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SEISMIC BEARING CAPACITY OF SHALLOW STRIP FOOTINGS IN SEISMIC CONDITIONS.

Seismic bearing capacity of shallow strip footings in seismic conditions

A.-H. Soubra j The seismic bearing capacity factors of shallow strip footings are calculated. The approach used is pseudo-static, where the seismic effects are considered by taking into account static inertia forces. The upperbound method of limit analysis is used. Two failure mechanisms, referred to as the M1 and M2 mechanisms, are considered for the calculation schemes. These mechanisms are non-symmetrical. M1 consists of a log sandwich composed of a triangular active wedge, a log-spiral radial shear zone and a triangular passive wedge. M2 consists of an arc sandwich composed of a triangular active wedge, a circular radial shear zone and a triangular passive wedge. The solutions obtained are rigorous upper-bound ones in the framework of the limit analysis theor y for an associated ¯ow rule Coulomb material. For the static case, the numerical results of the bearing capacity factors show that the M1 mechanism gives the exact wellknown solutions of both the N cS and N qS factors. This is not the case with the M2 mechanism. However, for the N ãS factor, the lowest upper-bound solutions are obtained from the M1 mechanism for ö . 308 and from the M2 mechanism for ö , 308. For the seismic case, the lowest upper-bound solutions of the seismic bearing capacity factors obtained from both the M1 and M2 mechanisms are presented in the form of design charts for practical use in geotechnical engineering. These results are compared with other authors' results.

Notation

B 0 width of footing c cohesion ÄD AC , ÄD CD , ÄD DE incremental internal energy dissipation along AC, CD and DE, respectively ÄD L incremental internal energy dissipation ÄD rad incremental internal energy dissipation along the radial lines of the log spiral or the circular shear zone BCD ÄV velocity along a velocity discontinuity ÄW ABC , ÄW BCD , ÄW BDE incremental external work of regions ABC, BCD and BDE, respectively ÄW P , ÄW q incremental external work due to the foundation load and surcharge loading, respectively 
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Introduction

While the investigation of bearing capacity in non-seismic areas has been reported at length in the literature, 1À7 the seismic bearing capacity of strip footings has not been studied in detail in the past. The traditional method for evaluating the effect of an earthquake load on the stability of a soil-foundation system is the so-called `pseudo-static method'. This method continues to be used by consulting geotechnical engineers because it is required by the building codes; it is easy to apply and gives satisfactory results. The very few studies available in the literature describing the seismic effect on the bearing capacity of foundations concern the work of Meyerhof [START_REF] Meyerhof | The bearing capacity of foundations under eccentric and inclined loads[END_REF] and Shinohara et al. [START_REF] Shinohara | Bearing capacity of sandy soil for eccentric and inclined load and lateral resistance of single piles embedded in sandy soil[END_REF] Both approaches are pseudo-static: horizontal and vertical accelerations are applied to the centre of gravity of the structure and the problem is reduced to a static case of bearing capacity with inclined eccentric loads. However, in these solutions, the inertia of the soil mass is not included. Recently, Sarma and Iossifelis 10 have suggested a method for calculating the seismic bearing capacity of strip footings in seismic areas by considering the inertia forces on all parts of the soil-structure system (soil and foundation). Their method is based on an approach which they have been using for the analysis of slopes; it is a limit equilibrium method based on an a priori assumption concerning the inter-slice forces. It is well known that this category of methods gives approximate solutions of the failure load and that the solution cannot be said to be an upper-or a lower-bound one with respect to the exact solution. In this paper we present an upper-bound limit analysis method. This method allows us to get a rigorous upperbound solution with respect to the exact solution for an associated ¯ow rule Coulomb material obeying Hill's maximal work principle. This method is detailed in the following section.

Assumptions

2. An earthquake has two possible effects on a soil-foundation system. One is to increase the driving forces. The other is to reduce the shearing resistance of the soil. The reduction in the shearing resistance of a soil occurs only when the magnitude of the earthquake exceeds a certain limit and the ground conditions are favourable for such a reduction. In this paper, only the reduction of the bearing capacity factors due to the increase in driving forces is investigated under seismic loading conditions. The shear strength of the soil is assumed to remain unaffected by the seismic loading. The assumptions made in the analysis can be summarized as follows.

(a) The soil is homogeneous and isotropic. It is assumed to be an associated ¯ow rule Coulomb material obeying Hill's maximal work principle. (b) The effect of pore water pressure is not included. (c) A one-sided failure mechanism is assumed to occur. (d) Only the reduction of the bearing capacity due to the increase in driving forces is investigated under seismic loading conditions. The shear strength of the soil is assumed to remain unaffected by the seismic loading. (e) As was mentioned before, all inertias of the soil-structure system are considered. ( f ) The earthquake acceleration for both the soil and the structure is assumed to be the same. Only the horizintal seismic coef®cient K h is considered, the vertical seismic coef-®cient being often disregarded. ( g) The earthquake load on the structure is represented by the base shear load acting at the foundation level and an eccentricity for the vertical foundation load. The moment due to the seismic load on the structure is not considered. Only the base shear load will be taken into account.

The upper-bound theorem of limit analysis

3. The upper-bound theorem of limit analysis states that, for a kinematically admissible velocity ®eld, an upper-bound of the exact collapse load can be obtained by equating the power dissipated internally to the power expended by the external loads. A kinematically admissible velocity ®eld is one that satis®es the ¯ow rule, the velocity boundary conditions and compatibility. During plastic ¯ow, power is assumed to be dissipated by general plastic yielding of the soil mass, as well as by sliding along velocity discontinuities where jumps in the normal and tangential velocities may occur. Note that the velocity ®eld at collapse is often modelled by a mechanism of rigid blocks that move with constant velocities. Since no general plastic deformation of the soil mass is permitted to occur, the power is dissipated solely at the interfaces between adjacent blocks, which constitute velocity discontinuities. This kind of velocity ®eld will be used here. Finally, it should be noted that in the case of the bearing capacity problem, the upper-bound theorem gives an unsafe estimate of the failure load.

Failure mechanisms

4. As was mentioned above, to obtain upperbound solutions for the bearing capacity problem, a kinematically admissible failure mechanism must be considered. According to the normality condition for an associated ¯ow rule Coulomb material, for a kinematically admissible failure mechanism the velocity along a plastically deformed surface must make an angle ö with this velocity discontinuity. If the kinematically admissible mechanism is chosen, the work equation is obtained by equating the rate of external work done by the external forces to the rate of internal energy dissipation along the plastically deformed surfaces. Finally, the critical failure load is then obtained after extremization of the `potential' failure load.

5. In a previous paper, Soubra and Reynolds [START_REF]Design charts for the seismic bearing capacity of strip footings on slopes[END_REF] have presented a rotational non-symmetrical failure mechanism for the seismic bearing capacity of strip footings on slopes. The results obtained overestimate the currently accepted results in the static and seismic cases. In this paper, the traditional translational mechanisms proposed by Terzaghi [START_REF] Terzaghi | Theoretical soil mechanics[END_REF] and Chen [START_REF] Chen | Limit analysis and soil plasticity[END_REF] will be used by applying the upper-bound method of limit analysis in order to obtain rigorous upperbound solutions. Two translational failure mechanisms, referred to as the M1 and M2 mechanisms, are considered for the calculation schemes.

M1 mechanism 6. This mechanism has been used by Dormieux and Pecker [START_REF] Dormieux | Seismic bearing capacity of foundations on cohesionless soil[END_REF] to calculate the seismic bearing capacity factor N ãE of a cohesionless soil. As shown in Fig. 1 this mechanism is composed of a triangular active wedge ABC, a log-spiral radial shear zone BCD and a triangular passive wedge BDE. It is a log-sandwich mechanism and will be referred to here as the M1 mechanism. The log-spiral slip surface CD is assumed to be a tangent to lines AC and DE at C and D, respectively. This mechanism is de®ned by the two angular parameters á and â. 7. The triangular wedge ABC is assumed to be rigid. It moves with velocity V 1 , which makes an angle ö with the discontinuity line AC in order to respect the normality condition for an associated ¯ow rule Coulomb material. The foundation is assumed to move with the same velocity as the wedge ABC (i.e. V 1 ); hence there is no dissipation of energy along the soilstructure interface.

8. The radial log-spiral shearing zone BCD is bounded by a log-spiral curve CD, where the equation for the curve in polar coordinates (r, è) is r r 0 exp (è tan ö); the centre of this log-spiral CD is at point B and the radius r 0 is the length of the line BC. Note that in this mechanism we have assumed that the line AC is a tangent to the log-spiral curve at point C; hence there is no velocity discontinuity along BC.

9. The radial shear zone BCD may be considered to be composed of a sequence of rigid triangles, as in the investigations by Chen 6 using the symmetrical Hill and Prandtl's mechanisms. All the small triangles move as rigid bodies in directions which make an angle ö with the discontinuity line CD. The velocity of each small triangle is determined by the condition that the relative velocity between the triangles in contact has the direction which makes an angle ö to the contact surface. It has been shown

6 that the velocity V of each triangle is V (è) V 1 exp (è tan ö). The log-spiral curve CD is assumed to be tangent to line DE at D; hence there is no velocity discontinuity along line BD. 10. Finally, the triangular wedge BDE is assumed to be rigid, moving with velocity

V 2 V (â) V 1 exp (â tan ö).
Therefore, the velocities so determined constitute a kinematically admissible velocity ®eld. Having established the velocity ®eld of the kinematically admissible failure mechanism, the different terms of the work equation can be calculated as described below.

11. Calculations of incremental external work. The incremental external work due to an external force is the external force multiplied by the corresponding incremental displacement or velocity. The incremental external work due to self-weight in a region is the vertical component of the velocity in that region multiplied by the weight of the region. As shown in Fig. 2, the external forces contributing to the incremental external work consist of the foundation load, the weight of the soil mass, the surcharge q on the foundation level and the different inertia forces. These inertia forces concern the base shear load and the inertia forces of the soil mass and the surcharge loadings. The incremental external work for the different external forces can be easily obtained; the calculations are presented in Appendix 1.

12. Calculations of incremental internal energy dissipation. The incremental energy dissipation per unit length along a velocity discontinuity or a narrow transition zone can be expressed as

ÄD L cÄV cos ö ( 1 
)
where ÄV is the incremental displacement or velocity which makes an angle ö with the velocity discontinuity according to the associated ¯ow rule of perfect plasticity, and c is the cohesion parameter. Calculations of the incremental energy dissipation along the different velocity discontinuities are given in Appendix 1.

13. Work equation. By equating the total external work (equation (24), Appendix 1) to the total internal energy dissipation (equation (32), Appendix 1), we have

q c P B 0 ã B 0 2 N ãE cN cE qN qE ( 2 
)
where N ãE , N cE and N qE are the seismic bearing capacity factors. They are given as follows
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Log-spiral slip surface 

N ãE À 1 cos á K h sin á 3 [ f 1 f 3 f 5 K h ( f 2 f 4 f 6 )] (3) N cE 1 cos á K h sin á ( f 9 f 10 2 f 11 ) (4) N qE À 1 cos á K h sin á ( f 7 K h f 8 ) (5) 
M2 mechanism 14. As shown in Fig. 3, this mechanism is composed of a triangular active wedge ABC, a radial circular shear zone BCD and a triangular passive wedge BDE. It is an arc-sandwich mechanism and will be referred to here as the M2 mechanism. As in the case of the M1 mechanism, the circular slip surface CD is assumed to be tangent to lines AC and DE at C and D respectively; hence there are no velocity discontinuities along BC and BD. This mechanism is de®ned by the two angular parameters á and â.

15. The triangular wedge ABC is assumed to be rigid. It moves with velocity V 1 , which makes an angle ö with the discontinuity line AC. The foundation is assumed to move with the same velocity as the wedge ABC (i.e. V 1 ). The centre of the circular arc CD is at point B and the radius r 0 is the length of the line BC. It has been shown [START_REF] Chen | Limit analysis and soil plasticity[END_REF] that the velocity V along the circular shear zone is V (è) V 1 exp (è tan 2ö). 16. Finally, the triangular wedge BDE is assumed to be rigid, moving with velocity V 2 V (â) V 1 exp (â tan 2ö). Therefore, the velocities so determined constitute a kinematically admissible velocity ®eld. Having established the velocity ®eld of the kinematically admissible failure mechanism, the different terms of the work equation can be calculated; these calculations are presented in Appendix 2. As with the M1 mechanism, by equating the rate of the total external work (equation ( 46), Appendix 2) to the rate of the total internal energy dissipation (equation (54), Appendix 2), we obtain equation (2), where the seismic bearing capacity factors are given as follows

N ãE À 1 cos (á ö) K h sin (á ö) 3 [ g 1 g 3 g 5 K h ( g 2 g 4 g 6 )] (6) N cE 1 cos (á ö) K h sin (á ö) 3 [ g 9 g 10 g 11 g 12 ] (7) 
N qE À 1 cos (á ö) K h sin (á ö) 3 [ g 7 K h g 8 ] (8) 
Numerical results

17. The most critical bearing capacity can be obtained by minimization of q c (equation ( 2)) with respect to the parameters á and â. A computer program for assessing the seismic bearing capacity has been developed based on equation (2). The program gives the critical slip surface and the corresponding critical bearing capacity. In the following sections we present the bearing capacity factors for the two mechanisms M1 and M2 obtained from the numerical extremization of equations ( 3) to (8). The results are then compared with those of other authors for both static and seismic conditions.

Static case

18. The problem of bearing capacity in nonseismic areas has been widely treated in the literature by considering symmetrical failure mechanisms and using the limit equilibrium, the limit analysis or the slip line method. 19. N cS and N qS factors. For the N cS and N qS factors, it should be noted that the exact solution is well described in the literature [START_REF] Chen | Limit analysis and soil plasticity[END_REF] and is given as

N qS e ð tan ö tan 2 ð 4 ö 2 (9) 
N cS (N qs À 1) cot ö (10) 20. Table 1 compares the N qS and N cS values obtained from the two proposed mechanisms with those of Terzaghi, [START_REF] Terzaghi | Theoretical soil mechanics[END_REF] Meyerhof, 2 Sokolovski, [START_REF] Sokolovski | Statics of granular media[END_REF] Prakash and Saran, [START_REF] Prakash | Bearing capacity of eccentrically loaded footings[END_REF] Saran 5 and Saran and Agarwal. [START_REF] Saran | Bearing capacity of eccentrically obliquely loaded footing[END_REF] It should be mentioned here that the numerical bearing capacity factors N qS and N cS given by Sokolovski [START_REF] Sokolovski | Statics of granular media[END_REF] are the same as the ones given by the exact solutions (equations ( 9) and ( 10)). It is clear from Table 1 that the solutions of the N qS and N cS factors obtained from the M1 mechanism are the same as the exact solution given by equations ( 9) and (10). The corresponding critical slip surface obtained from the minimization procedure corresponds to á ða4 öa2 and â ða2, which means that lines BD and DE are inclined at an angle of ða4 À öa2 to the horizontal direction, as it is the case of the symmetrical Prandtl mechanism (see below). Note, however, that the M2 mechanism greatly overestimates the The present N ãS values chosen as the minimal values of the M1 and M2 mechanisms are in good agreement with those of the non-symmetrical mechanism of Sarma and Iossifelis 10 using the limit equilibrium method; the difference does not exceed 5% when ö 408.

N qS A B E C D α β φ φ φ V 2 V 1 V 1 Circle Fig. 3.
26. Finally, one can easily see that in most cases M1 gives smaller values for the bearing capacity factors than M2, except for the N ãS factor when ö , 308.

Seismic case

27. The analysis of the seismic bearing capacity problem by a pseudo-static approach, considering the inertia forces both on the soil mass and on the structure, has been undertaken by Sarma and Iossifelis, [START_REF] Sarma | Seismic bearing capacity factors of shallow strip footings[END_REF] Soubra and Reynolds, [START_REF]Design charts for the seismic bearing capacity of strip footings on slopes[END_REF] Richards et al., [START_REF] Richards R | Seismic bearing capacity and settlement of foundations[END_REF] and Soubra.

13,14

While the analyses of Sarma and Iossifelis 10 and of Richards et al. [START_REF] Richards R | Seismic bearing capacity and settlement of foundations[END_REF] are based on the limit equilibrium method, the solutions presented by Soubra and Reynolds 11 and Soubra [START_REF]Seismic bearing capacity of strip footings[END_REF][START_REF] Soubra | Discussion on `Seismic bearing capacity and settlement of foundations' by Richards[END_REF] are upper-bounds to the exact solution for an associated ¯ow rule Coulomb material in the framework of the limit analysis theory. 28. Figure 4 shows the comparison of the present reduction factor N ãE aN ãS obtained using the M1 mechanism with the one given by Dormieux and Pecker [START_REF] Dormieux | Seismic bearing capacity of foundations on cohesionless soil[END_REF] for ö 308. The difference between the two curves is due to the fact that Dormieux and Pecker [START_REF] Dormieux | Seismic bearing capacity of foundations on cohesionless soil[END_REF] have limited the á parameter to ða2 as mentioned in their paper. In fact, á , ða2 is valuable only for small values of K h ; for greater values of K h , á becomes greater than ða2. 
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[Min (M1, M2)] give the lowest upper-bound solutions of the non-symmetrical mechanisms available in the literature in the framework of the limit analysis theory.
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30. Figure 5 shows the variation of the seismic N ãE value with the horizontal seismic coef®cient K h when ö 308, as given by the present analysis, Sarma and Iossifelis [START_REF] Richards R | Seismic bearing capacity and settlement of foundations[END_REF] This may be explained by the fact that Richards et al. [START_REF] Richards R | Seismic bearing capacity and settlement of foundations[END_REF] have used equation (10) to calculate the seismic factor N cE without any real justi®cation, as they mentioned in their paper. 32. Figure 9 shows the variation of N ãE aN ãS with K h for ö 358, according to the present analysis (Sarma and Iossifelis, [START_REF] Sarma | Seismic bearing capacity factors of shallow strip footings[END_REF] Soubra and Reynolds, [START_REF]Design charts for the seismic bearing capacity of strip footings on slopes[END_REF] Soubra, 13, 14 Richards et al. [START_REF] Richards R | Seismic bearing capacity and settlement of foundations[END_REF] and

Budhu and Al-Karni [START_REF] Budhu | Seismic bearing capacity of soils Ge Âotechnique[END_REF] ). It can easily be seen that the present solutions in terms of the reduction in the N ãE factor agree well with the ones of Richards et al. [START_REF] Richards R | Seismic bearing capacity and settlement of foundations[END_REF] and Sarma and Iossifelis, [START_REF] Sarma | Seismic bearing capacity factors of shallow strip footings[END_REF] as was shown in Fig. 5. For the ö value used in Fig. 9 (ö 358), this agreement is best with the results of Richards et al. Conclusions 34. Two failure mechanisms have been considered for the analysis of the seismic bearing capacity factors using the upper-bound method in limit analysis. The solutions presented are rigorous upper-bound ones in the framework of the limit analysis theory for an associated ¯ow rule Coulomb material. The numerical results obtained lead to the following conclusions.
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(a) For the static case, the log-sandwich mechanism M1 gives the exact solutions of the N cS and N qS factors. The angular parameters obtained from the numerical minimization show that the passive triangular wedge is in a passive Rankine state, as it is in the case of the symmetrical Prandtl mechanism. However, the arc-sandwich mechanism M2 gives non-interesting results in this case since one obtains higher upperbound solutions than the former mechanism. For the N ãS factor, it was found that the results of the M1 mechanism are very close to the ones of the symmetrical failure mechanism Prandtl2 considered by Chen 6 using the limit analysis method, and that the critical failure mechanism corresponds to the case when the passive wedge is in a Rankine state. However, the M2 mechanism gives results which are very close to another symmetrical mechanism, Prandtl3, Sarma and lossifelis [START_REF] Sarma | Seismic bearing capacity factors of shallow strip footings[END_REF] Soubra and Reynolds [START_REF]Design charts for the seismic bearing capacity of strip footings on slopes[END_REF] Soubra [START_REF]Seismic bearing capacity of strip footings[END_REF] Richards et al. [START_REF] Richards R | Seismic bearing capacity and settlement of foundations[END_REF] Budhu and Al-Karni [START_REF] Budhu | Seismic bearing capacity of soils Ge Âotechnique[END_REF] available in the literature in the framework of the kinematical method of limit analysis. Furthermore, the present results for the seismic bearing capacity factors are in good agreement with the ones of Sarma and Iossifelis 10 and Richards et al. [START_REF] Richards R | Seismic bearing capacity and settlement of foundations[END_REF] using the limit equilibrium method. These results are presented in the form of design charts for practical use.

Appendix 1

35. In this appendix, we present the different expressions for the incremental external work of the different regions of mechanism M1, together with the internal energy dissipation for the same mechanism.

Incremental external work

36. The different elements of the incremental external work for the M1 mechanism can be calculated as follows.

(a) Incremental external work due to self-weight and inertia force of triangle ABC

ÄW ABC ãB 2 0 2 [ f 1 (á, â) K h f 2 (á, â)]V 1 (11) 
where 

f 1 sin 2á cos (á À ö) 2 cos ö (12) 
ÄW BCD ãB 2 0 2 [ f 3 (á, â) K h f 4 (á, â)]V 1 ( 14 
)
where

f 3 cos 2 (á À ö) cos 2 ö 3 e 3â tan ö [3 tan ö cos (á â) sin (á â)] 1 9 tan 2 ö & À [À3 tan ö cos á À sin á] 1 9 tan 2 ö ' (15) 
f 4 cos 2 (á À ö) cos 2 ö 3 e 3â tan ö [3 tan ö sin (á â) À cos (á â)] 1 9 tan 2 ö & À[3 tan ö sin á cos á] 1 9 tan 2 ö ' (16) 
(c) Incremental external work due to self-weight and inertia force of triangle BDE

ÄW BDE ãB 2 0 2 [ f 5 (á, â) K h f 6 (á, â)]V 1 (17) 
where

f 5 À cos (á â) sin (á â) cos 2 (á À ö) cos (á â À ö) cos ö e 3â tan ö (18) 
f 6 À cos 2 (á À ö) sin 2 (á â) cos (á â À ö) cos ö e 3â tan ö (19) 
(d) Incremental external work due to the foundation load and the corresponding inertia force

ÄW P P(cos á K h sin á)V 1 (20) 
(e) Incremental external work due to the surcharge loading and the corresponding inertia force

ÄW q qB 0 [ f 7 (á, â) K h f 8 (á, â)]V 1 (21) 
where

f 7 À cos á cos (á À ö) cos (á â) cos (á â À ö) e 2â tan ö (22) f 8 À cos (á À ö) sin (á â) cos (á â À ö) e 2â tan ö (23) 
37. The total incremental external work is the summation of these ®ve contributions; that is, equations (11), ( 14), ( 17), ( 20) and ( 21) 

Ó[ÄW ] ext ÄW ABC ÄW BCD ÄW BDE ÄW P ÄW q (24) K h ϭ 0 . 3 K h ϭ 0
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 1 Fig. 1. Failure mechanism M1 for seismic bearing capacity analysis

  Fig. 4. Comparison of the present solution and that of Dormieux and Pecker 12 for the M1 mechanism (ö 308)
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 10 Richards et al.[START_REF] Richards R | Seismic bearing capacity and settlement of foundations[END_REF] The comparison of the present upper-bound solution with the solutions presented by Sarma and Iossifelis 10 and Richards et al.[START_REF] Richards R | Seismic bearing capacity and settlement of foundations[END_REF] in the framework of the limit equilibrium method shows good agreement. The maximum difference does not exceed 13% when compared with Sarma and Iossifelis' 10 results and 6% compared with Richards et al.
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 15 Figures 6 to 8 show design charts of the seismic bearing capacity factors as given by the present analysis for ö 208, 258, 308, 358 and 408. In these ®gures the values proposed by Sarma and Iossifelis 10 for the same ö values and those proposed by Richards et al. 15 for ö 208, 308 and 408 are also presented. These ®gures again con®rm the agreement of the present results with those of these authors for the different values of ö and K h , except for the N cE value proposed by Richards et al.
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 102233225710 Fig. 10. Critical slip surfaces from the M1 log-sandwich mechanism (ö 358)

Table 1 .

 1 Failure mechanism M2 for seismic bearing capacity analysis and N cS values, especially for large ö values, and equation (10) is still satis®ed for this mechanism. 21. N ãS factor. For the N ãS values, many solutions are proposed in the literature based on different failure mechanisms. Chen Comparison of static bearing capacity factors: (a) N cS ; and (b) N qS

	(a) ö: deg	Present solution	Present solution	Terzaghi	1	Meyerhof	2	Sokolovski	3	Prakash and Saran 4	Saran	5	Saran and Agarwal 7
		M1	M2									
	20	14´8	18	17´7		14´5		14´8		17´3	17´5	17´7
	30	30´1	70	37´2		31		30´1		36´6	37´2	37´2
	40	75´3		Ð	95´7		73		75´3		94´8	95´4	96
	(b) ö: deg	Present solution	Present solution	Terzaghi	1	Meyerhof	2	Sokolovski	3	Prakash and Saran 4	Saran	5	Saran and Agarwal 7
		M1	M2									
	20	6´4		7´6		7´4		6´8		6´4		7´4	7´4	7´4
	30	18´4	41´4	22´5		19´5		18´4		22´4	22´5	22´5
	40	64´2		Ð	81´3		64		64´2		81´3	81´3	81´6
								are more general mechanisms since they are	
								described by the two parameters á and â and	
								they permit a greater freedom for the slip	
								surface to develop, thus leading to smaller	
					6 consid-		upper-bound solutions of the bearing capacity problem.	
	ered three symmetrical failure mechanisms		23. Table 2 compares the N ãS values ob-	
	referred to as Prandtl1, Prandtl2 and Prandtl3 and gave rigorous upper-bound solutions for the three mechanisms in the framework of		tained from the two proposed mechanisms with those of Chen, 6 Soubra and Reynolds, 11 and Soubra. 13, 14 It is clear from this table that the	
	the limit analysis theory. Prandtl1 is composed		solutions of the N ãS factor obtained from the	
	of a triangular active wedge under the footing,		M1 non-symmetrical mechanism are very close	
	two radial log-spiral shear zones and two			to the ones obtained from the Prandtl2 sym-	
	triangular passive wedges. Prandtl2 differs from	metrical mechanism. The critical slip surface	
	Prandtl1 only in that an additional rigid body		corresponds to the case when lines BD and DE	
	zone has been introduced. Finally, Prandtl3		are inclined at an angle of ða4 À öa2 to the	
	resembles closely the Prandtl1 mechanism;		horizontal direction. Note also that the results	
	however, each shear zone is now bounded by		given by the M2 non-symmetrical mechanism	
	a circular arc. 22. Soubra and Reynolds	11 and Soubra	13, 14		are in good agreement with the ones given by the symmetrical Prandtl3 mechanism up to	
	considered one-sided non-symmetrical mechan-		ö 308.					
	isms and developed upper-bound solutions for		24. Few of the available bearing capacity	
	the bearing capacity problem. While Soubra and Reynolds 11 used a rotational log-spiral mechan-ism, Soubra 13, 14 used translational mechanisms. One mechanism 14 is of the Coulomb type (two triangular wedges), whereas the other 13 is	theories for a non-symmetrical mechan-ism 10, 15, 16 belong to the limit equilibrium method or the slip line methods and we cannot say if the solutions they give are upper-or lower-bound ones with respect to the exact	
	composed of a triangular active wedge and a		solution. However, as is well known in the	
	radial log-spiral shear zone. The latter mechan-	framework of the limit analysis method, the	
	ism is described by a single parameter. The		exact solution of a bearing capacity problem can	
	mechanisms M1 and M2 presented in this paper	be bracketed by the minimal upper-bound	

Table 2 .

 2 Comparison of static bearing capacity factor N ãS (upper-bound solutions)

	ö: deg	Present solution	Present solution	Chen `Prandtl1' 6	Chen `Prandtl2' 6	Chen `Prandtl3' 6	Soubra and Reynolds 11	Soubra	13	Soubra	14
		M1	M2								
	15	2´3	2´1	2´7	2´3	2´1	3´2	2´4		2´5	
	20	5´2	4´8	5´9	5´2	4´6	7´3	5´5		5´9	
	25	11´4	11´1	12´4	11´4	10´9	16´5	12´1		14´1	
	30	25	31´5	26´7	25	31´5	38´1	26´8		36´4	
	35	57´1	152´2	60´2	57	138	92´5	61´6		115´6	
	40	140´5	5444´4	147	141	1803	243´9	152´6		642´8	

[START_REF] Saran | Bearing capacity of eccentrically obliquely loaded footing[END_REF] 

). It is generally known that Terzaghi's 1 values give a conservative estimate. Experiments performed on models and at full scale by Muhs and Kahl,

[START_REF] Muhs | Ergebnisse V on Probebelastungen und grossen Last¯achen Zur Ermittlung der Bruch last in sand[END_REF] 

Feda,

[START_REF] Feda | Research on bearing capacity of loose soil[END_REF] 

Selig and McKee,

[START_REF] Mckee K | Static and dynamic behavior of small footings[END_REF] 

and De Beer

[START_REF] Debeer | Bearing capacity and settlement of shallow foundations on sand[END_REF] 

showed that Terzaghi's analysis underestimates the bearing capacity. Saran 5 showed by analysing model test data that the values of Terzaghi, 1 Meyerhof 2 and Sokolovski 3 underestimate the N ãS values.

Table 3 .

 3 Table 4 presents the values of the angular parameters á and â obtained from the numerical minimization by considering the restriction á , ða2 (Dormieux and Pecker 12 ) and the unrestricted values from the present analysis. It is clear from this table that the difference with Dormieux and Pecker 12 appears when K h 0 X 25, where á . ða2. 29. Tables5 to 7give the seismic bearing capacity factors N ãE , N cE and N qE from both the M1 and M2 mechanisms. As in the static case, in most cases M1 continues to give smaller values for the seismic bearing capacity factors than the M2 mechanism, except for the N ãE factor when ö , 308. Furthermore, it should be mentioned that the present results Comparison of static bearing capacity factor N ãS with available limit equilibrium and slip line methods

							0	0 . 05	0 . 1	0 . 15	0 . 2	0 . 25	0 . 3	0 . 35	0 . 4
									Present solution			Dormieux and Pecker 12
	ö: deg	Present solution	Terzaghi	1	Meyerhof	2	Sokolovski	3	Prakash and Saran 4	Saran	5	Sarma and Iossifelis 10	Saran and Agarwal 7
		Min (M1, M2)											
	20	4´8	5		2´8		3´2		3´8	6			5´7	6´4
	30	25	19´7		16		15´3		19´4	29´3	25	29´4
	40	140´5	100´4		95		85´3		115´8	165´3	133´8	166´1

Table 4 .

 4 Comparison of the angular parameters á and â as given by the present analysis and that of Dormieux and Pecker[START_REF] Dormieux | Seismic bearing capacity of foundations on cohesionless soil[END_REF] for ö 308

	K h	Present solution		Dormieux and Pecker	12
	á: deg	â: deg	N ãE	á: deg

Table 5 .

 5 Seismic bearing capacity factor N ãE from the M1 and M2 mechanisms

	K h			ö: deg		
	15	20	25	30	35	40

Table 6 .

 6 Seismic bearing capacity factor N cE from the M1 and M2 mechanisms

	K h			ö: deg		
	15	20	25	30	35	40

Table 7 .

 7 Seismic bearing capacity factor N qE from the M1 and M2 mechanisms

	K h			ö: deg		
	15	20	25	30	35	40
	0