meng and
i, 2003; Song and Chen, 2004; Yang and Shim, 2005; Hong et al.,
008). Precisely, the specimen can be deformed up to some per-
ents of strain before achieving strain and stress homogeneity. In
his case, the use of boundary force and displacement measure-

ents to calculate the average stress and strain, respectively, can
ead to important errors as it is shown in the section 3.3.

In order to solve this difficulty some works proposed the use of
nverse techniques (Gary and Zhao, 1994; Rota, 1997; Zhao, 2003;
ajberg and Lindvist, 2004; Kajberg and Wikman, 2007; Sasso et al.,
008; Sedighi et al., 2010). They assume the knowledge of a con-
titutive equation which is used to solve a direct problem. The
arameters of the constitutive equation are determined by solv-

ng and optimisation problem. The inverse techniques are referred
s parametric methods. The main advantage of inverse techniques
s their stability against noise.

Recently, Aloui et al. (2008) and Othman et al. (2010) proposed
non-parametric method which assumes a uni-axial stress state in
he specimen. Moreover, the method necessitates the knowledge
f one force at one boundary of the specimen and the whole two-
imensional displacement field. Nevertheless, the accuracy of this
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method is sensitive to the calculation of the acceleration field from
the measured displacement field.

By using the same framework as the non-parametric method,
the present paper proposes a semi-analytic inverse method to
determine rubber behaviour at high strain rates. The proposed
new methods sidestep the calculation of the acceleration and uses
directly the displacement field. Moreover, it is easy implementable
and low-time consuming as compared to inverse techniques based
on finite element methods.

2. Theoretical basics

We are interested in a prallelipedic or cylindrical specimen of
length L as shown in Fig. 1.

For sake of simplicity, the present study is derived for a square
cross-section of height and width h. Let �(t) be the domain occu-
pied by the specimen at time t during the test and �0 = �(0) the
domain occupied before the test, i.e., the reference configuration.
Each material point of the body is represented by its position
in the reference configuration: X = X1e1 + X2e2 + X3e3. We denote
SX1 =

{
� ∈ �0; �.e1 = X1

}
the cross-section of normal e1 at the

abscissa X1.
As we consider uniaxial compression experiments, we can

assume that cross-sections SX1 remain plane during the whole

test. In other words, the displacement along e1 of any point in SX1
depends only on X1 and t,

u (X, t) .e1 = u1(X1, t), (1)
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Fig. 1. Schematic of the specimen.

here u is the displacement field. Similarly, we consider that the
orce applied to any cross-section SX1 is normal to it and depends
nly on X1 and t:

(X, t) = F1(X1, t) e1. (2)

pplying the second Newton’s law, along e1, on a slice of the spec-
men of length dX1, as depicted in Fig. 1, yields to

∂F1

∂X1
(X1, t) = �0A0

∂2
u1

∂t2
(X1, t). (3)

here �0 and A0 are the specimen initial material density and cross-
ectional area, respectively. The integration of Eq. 3 with respect to
1 leads to the force applied to the cross-section SX1 :

1(X1, t) = F1(0, t) + �0A0

∫ �=X1

�=0

∂2
u1

∂t2
(�, t)d�, (4)

o the unique non-zero component of the first Piola–Kirchhoff
tress tensor, i.e. the axial nominal stress,

11(X1, t) = F1(X1, t)
A0

= F1(0, t)
A0

+ �0

∫ �=X1

�=0

∂2
u1

∂t2
(�, t)d�, (5)

nd to the unique non-zero component of the Cauchy stress tensor,
.e. the axial true stress

11(X1, t) = F1(X1, t)
A(X1, t)

= F1(0, t)
A(X1, t)

+ �0A0

A(X1, t)

∫ �=X1

�=0

∂
2
u1

∂t2
(�, t)d�, (6)

n which A(X1, t) is the area of the cross-section SX1 at time t.
In the non-parametric method proposed in Refs. (Aloui et al.,

008; Othman et al., 2010), Eqs. (5) and (6) are used to determine
he stress field from measurements of the force at one boundary
f the specimen, and of the displacement field. However, the dis-
lacement field must be differentiated twice to get the acceleration
eld and it may amplify experimental noise.

In the following, the material is considered homogeneous and
e further assume the knowledge of its constitutive equation that

an be written as

11(X1, t) = Bc1,c2,...,cn (E(X1, t)) (7)

here B is a map, c1, c2, . . ., cn are the material parameters and
(X1, t) is the Green–Lagrange strain tensor defined as

= 1
2

(
∂u
∂X

T

+ ∂u
∂X

)
+ 1

2
∂u
∂X

T ∂u
∂X

. (8)

imilarly, the Cauchy stress can be written as

11(X1, t) = ˇc1,c2,...,cn (ε(X1, t)) . (9)

n this last equation, ˇ holds for a map and ε is the logarithmic or
encky strain tensor defined by
= 1
2

ln (I + 2E) (10)

n which I is the 3 × 3 identity tensor.
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Eqs. (5) and (7) are two different expressions of the uniaxial
nominal stress. The former equation gives the nominal stress in
terms of both a force at one specimen boundary and the displace-
ment field, and the latter one expresses the nominal stress in
terms of the Green–Lagrange strain tensor and material parame-
ters. By matching these two expressions of the nominal stress, we
can determine the materials constants. It is to note that a simi-
lar approach can be adopted with the true stress, i.e. considering
Eqs. (6) and (9) . As we are interested in applying our method to
large strain of rubber-like materials for which the nominal stress
is the most relevant stress measure, only Eqs. (5) and (7) will be
considered. In order to avoid the double differentiation of the
displacement field with respect to time in Eq. (5), the following
integrated quantity is defined

�11(X1, t) ≡
∫ t

0

∫ �

0

P11(X1, � ′)d� ′d�

=
∫ t

0

∫ �

0

P11(0, � ′)d� ′d� + �0

∫ �=X1

�=0

u1(�, t)d�.

(11)

Its expression issued from Eq. (7) is

�11(X1, t) =
∫ t

0

∫ �

0

Bc1,c2,...,cn

(
E(X1, � ′)

)
d� ′d�. (12)

Matching the expressions of �11 of Eqs. (11) and (12) to deter-
mine the set of material parameters {c1, c2, . . ., cn} can be achieved
by minimizing the cumulated (in both time and space) difference
between these two quantities, i.e. the objective function F that
depends on the material parameters,

F(c1, c2, . . . , cn) =
∫ L

0

∫ T

0

(∫ t

0

∫ �

0

Bc1,c2,...,cn (E(X1, � ′)) d� ′d�

−
∫ t

0

∫ �

0

P11(0, � ′)d� ′d� − �0

∫ X1

0

u1(�, t)d�

)2

dtdX1

(13)

where T is the total test duration.
By minimizing the objective functionFwith respect to the mate-

rial parameters c1, c2, . . ., cn, we obtain the constitutive Eq. (7).
This method is referred to as the semi-analytical inverse method.
Indeed, the objective function is defined analytically; integrals are
computed numerically and in some special cases the minimization
problem can be solved analytically.

3. Application to rubberlike materials

In this section, we apply the semi-analytical method to a syn-
thetic elastomer (Criblex 80). The density of this material is equal to
1272 kg/m3. We consider cubic samples (L = h = 10 mm). The spec-
imens are painted by a speckle to apply digital image correlation
(DIC). Note Su =

{
X ∈ �0; X2 = X.e2 = h

}
be the painted (filmed)

surface as shown in Fig. 1.

3.1. Experimental set-up

The experiments are conducted with a direct impact Hopkinson
bar (Klepaczko, 1994). In our set-up, the input bar is removed; then
the sample is directly impacted by the projectile. As suggested in
(Chen et al., 1999), we used a hollow aluminum bar (inner diameter
14 mm and outer diameter 16 mm) to increase signal-to-noise ratio.
This bar works as an output bar and is used to measure the output
force F̂out(t); it is then instrumented with a strain gauge station to
measure the transmitted strain wave εtra(t). The output force reads:
F̂out(t) = Eb Ab ε̂0,tra(t), (14)

where Eb and Ab are the bar Young modulus and cross-sectional
area, respectively, and ε̂0,tra stands for the transmitted wave at
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�̂11 = Ĉ exp(2ε̂11) − exp(−ε̂11) . (26)

In order to validate the semi-analytic inverse method, it is com-
pared to three other methods:

Table 1
Material constant Ĉ and error of the method X.
he bar/specimen interface, calculated by shifting the transmitted
ave 
̂tra measured at the gauge station. More precisely, the Fourier

omponents of these two waves, εtra and ε0,tra, are related by the
ollowing equation:

˜̂
0,tra(ω) = ei�(ω)a ˜̂εtra(ω), (15)

here a is the distance between the gauge station and the bar-
pecimen interface, i2 = −1, �(ω) is the dispersion relation and the
otation ·̃ stands for the Fourier transform. Here, the dispersion
elation is determined by the bar resonances technique as pro-
osed in (Othman et al., 2002). Moreover, we use a 5-mm thick steel
isc as a grip both to support the specimen and to apply a uniform
orce on the cross-section of the hollow bar; this grip does not alter
ave propagation because its thickness is very small as compared

o wavelengths. Considering the bar-specimen interface as the ori-
in of the e1-axis, the force at this point is equal to the output force,
.e. F̂0(t) = F̂out(t). Finally, the displacement and strain fields are cal-
ulated by applying the DIC technique to images obtained with the
igh speed PHOTRON Ultima APX video camera; the acquiring fre-
uency is 100,000 frames/s and the resolution is the same as used
or the intermediate strain rate tests, i.e. 128 × 248 pix2.

.2. Analysis

In this section, we detail how the equations of Section 2 are
pplied to analyze our experimental data. Recalling the assump-
ion that the displacement u1 only depends on the X1-coordinate,
his displacement in Su is averaged over the e3-direction:

ˆ1(X1, t) = 1
h

∫ h

0

û1 (X1, X2 = h, X3, t) dX3. (16)

nd similarly, the uniaxial Hencky strain component is

ˆ11(X1, t) = 1
h

∫ h

0

ε̂11 (X1, X2 = h, X3, t) dX3. (17)

hen, considering that the e1-direction is a principal strain direc-
ion in both the reference and the deformed configuration (because
he test is uniaxial) and recalling Eq. (8), the estimation of nominal
train is deduced as follows

ˆ11(X1, t) = 1
2

[
exp
(

2ε̂11(X1, t)
)

− 1
]

. (18)

nd the estimation of the corresponding stretch ratio �1 is

ˆ 1(X1, t) = exp
(

ε̂11(X1, t)
)

. (19)

Eq. (11) gives a first way to estimate �11(X1, t),

ˆ (1)
11 (X1, t) =

∫ t

0

∫ �

0

F̂0(� ′)
A0

d� ′d� + �0

∫ �=X1

�=0

û1(�, t)d�. (20)

hen, to define the second estimation of �11(X1, t) given by Eq. (7),
e must consider a constitutive equation. Following the classical

ssumptions (see for example (Treloar, 1975)), the elastomer is
ssumed homogeneous, isotropic, incompressible and hyperelas-
ic, i.e. its mechanical response is elastic and can be described by a
train energy density; moreover as the strain remain moderate, we
onsider the neo-Hookean model which involves only one material
arameter and is quiet sufficient for moderate strain (Marckmann
nd Verron, 2006). Thus, the nominal stress is

11(X1, t) = 2C

(
�1(X1, t) − 1

[�1(X1, t)]2

)
(21)
here C is the unique material parameter. Thus,

ˆ (2)
11 (X1, t) = 2C

∫ t

0

∫ �

0

(
�̂1(X1, � ′) + 1[

�̂1(X1, � ′)
]2

)
d� ′d� ≡ C
̂(X1, t). (22)
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Fig. 2. Displacement û1 in four points measured by DIC technique.

So, we have two estimations of �11(X1, t) which are entirely
determined by experimental data except the material parameter C.
This parameter can then be obtained by the least square method
applied to the function

F̂(C) =
∫ L

0

∫ T

0

(
�̂(1)

11 (X1, t) − C
̂(X1, t)
)2

dt dX1. (23)

In this simple case, it is obvious that the minimum of F̂ is achieved
for

Ĉ =
∫ L

0

∫ T

0
�̂(1)

11 (X1, t)
̂(X1, t)dt dX1∫ L

0

∫ T

0

(

̂(X1, t)

)2
dt dX1

. (24)

Moreover, the error of the method is the error committed on the
value of �11(X1, t) which can be defined as the value of the error
function at Ĉ, i.e. F(C = Ĉ), as compared to the mean value of the
two estimations of �11:

X ≡ 2

∫ L

0

∫ T

0

(
�̂(1)

11 (X1, t) − Ĉ
̂(X1, t)
)2

dt dX1∫ L

0

∫ T

0

(
�̂(1)

11 (X1, t) + Ĉ
̂(X1, t)
)2

dt dX1

. (25)

3.3. Results

Fields of axial displacement û1 and first diagonal component
of the strain tensor ε̂11 are obtained by DIC technique; they are
depicted in Figs. 2 and 3, respectively. These data are analyzed
by the semi-analytical inverse method presented above. We then
obtain the estimation Ĉ of the material constant C. Moreover, we
calculate the error defined in Eq. (25). The values of Ĉ and X are
given in Table 1.

Knowing Ĉ and ε̂11, the Cauchy stress field is calculated as[ ]
High strain rate

Ĉ (MPa) 7.83
X (%) 4.54
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Fig. 3. Strain ε̂11 in four points measured by DIC technique.

the conventional method which assumes the homogeneity of
strain and stress fields; average strain and stress are simply deter-
mined by the measurement of the force and the displacement at
one of the boundaries,
the non-parametric method developed in (Aloui et al., 2008;
Othman et al., 2010),
and the complete numerical inverse method that consists in
solving numerically the direct and optimization problems simul-
taneously in (Kajberg and Lindvist, 2004; Kajberg and Wikman,
2007). Here, the direct problem is solved by Abaqus and the opti-
mization problem by Matlab.

ig. 4 depicts the Cauchy stress-nominal strain curves obtained by
he four methods for three different strain rates.

The results present important discrepancies. The curve obtained
ith the conventional method is obviously not adapted because it

ssumes the homogeneity of the stress and strain fields: according
o this curve, the material is deformed up to 5% with almost no force

pplied. Nevertheless, it is not an easy task to determine which of
he three other methods gives the best result. The non-parametric

ethod gives the lowest stress curve. This can be explained in
wo ways. Firstly, this method involves numerical filters for the

ig. 4. Comparison of stress (�̂11)-strain (ε̂11) curves obtained by four methods.

4

measurement of the displacement field, which surely filters inertia
effects. Therefore, the non-parametric method would only partially
correct the heterogeneity of the stress field; and then would under-
estimate it. Secondly, the two inverse methods,i.e. the present one
and the numerical inverse method, assume a neo-Hookean con-
stitutive equation for the material; this choice can lead to some
discrepancy if this constitutive equation is not well-adapted to the
material. Finally, the semi-analytic and the non-parametric meth-
ods are simple to implement and are highly less time consuming
than the complete numerical inverse method because they do not
involve finite element computations.

4. Conclusion

In this work, we are interested in the determination of
constitutive equation for soft materials using uniaxial dynamic het-
erogeneous experiments. This paper has proposed a semi-analytic
inverse method for the identification of the stress field. It is an
alternative solution to the complete numerical inverse method
(Kajberg and Lindvist, 2004; Kajberg and Wikman, 2007) and the
non-parametric method (Aloui et al., 2008; Othman et al., 2010).
It is based on two main assumptions: (i) the cross-sections remain
plane during the test and (ii) the force applied to any cross-section
is normal to it. Obviously, these assumptions are valid for uni-
axial experiments. Compared to the complete numerical inverse
method, the semi-analytic inverse method is simpler and highly
less time consuming. Compared to the non-parametric method, the
semi-analytic method do not need the double numerical differen-
tiation of the displacement field.

The semi-analytic inverse method, presented in this paper,
necessitates the a priori choice of the constitutive equation, con-
trarily to the non-parametric method. Fortunately, Eq. (21) can be
rewritten easily to take into account several material coefficients,
thus different hyperelastic models (Hartmann, 2001). The only
difference will be that, instead of solving a one-dimensional mini-
mization, one will have a multiparametric objective function. In
this work, only the neo-Hookean law was considered. Indeed,
fitting multiple material parameters with only one uniaxial experi-
ment will lead to an ill-conditioned identification problem (Ogden
et al., 3). Therefore, adding more material parameters, thus more
refined constitutive equation, is, perhaps, not necessary. In line
with this, visco-elastic effects are ignored here, however important.
Indeed, it is hard to reveal the visco-elastic behaviour of the rubber
with only one almost-constant-strain-rate monotonous uniaxial
experiment.

Even if we argue that it is not easy to make a straightforward
choice between the three different methods, we suggest the use of
both the non-parametric and the semi-analytic inverse methods:
both are simple to apply and are not time consuming. Thus, one
can try to improve the results given by the two methods by (i)
carefully adjusting the filters in the non-parametric method, and
(ii) considering different hyperelastic models for the semi-analytic
method. Following these advices will conduct to the best results
one can afford for heterogeneous dynamic experiments.
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