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Rockfill shear strength evaluation: a rational method based on size effects

E. FROSSARD�, W. HU†, C. DANO† and P. -Y. HICHER†

The shear strength of coarse granular materials, widely
used in civil works such as rockfill in dam construction,
is seldom measured because of severe practical experi-
mental limitations. This paper presents an original
method for evaluating the shear strength of such mater-
ials, based on size effects in granular materials affected
by grain breakage according to fracture mechanics.
Through a general size effect relation operating on shear
strength envelopes, this method makes it possible to
determine the shear strength of a coarse-grained granu-
lar material from the measured properties of a finer-
grained granular material made of the same mineral. In
the paper, the method is explicitly proved, taking into
account the statistical distribution of breakage resistances
of particles with different sizes, within materials that can
be considered as physically similar, particularly having
parallel grain size distributions and the same compact-
ness. A wide set of independent experimental results is
shown to validate the method consistently.

KEYWORDS: dams; particle crushing/crushability; shear
strength

La résistance au cisaillement des matériaux granulaires à
gros grains largement utilisés en génie civil, tels les
enrochements dans la construction de barrages, fait rare-
ment l’objet de mesures du fait de limitations pratiques
lourdes qui pèsent sur l’expérimentation. Cet article
présente une méthode originale pour évaluer la résistance
au cisaillement de tels matériaux, fondée sur les effets
d’échelle survenant dans les matériaux granulaires af-
fectés par la rupture de granulats suivant la Mécanique
de la Rupture. Au moyen d’une Relation d’Effet
d’Echelle assez générale, qui opère sur les courbes intrin-
sèques, cette méthode permet de déterminer la résistance
au cisaillement d’un matériau granulaire à gros grains, à
partir de mesures effectuées sur un matériau granulaire
plus fin, constitué de la même matière minérale. Dans
l’article, cette méthode est explicitement prouvée, en
tenant compte des distributions statistiques des résis-
tances à la rupture des granulats de différentes dimen-
sions, au sein de matériaux granulaires qui se
correspondent en similitude physique, avec en particulier
des granulométries semblables et la même compacité. La
méthode est enfin validée sur un large ensemble de
résultats expérimentaux indépendants.

BACKGROUND
The construction of large civil works involving coarse-
grained materials, such as rockfill dams (Fig. 1), is increasing
worldwide (ICOLD, 2002). Traditionally, rockfill materials
have seldom been tested for shear resistance, because of the
size of the apparatus required, and the corresponding costs
and delays for testing, even for small-sized rockfill. For
example, for a 0–250 mm rockfill, a representative cylindri-
cal probe for a triaxial test should measure about 1.5 m in
diameter by 3 m high, and weigh more than 10 t. However,
the trend towards larger works, such as higher rockfill dams
with steeper slopes, should be associated with improved
knowledge of these materials for stability assessment, and
particularly knowledge of their shear resistance. Significant
incidents have recently marked the commissioning of various
large rockfill dams (CBDB-ICOLD, 2007), attributed to
excessive unforeseen deformations required to mobilise the
resisting forces necessary for static equilibrium, under nor-
mal service conditions.

Concern is rising within the profession to return to more
rational approaches in their design, and particularly engi-
neering approaches through structural analysis and relevant
material testing, as should be done for any large civil
engineering structure. This concern also underlines a grow-
ing need for progress in the knowledge and rational mastery
of the behaviour of rockfill and large embankment works,
and is shared by other sectors of construction, such as large

linear embankment works in highways, railways and marine
works.

Pioneering experimental work in large-scale testing of a
wide range of different materials was developed in the

Fig. 1. Typical rockfills used in dam construction
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1960s, together with the development of large rockfill dam
construction in the Americas, by Marsal in Mexico (Marsal,
1967, 1972), and at approximately the same time in Cali-
fornia by Marachi and colleagues (Marachi et al., 1969,
1972; Becker et al., 1972). Table 1 summarises the main
features of the triaxial apparatus developed by these inves-
tigators.

Other large testing equipment with comparable features
was later implemented worldwide, but its operation remains
outside the scope of current geotechnical laboratories, and
the data available are quite scarce (Duncan, 2004).

Smaller devices have also been used to provide interesting
results concerning the behaviour of rockfills (Charles &
Watts, 1980; Barton & Kjaernsli, 1981; Bolton, 1986;
Indraratna et al., 1998), of unsaturated gravels and rockfills
(Chávez & Alonso, 2003), and of the dynamic behaviour of
ballasts (Indraratna et al., 1998; Lackenby et al., 2007).

However, the ordinary rockfills commonly used in large
dam construction, with maximum grain sizes typically be-
tween 250 mm and 800 mm (and sometimes larger), remain
out of range of the largest apparatuses mentioned above.
This background justifies efforts to find a method to evaluate
the shear strength of very coarse granular materials from
measurements performed on finer gradations of the same
mineral constituents. The original method detailed here
below provides a response to this need. It is based upon the
key concept that a characteristic gradation dimension (e.g.
the mean grain diameter or maximum grain diameter) affects
the mechanical behaviour of the granular mass, by control-
ling the amount of grain breakage under loading. This
method (Frossard, 2006, 2008, 2009a, 2009c) results from an
in-depth review of numerous past experimental results on
rockfill in the light of current knowledge of the mechanics
of materials, and particularly fracture mechanics, during
recent research projects on granular fill behaviour (Frossard,
2005a).

SIZE EFFECT IN GRANULAR MATERIALS USED IN
CIVIL WORKS: PREVIOUS WORK

The size effect can generally be described as the
dependence of a material intrinsic property on a character-
istic sample dimension (e.g. volume or diameter). Such a
phenomenon is encountered in many engineering fields,
including quasi-brittle geomaterials in civil engineering
(concrete, rock and soil), and was investigated long ago in
geomechanics for its incidence in similarity relations (We-
ber, 1971). Here, as a result from fracture mechanics, the
size effect can be expressed by the fact that, statistically,
the intrinsic strength of a specimen decreases when its
size increases (Bazant & Planas, 1998). Furthermore, as
this essential result is related to the development of pre-
existing flaws and microcracks within the material of the
specimen, the way these flaws and cracks are distributed
will affect the variability of the strength of a brittle
material. On the basis of data on brittle materials, a
statistical approach was proposed by Weibull (1951) to

describe brittle material strength and its variability, a
specific parameter being attached to the variability in
specimen strength in the resulting Weibull distribution. In
granular materials the size effect affects the crushing
resistance of individual particles submitted to contact
forces and, as a consequence, the mechanical behaviour of
the whole granular mass.

Size effect for individual grains
Experimental results in the literature (e.g. Marsal, 1972;

Lee, 1992; Nakata et al., 1999; Miura et al., 2003) outline
how, statistically, the intrinsic strength of an individual
particle decreases as the particle size increases (Figs 2 and
3). The strength of the particle is commonly determined by
applying a compressive load on it, placed between two stiff
platens. It is calculated from the maximum load reached
before global failure of the particle (Fig. 2). This specific
feature of grain behaviour has to be attributed to initial
microcracks randomly distributed in size and orientation
within the particles. They are, statistically, larger in large
grains (Fig. 4). Physically, during loading, the initial micro-
cracks grow and interconnect to form a macrocrack at
failure. Griffith’s theory for brittle materials (Griffith, 1921)
established that the strength is inversely proportional to the
square root of the initial microcrack length. McDowell &
Bolton (1998) suggested later that the gradation of crushable
soils tends towards a fractal distribution because of particle
crushing.

Size effect in granular materials
Experimental size effects were clearly apparent in a series

of triaxial tests carried out by Marsal (1967) on specimens
of different sizes, as well as in a series of crushing tests on
particles of different sizes. Similarly, Marachi et al. (1969)
performed an outstanding series of triaxial tests on three
kinds of rockfill specimen of different sizes. For each mater-
ial, three specimen groups of different sizes were reconsti-
tuted with the same compactness and closely parallel grain
size distributions (Fig. 5), adjusted so that the mean and
maximum grain sizes were in proportion to the specimen
sizes (fine-, medium- or coarse-grained; Table 2).

At the end of the shearing phase, evolution of the grada-

Table 1. Key features of large triaxial apparatus of Marsal and Marachi et al.

Sample features Maximum loading range

References Diameter: mm Height: mm Max. grain size: mm Confining pressure: MPa Axial load: kN

Marsal (1967, 1972) 1130 2500 180 2.5 15 000
Marachi et al. (1969, 1972) 915 2286 152 5 18 000

Table 2. Key features of multi-scale series of triaxial tests
performed by Marachi et al. (1969)

Type of material Material
Dmax: mm (inches)

Specimen for testing

Diameter: mm
(inches)

Height:
mm

Coarse grained 152 (6) 915 (36) 2286
Medium grained 51 (2) 305 (12) 762
Fine grained 12 71 (2.8) 178
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tions was measured, by determination of a global grain
breakage factor determined by the difference between the
initial and final gradations (according to the definition and
procedure detailed in Marsal, 1972). Marachi et al. (1969)
found that the reduction observed in the value of the internal
friction angle can be closely related to the grain breakage
intensity, particularly developed in large specimens. Their
results showed clearly that the maximum shear strength of
the specimen decreases and the amount of particle breakage
increases when the particle size increases. Similar relation-
ships were obtained for the three different granular mater-
ials, the only difference being in the intensity of particle
crushing. One other key experimental result of these investi-
gations (Fig. 6) was that, within each of the three families
of similar granular materials, the correspondence between
the internal friction and the amount of grain breakage was
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Fig. 2. Method for crushing test on particles (after Lee, 1992)
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Fig. 3. Experimental evidence of size effect in strength of
individual grains (Lee, 1992).
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Fig. 4. Schematisation of origin of size effect: (a) close-up of freshly cut rock surface, showing flaws, cracks and pore
cavities; (b) within a given mineral matrix, the large specimen will tend statistically to include larger flaws or cracks
affecting its crushing resistance than the smaller specimen
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found to be unique, regardless of the characteristic size
(coarse-, medium- or fine-grained), if all the specimens
within one family were given the same initial compactness.

Hardin (1985), Lee (1992), Coop & Lee (1993), Biarez &

Hicher (1997), Daouadji et al. (2001), Deluzarche & Cam-
bou (2006) and Lade & Bopp (2005) also studied the break-
age of particles in granular media, which was found to be a
source of size effects in crushable granular materials.
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Fig. 5. Rockfill grain size distributions for different specimen diameters of three materials
tested by Marachi et al. (1969): (a) Pyramid Dam material; (b) crushed basalt; (c) Oroville
Dam material (1 in ¼ 25.4 mm)
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PROPOSED SIZE EFFECT RELATIONS BASED ON
GRAIN BREAKAGE
Assumed key features of grain breakage

On the basis of experimental data, Marsal (1967, 1972)
proposed representing the average experimental crushing
strength f by a power function of the average diameter d of
the particles (Fig. 7)

f ¼ �d º (1)

where � and º are experimental constant material values.

Grain-crushing statistics can also be described by a Weibull
distribution, considering the probability of survival within a
population of brittle objects exposed to loading conditions
(Weibull, 1951). In this approach, the probability of survival
Ps(V , � ) within a set of brittle particles defined by their
volume V and submitted to an applied stress � is given by

Ps V , �ð Þ ¼ exp � V

V0

�

�0

� �m
" #

(2)

where V0 is a given reference volume, and �0 corresponds to
the applied stress for which Ps(V0) ¼ 1=e ¼ 0:37, meaning
that 37% of the specimens (with volume V0) survived the
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loading without breaking. This equation is represented in
Fig. 8 for V ¼ V0 and for different values of the material
parameter m. The smaller m is, the more disperse is the
strength distribution. The two representations, Marsal (equa-
tion (1)) and Weibull (equation (2)), can be connected in
order to relate the parameters º and m. Indeed, as the grain
volume V is statistically proportional to the cube of its
diameter d, if failure is statistically defined by a given
probability of survival, then the corresponding average
crushing strength will be proportional to a power function of
the diameter d (McDowell & Bolton, 1998)

Ps V , �ð Þ fixed) � / d�3=m (3)

Given that the mean stress � inside the grain is propor-
tional to the applied force f during loading, divided by the
mean section of the grain, which itself is statistically propor-
tional to the square of its diameter, then merging the two
approaches gives a simple means to set, for a given material,
a representative Weibull distribution. From equations (1), (2)
and (3) the following relation is derived

º ¼ 2� 3

m
or m ¼ 3

2� º
(4)

In the range of materials investigated by Marsal (1967,
1972), the exponent º was found to be between 1.2 and 1.8,
corresponding to a Weibull modulus m between 4 and 15,
with a central value of º of about 1.5, corresponding to a
Weibull modulus m central value equal to 6. These central
values are not a simple random result; they correspond
precisely to a distribution of the sizes of flaws or micro-
cracks inside particles, for which the significant flaw or
microcrack size governing their failure is found to be
statistically proportional to their diameter.

In equations (2) and (3), � corresponds to the mean
stress applied on one grain. The core assumption of the
approach developed herein is that the significant stress
applied to one grain within a granular assembly may be
considered as being proportional to the average macroscopic
stress applied to the granular material. Then, in the above
situation of a central distribution of flaws, the limit of
average macroscopic stress that the granular medium can
withstand before crushing will be inversely proportional to
the square root of a characteristic grain diameter.

Basic size effect relation for simple particle sets
Coming back to the more general situation, consider

particles from two sets of particles, A and B, issued from
the same homogeneous mineral stock, with similar grain
shapes, and characteristic diameters dA and dB, described by
equations (1)–(4).

(a) Submit the particles in these two sets to crushing forces
fA and fB:

(b) In order to obtain the same probability of ruptures of
particles within the two sets, fA and fB must be adjusted to
the same proportion of the average resistance of particles
in sets A and B, resulting in the following basic size
effect relation regarding grain breakage for simple
particle sets (Frossard, 2009d).

f B ¼ f A

dB

dA

� �º

or fB ¼ fA

dB

dA

� �2�3=m

(5)

Size effect relation for granular materials (Table 2)
In a granular material, the macroscopic stresses may be

related to the set of local interparticle contact forces,

integrated in a representative volume. Following the Love–
Weber approach of stress averaging, the macroscopic stress
tensor �ij can be obtained by the integration of contact
forces and branch vectors for all contacts (Love, 1927;
Weber, 1966; Christofferson et al., 1981; Rothenburg &
Selvadurai, 1981; Chang & Hicher, 2005)

� ¼ 1

V

X
n, p<N

f n= pð Þ � l n= pð Þ (6a)

or

� ij ¼
1

V

X
n, p<N

f i n= pð Þ � l j n= pð Þ (6b)

where f ( n= p) is the contact force exerted by particle n on
particle p; l( n= p) is the branch vector joining the centres of
particles in contact, from particle n towards particle p; and
N is the total number of particles occupying volume V in the
granular material under consideration.

Let us now consider two granular materials A and B,
geometrically similar and issued from the same homoge-
neous mineral stock (Fig. 9), and analyse the relations
resulting from this similarity, which is assumed to be a
perfect one. First, these two similar granular media display
similar grain shapes, the same density and parallel grain size
distributions (Fig. 10). The geometric correspondence be-
tween media A and B, is ruled by a geometric similarity
ratio DB/DA, where DA and DB are given characteristic sizes
for media A and B respectively (e.g. maximum grain size
Dmax, mean grain size D50, or any other given characteristic
diameter). For example, the diameters dA( p) and dB( p) for
two homologous particles p, or the branch vectors between
particles n and p in contact, or the volumes VA and VB

occupied by homologous representative subsets of particles
in granular media A and B are linked by
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Fig. 9. Granular materials A and B with similar geometry
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Fig. 10. Gradations of similar materials A and B
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dB pð Þ ¼ dA pð Þ
DB

DA

� �

lB n= pð Þ ¼ lA n= pð Þ
DB

DA

� �

VB ¼ VA

DB

DA

� �3

(7)

Regarding the forces and internal equilibrium in the two
similar materials, some basic assumptions will be made. As
the particles of both granular media are issued from the
same mineral stock, the statistics of their crushing strengths
are assumed to be described by the same Weibull distribu-
tion; and the friction coefficients at homologous contacts are
assumed to be identical.

Consider now these similar granular media submitted to
macroscopic stresses, close to limit equilibrium, inducing
slow motion inside both media: the resulting contact forces
induce some grain breakage. Consider the probability of
failure of homologous particles p in the two media under the
effect of contact forces exerted by homologous particles n.
Equation (5) shows that, in order to secure the same
probability of grain breakage, the homologous contact forces
should be in proportion to the crushing resistances of homo-
logous particles p

f B n= pð Þ ¼ f A n= pð Þ
DB

DA

� �2�3=m

(8a)

As the scaling ratio is the same for all contact forces, this
relation, valid locally for each contact force f ( n= p), also
holds globally for the complete sets of contact forces {f}.

f Bf g ¼ f Af g
DB

DA

� �2�3=m

(8b)

Macroscopic stresses in the two granular materials derive
from equation (6).

�B ¼
1

VB

X
n, p<N

f B n= pð Þ � lB n= pð Þ (9a)

and

�A ¼
1

VA

X
n, p<N

f A n= pð Þ � lA n= pð Þ (9b)

From equations (6)–(9), all the terms in the formula for
the stress tensor in granular medium B may now be ex-
pressed as a function of the corresponding terms related to
the similar granular medium A, resulting in the relation
(Frossard, 2009d)

�B ¼
DB

DA

� ��3=m
1

VA

X
n, p<N

f A n= pð Þ � lA n= pð Þ

¼ DB

DA

� ��3=m

�A

(10)

Equation (10) sets the relation between the macroscopic
stress state tensors to be applied to granular media A and B
in order to obtain the same probability of grain breakage
during mechanical loading, and thus statistically the same
amount of grain breakage during motion. This relation is
called the size effect relation for macroscopic stresses
regarding grain breakage (in geometrically similar granular
media).

SIZE EFFECT RELATION AND SHEAR STRENGTH
ENVELOPES
The link with shear strength envelopes

Equations (8b) and (10) define a dynamic similitude with-
in our granular materials A and B, which are already
geometrically similar. In this framework, and with the basic
assumptions made, if the system of internal contact forces
{fA} in granular material A is in limit equilibrium condi-
tions, then the system of internal contact forces {fB} in
similar granular material B set by equation (8b) will be also
in limit equilibrium conditions. Furthermore, the dynamic
similitude set by equations (8) and (10), associated with the
geometric similitude set by equation (7) and dry friction at
contacts, reveals full compatibility with a kinematic simili-
tude. So if slow motions that are kinematically similar are
imposed on both media A and B under similar limit
equilibrium conditions, equation (10) will link the stress
states mobilised during the movements within the two mater-
ials, securing the same grain breakage intensity in both
materials.

Provided that this situation of complete physical similarity
is materially achievable, as a result of equation (10) the
principal stress ratios (�1/�3 etc.) will be the same in both A
and B, which means that the mobilised internal friction will
be the same in both materials. This will also hold for the
maximum stress mobilised during motion, or the shear
strength envelope. So equation (10) will also apply to the
stress states along the shear strength envelopes of granular
materials A and B, setting a direct correspondence between
them: under confining stresses adjusted to produce the same
amount of grain breakage, similar materials will display the
same internal friction.

This last consequence of equation (10) also means that
within a given family of similar materials with the same
initial compactness, the correspondence between the amount
of grain breakage and internal friction (i.e. the maximum
internal friction mobilised during motion) will be unique,
regardless of their characteristic size. This is precisely what
was found experimentally by Marachi et al. (1969) (Fig. 6).

Geometric and analytical correspondences set by the size
effect relation

Under these conditions, the size effect rule expressed in
equation (10) establishes a simple and direct geometric
correspondence between the shear strength envelopes of
granular materials A and B, as illustrated in Fig. 11. If a
stress state {�A} is known on the shear strength envelope of
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Fig. 11. Correspondence between shear strength envelopes of
materials A and B set by size effect relation
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granular material A, then the corresponding stress state {�B}
on the shear strength envelope of granular material B can be
obtained by applying a homothety with ratio (DB=DA)�3=m

on the vector Of�Ag. So from the simple geometric con-
structions of Fig. 11, the shear strength envelope of granular
material B can be obtained from that of granular material A,
regardless of any analytical formulation of the shear strength
envelope.

If the shear strength envelope of granular material A can
expressed analytically as

�A ¼ f A � nAð Þ (11)

then by reversing equation (10), the following relations
result between shear stresses and normal stresses in granular
materials A and B.

�A ¼ �B

DB

DA

� �3=m

� nA ¼ � nB

DB

DA

� �3=m
(12)

Then equations (11) and (12) lead to

�B ¼
DB

DA

� ��3=m

fA � nB

DB

DA

� �3=m
" #

(13)

Equation (13) gives the expression for the shear strength
envelope for granular material B, on the basis of the expres-
sion for the shear strength envelope for granular material A.

The mathematical expression of the shear strength envel-
ope for material A can be any of those usually used for
granular materials; with De Mello’s criterion (De Mello,
1977), the shear strength envelope is given by

�f ¼ A � 9nð Þb (14)

where �f is the maximum shear stress, � 9n is the effective
normal stress, and A and b are material constants. Assuming
now that the expression for the shear strength envelope for
granular material A is given by equation (14) and charac-
terised by the parameters AA and bA, the expression for the
shear strength envelope of granular material B can be
derived from equation (13) as

�fB ¼
DB

DA

� ��3=m

�fA

¼ AA

DB

DA

� ��3 1�bAð Þ=m

�nBð ÞbA

(15)

Observe that in equation (15) the coefficient AA is modified
by a size effect factor, but the power exponent bA remains
unchanged.

VALIDATION WITH EXPERIMENTAL DATA
A wide set of experimental results published indepen-

dently by various authors has been analysed for this valida-
tion, including results by Lee (1992) and Marsal (1967),
analysed in Hu (2009), and results from Marachi et al.
(1969) and Charles & Watts (1980), analysed in Frossard
(2005a, 2006, 2009a, 2009c).

Analysis of results by Lee (1992)
Two limestone granular materials, subsequently termed

MOLS (as material A) and POLS (as material B), with
parallel gradations (Fig. 12(a)) and different particle sizes,

were chosen by Lee (1992), with the ratio between their
respective mean grain diameters D50 about 10.

Crushing tests (Fig. 1) were performed on different parti-
cle sizes. The crushing strength function adjusted for this
limestone (equation (1)) is

f ¼ 4:51d
1:65

(16)

Sets of triaxial tests were performed by Lee (1992), defining
the shear strength envelopes for both materials.

From triaxial experiment data, the shear strength envelope
for material MOLS can be fitted according to

�A �nð Þ ¼ 0:71� 0:89
n (17)

Choosing the characteristic diameter D50 to represent the
size ratio, D50(A) ¼ 0.22 mm and D50(B) ¼ 1.73 mm for
materials MOLS and POLS respectively, the theoretical
shear strength envelope for POLS can be predicted from
equations (15) and (17) as

�B �nð Þ ¼ 0:66� 0:89
n (18)
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envelopes (redrawn from data presented by Lee, 1992)
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Shear strength envelopes obtained by this method and
those from triaxial experiments have been compared (Fig.
12(b)). The theoretical prediction fits the experimental re-
sults very well, although the size effect is not very much
marked in this example.

Analysis of results from Marsal (1967)
Marsal (1967) performed a series of triaxial experiments

on silicified conglomerate rockfill used at El Infiernillo dam,
with the specimen diameters and corresponding gradations
shown in Fig. 13(a). Two different granular sizes are selected
as materials A and B, corresponding respectively to speci-
mens 20 cm and 113 cm in diameter. The coefficients of
uniformity for the two granular materials are nearly the
same, at about 10.

From particle-crushing tests data in Marsal (1967),
º ¼ 1.2, so

m ¼ 3

2� º
¼ 3:75 (19)

For material A triaxial tests, the fitted equation of the shear
strength envelope is (Fig. 13(b))

�A �nð Þ ¼ 1:30� 0:91
n (20)

Characteristic grain sizes are D50(A) ¼ 6.8 mm and
D50(B) ¼ 68.9 mm for materials A and B. Applying the size
effect relation to the shear strength envelope of material A,
the shear strength envelope for material B can be predicted
as

�B �ð Þ ¼ 68:9

6:8

� ��3=3:75

�A �nð Þ

¼ 1:30
68:9

6:8

� ��3 1�0:91ð Þ=3:75

� 0:91
n

¼ 1:10� 0:91
n

(21)

The comparison between the shear strength envelope
obtained from the experimental results and the computed
one (equation (21)) is shown in Fig. 13(b), and displays
quite a good fit.

Analysis of results from Marachi et al. (1969)
As described earlier, three different sets of similar granu-

lar materials were investigated, first prepared with parallel
gradations, as displayed in Fig. 5, and subsequently tested in
triaxial apparatuses with the same initial compactness within
each set.

The three source materials were

(a) a quarried sedimentary argillite used in Pyramid Dam,
with angular, medium-resistance particles

(b) a quarried crushed basalt, with angular, quite strong
particles

(c) a borrowed granular alluvium used in Oroville Dam, with
strong, rounded cobbles, gravels and particles of fine-
grained amphibolite.

No statistical data on crushing tests of particles are avail-
able, so no direct determination of the Weibull parameter m
is possible. However, measurements of the global breakage
factor B% by systematic comparison of gradations measured
before and after testing allows the Weibull parameters to be
evaluated for each set of materials. Indeed, the size effect
relation first sets a correspondence between the stress states
associated with the same grain breakage amount within
similar materials. Thus, for similar materials A and B, the
data for breakage factor B% against confining stress should
correspond with the same similarity as the failure envelopes.
So the parameters m can be fitted by adjusting the similarity
factors on the breakage factor data, and then applying them
to the correspondence between the shear strength envelopes.

The results of this fit on breakage factor data are dis-
played in Fig. 14(a), with m values of 8.3, 9 and 7 for the
three materials. The application of these adjusted similarity
ratios to the internal friction data (Fig. 14(b)) is particularly
good: the predicted shear strength envelopes for rockfill
(Dmax ¼ 150 mm), reconstituted from shear strength envel-
opes measured on gravel (Dmax ¼ 12 mm), correspond well
with the experimental data.

Analysis of results from Charles & Watts (1980)
The data compilation published by Charles & Watts

(1980) gathers experimental shear strength data from numer-
ous previous tests on granular fills and rockfills, shown as
the hatched areas in Fig. 15(a), together with new experi-
mental results, shown as curves A, B1, B2 and C.

This original diagram displays some apparent distortion:
the new experimental results of Charles & Watts (outlined
by the dotted ellipse) appear curiously shifted towards the
upper right corner of the diagram, as compared with the
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older results of Marsal and Marachi. This holds also for
slate material B2, deliberately chosen as weak by these
authors, in order to complete the range of tested materials:
so curve B2 should lie rather below the usual range of
rockfill.

This apparent distortion can also be attributed to size
effects, and corrected by the size effect relation. Indeed, the
new measurements have been performed on granular mater-
ials limited to Dmax ¼ 38 mm, whereas the older results from
Marsal and Marachi were drawn from coarser materials
(Dmax ¼ 150–180 mm). Here, the absence of data on particle
breakage compels reliance on the central value m ¼ 6 for
the Weibull parameter (see above). The corrected diagram
(Fig. 15(b)) has been produced by this method, with a
horizontal similarity factor on confining stresses of
ˇ(38 mm/150 mm) (this transformation is facilitated by the
logarithmic scale used here for confining stresses: the simi-
larity operation reduces to a simple shift of results towards
the left).

This correction for size effects resolves the apparent
distortion of the original diagram between the new results
and the older ones.

DISCUSSION ON SIZE EFFECT RELATION AND
PRACTICAL APPLICATIONS
Key assumptions involved in size effect relation

Three key assumptions have been made to reach the size
effect relation (equation (10)) and its consequences, as
follows.

(a) The mineral particles constituting the granular materials
under consideration do crush when the materials are
strained, because of the development of pre-existing flaws
and microcracks within the mineral matter, causing
failures ruled primarily by the laws of fracture mechanics
laws, with a predominant mode of particle failure by
tensile-induced fracture, known as Mode I.

(b) The way these pre-existing flaws and microcracks are
distributed in the material affect the variability of the
particle crushing strength, whose statistics follow a
Weibull distribution.

(c) Complete physical similarity is materially achievable (i.e.
with reasonable accuracy) between granular materials
constituted from a common homogeneous mineral
source, compacted to the same density (i.e. the same
void ratio) through similar compaction procedures.

Attention should be paid to the third of these key assump-
tions, as it may not be always satisfied with some granular
materials, such as heterogeneous alluvium made of mixed
sedimentary or metamorphic rocks, in which hard rocks
predominate in the coarser fractions of granulometry, and
weaker minerals accumulate in the finer fractions of granu-
lometry.

A fourth key assumption is related to the implicit use of
the size effect relation as a necessary and sufficient condi-
tion.

Starting from local contact forces, the size effect relation
has been shown to be a necessary condition for obtaining
the same amount of grain breakage. However it cannot be
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proved to be also a sufficient condition, because for a given
macroscopic stress state, the corresponding distribution of
local contact forces is not unique. Nevertheless, the valida-
tion on experimental data shows that, with a good level of
approximation, it is also a sufficient condition for a wide
range of granular materials.

Rationale for a new practical method for rockfill shear
strength determination

The above results on size effects lead to a new rational
method to assess, for a given material, the shear resistance
envelope for rockfill, in a four-step procedure involving
reasonable laboratory tests.

(a) From the rockfill under consideration, prepare a ‘reduced’
material, geometrically similar to the complete rockfill.

(b) Perform a large set of normalised rock mechanics
crushing tests (Protodiakonov or Franklin tests), as a
function of grain diameter, in order to adjust a Weibull
distribution on the crushing strength distribution.

(c) Perform a set of shear tests (triaxial or others) on the
reduced, gravel-sized material from the same stock
(provided that the grain size distributions are geome-
trically similar, and compacted to the same porosities), in
order to measure the shear strength envelope for the
gravel-sized material.

(d ) Use the size effect relation, with the measured Weibull
parameter m, to assess the rockfill shear strength envelope
from the measured gravel one.

Prudently limiting the scaling factor (DB/DA) to 15, this

method makes it possible to assess the shear strength
envelope of rockfill with Dmax ¼ 600 mm, representative of
most of practical situations, from triaxial tests on gravel-
sized material with Dmax ¼ 40 mm, acceptable in a 250 mm
diameter probe apparatus. This procedure, based on our new
physical similarity rule, resulting from the laws of fracture
mechanics governing particle breakage, makes it possible to
reduce the material mass of a representative sample by a
factor of (1/15)3 � 1/3400.

Other practical applications of size effect relation
An important consequence of the size effect relation is its

relevance to safety margins and safety factors of compacted
rockfill slopes. This material size effect has already been
integrated in the limit equilibrium stability analysis method
(Frossard, 2006, 2008, 2009a, 2009b, 2009c) by developing
the previous work of Charles & Soares (1984). The resulting
method makes it possible to assess the relevance for safety
factors of the recent trend towards the use of coarser mater-
ials in higher works with steeper slopes (Fig. 16). The
results obtained have shown that direct extrapolation of mid-
sized rockfill slopes to very high ones with coarser materials
is likely to reduce the safety factors quite significantly.

To close the discussion on consequences of the size effect
equation (10), consider stress–strain curves measured within
two materials under complete physical similarity, sheared
with confining stresses adjusted according to equation (10).
For a given strain, the global amount of grain breakage will
be the same in the two materials, and the principal stress
ratio will also be the same. As a consequence, equation (10)
should also set direct correspondences between the stress–
strain curves in similar materials, which should also extend
to critical state conditions.

Indeed, a material size effect has been detected in statis-
tics for measured apparent rigidity modulus on a wide set of
rockfill dam bodies (Hunter & Fell, 2003), and the trend in
the measured results has been found to correspond to the
size effect relation (Frossard, 2009a). However, before this
correspondence between stress–strain curves and (even-
tually) critical state conditions can be investigated further, it
still needs to be thoroughly compared with detailed experi-
mental data.

Effect of change in void ratio
The size effect relation links sets of similar materials

made of the same mineral matter, with similar gradations
(parallel on a log scale of grain size) and the same initial
void ratios, implemented through similar compaction proce-
dures. In such a situation, the correspondence between the
internal friction and the amount of grain breakage has been
found to be unique, regardless of the characteristic size
(coarse-, medium- or fine-grained), if all the specimens of
one set are given the same initial compactness (see Fig. 6,
and other results from Marachi et al., 1969). So experimental
curves such as those in Fig. 6 could be measured for various
values of initial void ratio on fine-grained model material, as
discussed above. Such experimental curves will also hold for
the coarse rockfill corresponding to the model material.

CONCLUSIONS
A rational approach of the physics of size effects due to

grain breakage in granular materials has been presented,
which sets a new method for evaluating the mechanical
behaviour of coarse granular materials widely used in civil
works, through reasonable laboratory testing efforts. The
wide set of experimental proofs presented has already shown
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the global validity of the approach. A significant programme
is in progress in France to develop further confirmations of
this validity, and explore its limitations through a wide
experimental programme, including 1 m diameter triaxial
tests. The key assumptions underlying the approach are
simple, and are likely to be satisfied by many of the granular
materials encountered in civil engineering practice, as con-
firmed by the experimental proofs presented. However, as
outlined in the paper, some exceptions may be found with
particular granular materials.

Significant practical applications have been developed, in
the area of material testing methods, and in the area of
stability analysis methods.

Finally, the present paper has been focused specifically on
the effects of grain breakage on shear strength in granular
materials. For a comprehensive insight into the physics
underlying this shear strength in granular materials, the
present results should be considered together with the prop-
erties resulting from the effects of friction, and other
features such as gradation and compactness, grain shape and
mineralogy (e.g. Frossard, 1979, 1983, 1986, 2001, 2005a,
2005b; Duncan, 2004).

ACKNOWLEDGEMENTS
This paper is part of a collective work under develop-

ment since June 2008 in the French research Project
ECHO, sponsored by the French Agence Nationale pour la
Recherche (ANR), involving a wide partnership, including:
EIFFAGE Travaux Publics; Electricité de France-CIH;
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NOTATION
A, b material parameters in De Mello failure criterion

DA, DB characteristic lengths or sizes for granular materials A and
B respectively (e.g. maximum grain size Dmax, mean grain
size D50, or other given length)

d average diameter of a set of particles
f average crushing resistance (force) measured on a set of

particles
f ( n= p) contact force (vector) exerted by particle n on particle p
fA, dA fixed crushing force exerted on a set of particles of given

diameter
f fAg set of contact forces (vectors) within granular material A
l( n= p) branch vector joining centres of particles in contact, from

particle n towards particle p
m material parameter in Weibull statistical distribution
Ps probability of survival
V volume

�, º experimental material parameters in Marsal crushing
strength formula

� stress
�, �ij macroscopic stress tensor and its components

�A, �nA shear stress and normal stress at failure in granular
material A
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matériaux granulaires. Poudres & Grains, No. NS-2, 1–56 (in
French).

Frossard, E. (2005a). Comportement macroscopique des matériaux
granulaires mis en oeuvre dans les barrages, Special Report in
French Research Project Micromechanics of Rockfill Dams, spon-
sored by the French Ministry of Research and Technology, Paris
(in French).

Frossard, E. (2005b). A micromechanical constitutive law resulting
from energy dissipation by friction. Proc. 5th Int. Conf. on
Powders and Grains, Stuttgart 1, Part 1, 141–145.

Frossard, E. (2006). A new energy approach in granular media
mechanics: applications to rockfill dams. Proc. 22nd Int. Con-
gress on Large Dams, Barcelona 5, 191–208.

Frossard, E. (2008). Seguridad de grandes presas de escollera:
efectos de escala en la resistencia al corte, y en los factores de
seguridad. Senior Lecture. Actas Jornada Técnica Geotecnia de
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ouvrages en enrochements. Proc. 17th Int. Conf. Soil Mech.
Geotech. Engng, Alexandria 1, 97–101 (in French).

Frossard, E. (2009d). La relation d’effet d’échelle sur les courbes
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of crushable aggregates. Géotechnique 48, No. 5, 667–679,
http://dx.doi.org/10.1680/geot.1998.48.5.667.

Marachi, N. D., Chan, C. K., Seed, H. B. & Duncan, J. M. (1969).
Strength and deformation characteristics of rockfills materials,
Report No. TE-69-5. Department of Civil Engineering/Geo-
technical Engineering, University of California, Berkeley.

Marachi, N. D., Chan, C. K. & Seed, H. B. (1972). Evaluation of
properties of rockfill materials. J. Soil Mech. Found. Div. 98,
No. SM1, 95–114.

Marsal, R. J. (1967). Large-scale testing of rockfills materials.
J. Soil Mech. Found. Engng Div. ASCE 93, No. 2, 27–44.

Marsal, R. J. (1972). Mechanical properties of rockfill. In Embank-
ment dam engineering: Casagrande volume (eds R. C. Hirsch-
feld and S. J. Poulos), pp. 109–200. New York: Wiley.

Miura, S., Yagi, K. & Asonuma, T. (2003). Deformation-strength
evaluation of crushable volcanic soils by laboratory and in-situ
testing. Soils Found. 43, No. 4, 47–57.

Nakata, Y., Hyde, A. F. L., Hyodo, M. & Murata, H. (1999). A
probabilistic approach to sand crushing in the triaxial test.
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