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Robust and direct evaluation of J2 in linear elastic fracture
mechanics with the X-FEM

G. Legrain, N. Moës and E. Verron
GeM Institute— Ecole Centrale de Nantes, Université de Nantes, CNRS, 1 Rue de la Noë, 

BP92101, 44321 Nantes, France

The aim of the present paper is to study the accuracy and the robustness of the evaluation of Jk -integrals in 
linear elastic fracture mechanics using the extended finite element method (X-FEM) approach. X-FEM is a 
numerical method based on the partition of unity framework that allows the representation of discontinuity 
surfaces such as cracks, material inclusions or holes without meshing them explicitly. The main focus in 
this contribution is to compare various approaches for the numerical evaluation of the J2-integral. These 
approaches have been proposed in the context of both classical and enriched finite elements. However, 
their convergence and the robustness have not yet been studied, which are the goals of this contribution. 
It is shown that the approaches that were used previously within the enriched finite element context do 
not converge numerically and that this convergence can be recovered with an improved strategy that is 
proposed in this paper.

KEY WORDS: partition of unity; linear fracture mechanics; extended finite element method; vectorial
J -integral

1. INTRODUCTION

The numerical simulation of fracture mechanics is of major importance in the design of structures
such as aircrafts or dams. For complex structures, robustness and accuracy of predictions are
essential pre-requisites to use numerical methods for new parts design. The finite element method
(FEM) is classically considered for the simulation of such problems. However, cracks must be
explicitly meshed in order to incorporate the discontinuity of the displacement field across their
faces. In addition, this process has to be handled at each step of propagation of the cracks. The
main drawback of this approach is the computational and human cost of remeshing. Nevertheless,
numerical tools improved much over the past years. Meshless methods (such as EFGM [1] or
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hp-clouds [2]) were proposed to avoid meshing of the domain studied and to improve the quality
of the results by enriching the approximation. FEMs were also thoroughly improved using the
concept of partition of unity [3], which was first employed in the context of meshless methods by
Oden and Duarte [2, 4]. Among the class of partition of unity FEMs, the generalized finite element
method (GFEM) and the extended finite element method (X-FEM) are the most advanced. The
GFEM was introduced by Strouboulis et al. [5, 6] and was applied to the simulation of problems
with complex micro-structures (see also the work of Babuška et al. [7] and Oden et al. [8]). The
method was further extended to employ the idea of mesh-based numerically constructed handbook
functions by Strouboulis et al. [9, 10].

Concerning the X-FEM, it was first proposed as a solution to the remeshing issue for crack
propagation in linear elastic fracture mechanics [11, 12]. It uses the partition of unity in two
ways: first to take into account the displacement jump across the crack faces far away from the
crack tip and second to enrich the approximation with analytical asymptotic fields close to the
tip. Many fracture mechanics problems have been successfully solved with the X-FEM approach:
2D [12–16], 3D [17–20], plates and shells [21–23], cohesive zone modelling [24, 25], dynamic
fracture [26], non-linear fracture mechanics [27–31] among others. For a wider review on partition
of unity finite elements applied to fracture mechanics, the reader could also refer to [32].

A major issue in fracture mechanics is the prediction of crack kinking. In order to predict crack
growth direction, several criteria have been proposed: one can cite, for example, the maximum hoop
stress criterion [33], the maximum tangential stress criterion or the symmetry principle [34]. The
maximum energy release rate criterion [35], also called as the ‘vectorial J -integral’ criterion [36],
is an alternative, which was initially proposed by Hellen and Blackburn [36]. The main difference
in evaluating this criterion with respect to the classical J -integral relies on the difficulties in the
evaluation of the second component J2 of the energy release rate vector J. It is well known that J1
(which is basically the J -integral) is path-independent. Concerning J2, Herrmann and Herrmann
[37] have shown that it is path-independent only in a modified manner, i.e. by adding an extra
contribution on the crack faces. However, this new contribution requires an accurate determination
of the mechanical fields near the crack tip. It is well known that the quality of these fields near
a singularity is not ensured in the finite element context. This is why some authors proposed
specific strategies for an accurate numerical evaluation of J2. The pioneering contribution is by
Eischen [38] who proposed to decompose the integration into two parts: The first one far from the
tip, evaluated using finite elements, and the second one close from the crack tip, calculated using
near-tip asymptotic fields. Evaluating two contour integrals, it is then possible to calculate J2. One
drawback of this approach is that it involves contour integrals, which are not well-adapted to finite
elements. This contrasts with the evaluation of the J -integral that can be performed considering a
domain integral by means of a virtual velocity field [39]. This is why Chang and Yeh [40] proposed
an approach similar to that in [38], but with the use of domain integrals.

For enriched FEMs, the only study on this subject was recently proposed by Heintz [41] in
the context of configurational forces. His approach is directly related to the one proposed in [40],
except that no decomposition of the integral is considered to avoid the near-tip integration. The
major advantages of this direct approach are that it does not necessitate near-tip fields assumptions
and that it requires only one computation of the domain integral.

The accurate prediction of the crack kinking angle highly depends on the accuracy and robustness
of the J-integral calculation. Nevertheless, no study has been proposed to evaluate the accuracy
of the above-mentioned methods. This contrasts with the numerical evaluation of stress intensity
factors within X-FEM, which has already been investigated in 2D and 3D [19, 20, 23, 42].
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The aim of the present paper is to compare various numerical approaches for the evaluation of the
J-integral. It will be demonstrated that some of these approaches do not converge. Improvements
will be proposed in order to overcome the lack of convergence.

This paper is organized as follow. First, the governing equations are presented. Then, X-FEM
basics are recalled. The third section presents the classical approaches used to compute the
J-integral; finally, a new method is proposed in order to ensure convergence of the calculation.

2. GOVERNING EQUATIONS

Consider the static response of a 2D cracked elastic body that occupies a bounded domain �
with a sufficiently smooth boundary �� split into two disjoint parts: ��u where displacements
are prescribed (Dirichlet boundary conditions) and ��t where tractions are prescribed (Neumann
boundary conditions) (see Figure 1); ��t includes the crack �C . The body is initially in an
undeformed and stress-free configuration. The governing equations are as follows:

div�+b = 0 in �

� = 1
2 (∇u+∇uT) in �

� ·n = Td on ��t

u(x) = ud on ��u

� = C :� in �

(1)

where � is the Cauchy stress tensor, b is the body force, ud is the prescribed displacement field,

Td are the prescribed tractions, n is the outward unit normal to the boundary ��, � is the linearized
strain tensor and C is the fourth-order elasticity tensor. For a linear isotropic elastic material, the
constitutive equation depends only on two scalar parameters � and � (the Lamé coefficients) and
can be expressed as

�=�Tr(�)(u)I +2��(u) (2)

The above strong form of the governing equation (1) can be expressed into the following weak
form: ∫

�
�u·bdV +

∫
��t

�u·Td dA=
∫

�
��(u) :�dV ∀�u∈H1(�)|�u=0 on ��u (3)

3. THE X-FEM

The above weak formulation (3) will be numerically solved considering the approximation of
displacement and test fields. With classical finite elements, the approximation of a vector field
u(x) on an element �e is given as

u(x)|�e =
n∑

�=1
u�Na(x) (4)
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Figure 1. Deformation of a cracked body.

where n is the number of coefficients describing the approximation over the element, u� is the �th
nodal value of this approximation and Na is the classical vectorial shape function associated with
the degree of freedom (dof) u�. Within the partition of unity, the approximation can be enriched as

u(x)|�e =
n∑

�=1
Na
(
u�+

ne∑
�=1

a�
���(x)

)
(5)

where ne is the number of enrichment modes, a�
� is the additional dof associated with dof � and ��

stands for the �th scalar enrichment function. Two different enrichments are considered in fracture
mechanics [11, 12]:

• The first enrichment is a discontinuous enrichment for nodes whose support is bisected by
the crack. In this case, the interpolation of the displacement field is discontinuous across the
crack faces. A Heaviside jump function is considered to model this discontinuity: it equals +1
on one side of the crack and −1 on the other side. The associated dof manages the magnitude
of the displacement discontinuity. The Heaviside function is computed using the level set
representation of the crack [17, 43].

• The second enrichment is a near-tip enrichment for nodes whose support contains the crack
tip. In linear elastic fracture mechanics, these enrichment functions are determined using the
asymptotic displacement field near the tip of the crack.

�(r,	)=
{√

r sin
	

2
,
√
r cos

	

2
,
√
r sin

	

2
sin(	),

√
r cos

	

2
sin(	)

}
(6)

Finally, it is important to note that the modified Gauss quadrature scheme described in [12] is
used to integrate both discontinuous and non-polynomial functions over the elements. For a more
detailed presentation of fracture mechanic applications within X-FEM, the reader can refer to
[12, 17, 18, 43–45].

4. NUMERICAL EVALUATION OF THE VECTORIAL J -INTEGRAL

In this section, the definition of the J-integral is first recalled. Then, strategies are presented in order
to numerically evaluate this quantity. Next, attention is paid to the accuracy of these approaches
in the context of enriched FEMs.
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Figure 2. Definitions for the J-integral.

4.1. J and (Jk)k=1,2 integrals

Consider a 2D cracked body and the crack local coordinate system (e1,e2) as depicted in Figure 2.
Consider a contour � that encloses the crack tip and n denotes its unit outward normal. The
J -integral is defined as [46]

J =
∫

�→0

(
Wn1−�i j n j

(
�ui
�x1

))
d� (7)

where n1 is the projection of n on e1 and W is the strain energy density of the material. This
integral is a contour integral that was seen to be path-independent [46]. A second integral called
J2 can be introduced such that both Jk (k=1,2) integrals are defined as

Jk =
∫

�→0

(
Wnk−�i j ni

(
�ui
�xk

))
d� (8)

=
∫

�→0
M ·nd� ·ek (9)

where M=W I −∇uT� is the Eshelby stress tensor [47]. Using this expression, the J -integral is
the first component of a vector J whose components on (e1,e2) are J1 and J2, respectively. J2 is
not path-independent. Nevertheless, it is said to be path-independent in a modified sense [38]: If
� does not tend to the tip anymore, an extra boundary term has to be taken into account on the
crack faces, and J can be expressed as

J=
∫

�
M ·nd�+

∫
�C

�W�nd� (10)

where �W� stands for the jump in the strain energy density across the crack faces. Note that this
extra term influences only J2 because n·e1=0 on �C (for a straight crack‡).

‡Otherwise, e1 has to be defined as a variable along the crack faces [17].
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4.2. Numerical evaluation of J

As mentioned above, the extra boundary term in Equation (10) has not to be evaluated for J1.
However, for J2 the integration of the jump in the strain energy across the crack faces should be
considered: this contribution does not vanish in general. In fact, the stress field near the crack tip
can be expressed ass

�11 = KI√
2
r

f I11(	)+ KI√
2
r

f II11(	)+�x0+O(r1/2)

�22 = KI√
2
r

f I22(	)+ KI√
2
r

f II22(	)+O(r1/2)

�12 = KI√
2
r

f I12(	)+ KI√
2
r

f II12(	)+O(r1/2)

(11)

where �x0 is classically referred to as the T-stress [48]. Eischen [38] showed that, in this case, the
jump in the strain energy is given by

�W�(r)crack faces= −4KII�x0

E∗√r
+O(r1/2) (12)

The jump will be zero only for pure mode I loading conditions (KII=0) or for �x0=0. This
also shows that the integration of the boundary term will be quite difficult because of its 1/

√
r

behaviour. This is why various approaches have been proposed in order to accurately evaluate J2.
The first proposal was given by Eischen and is developed in the following paragraph.

4.2.1. Accurate evaluation of J2: Eischen’s proposal. Eischen [38] stated that the difficulties in the
evaluation of J2 is only due to the integration close to the crack tip. As the asymptotic behaviour
of the mechanical fields is known in this region, he proposed to split the term into two integrals:∫

�C

�W�nd�=
∫

�∗
C

�W�nd�+
∫

��
C

�W�nd� (13)

where � represents the length of the crack faces where the singular behaviour dominates: it defines
two subsets of �C (�∗

C and ��
C ) as depicted in Figure 3. The author proposed to evaluate the first

term of the right-hand side of Equation (13) by using the finite element approximation and the
second term by considering the asymptotic energy jump (12). Then, Equation (13) becomes∫

�C

�W�nd�=
∫

�∗
C

�W�nd�+��1/2 (14)

where the multiplier � depends on the geometry of the problem, the loading conditions and the
material moduli (i.e. � is invariant for a given problem). Eischen proposed to evaluate J1 and J2
considering two values of �, i.e. �1 and �2. Then, with three computations (J1, J2(�1) and J2(�2)),
it is possible to evaluate the stress intensity factors, the T-Stress and finally J. This approach
seems to lead to satisfactory results even for rather large values of �. However, no convergence
study was proposed in order to assess the accuracy of the method. Moreover, this approach is
based on contour integrals that are not as accurate as domain integrals (see hereunder) for FEMs.
A similar method with domain integrals was proposed by Chang and Yeh [40]; it is presented in
the following section.

6



Crack

Figure 3. Definitions from [38].

4.2.2. Accurate evaluation of J2: domain integral approach. The domain integral method is a
classical way to compute energy release rates within FEM and X-FEM. It was first introduced by
Destuynder et al. [39] (see also Li et al. [49] and Shih et al. [50]). This method is very robust
and has a convergence rate in O(h), even with classical finite elements. The method introduces
a virtual velocity field �Q=Qe1, e1 being the unit vector tangent to the crack faces, and Q a
sufficiently smooth scalar function, which equals 1 within �, and 0 on the contour �e of the
domain (see Figure 4 for the notations).

Then, the J -integral around � can be expressed in an equivalent domain form as

J =−
∫
V

∇Q :M dV (15)

where V denotes the area between �e and �, which is equal to the area inside �e as � tends to
zero. Following [40], this approach can be further extended to compute J rather than J . In this
case, two virtual velocity fields Q1 and Q2 are introduced

Q1=�e1 and Q2=�e2 with �=1 on � and �=0 on �e (16)

Vector Q1 (resp. Q2) is tangent (resp. normal) to the crack faces. The kth component (k=1,2)
in the (e1,e2) basis of the domain J-integral is

Jk =
∫

�C

Qk ·�W� ·ndA︸ ︷︷ ︸
JBk

−
∫
V

∇Qk :M dV︸ ︷︷ ︸
JVk

with k=1,2 (17)

In this expression, the term JBk (resp. JVk ) will be called a boundary term (resp. domain term) in
the following. Note that the � weight function is chosen so that it is equal to 1 inside � and is equal
to zero on �e (plateau function). Finally, this approach can be easily extended to 3D problems
[17]. The boundary term that appears in Equation (17)§ is equivalent to that in Equation (10) and

§This term is also present for curved cracks.
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Crack

Figure 4. Definitions for the domain integral.

vanishes for the J1-integral but not for J2. The accuracy for the computation of the domain term
JV2 has been demonstrated both in the X-FEM and in the classical finite element context. Thus,
the key issue for the calculation of the vectorial J -integral is the accuracy of the computation of
the boundary term JB2 . Chang and Yeh [40] proposed to proceed like Eischen, i.e. by splitting JBk
into two parts. They considered the cases of both linear and non-linear elasticity. In the last case,
a system of non-linear equations that results from the data set (geometry, loading conditions) with
a number of different values of � should be solved.

Here, we study the accuracy of the domain integral approach. However, we will not consider the
previous works [38, 40], because we would like to evaluate J without too many computations: two
domain integrals, then the stress intensity factors and finally the J-integral should be computed. If
one wants to compute the J-integral by means of the stress intensity factors, a simpler approach
should consist in evaluating them directly using a domain interaction integral, which is known to
be robust and accurate. Hence, we will directly evaluate Equation (15) similar to that by Heintz
[41] who applied this approach in the context of enriched finite element approaches. In this work,
the author derived a similar expression in the context of configurational mechanics. However,
no convergence study was proposed so that the accuracy of the approach is not demonstrated.
Moreover, no asymptotic enrichment was considered in the near-tip region, which means that the
quality of the finite element fields may not be sufficient to evaluate JBk in a robust way (i.e. with
accuracy, irrespective of the mesh topology).

4.3. Imprecisions with the domain integral approach

It has been shown that the evaluation of the domain J-integral was leading to the sum of a domain
term JV and a boundary term JB (Equation (17)). The latter term involves the integration of the
energy jump across the crack faces. However, the energy evolves in r−1 near the crack tip (even if
the jump follows an r−1/2 evolution): if the r−1 terms do not vanish in the numerical evaluation
of �W�, the boundary term cannot be integrated.¶ In this section, we first compare the errors due

¶As the integral between � and 1 of 1/r does not converge when � goes to zero.

8



to JV and JB using analytical fields and second exhibit the presence of spurious r−1 terms in JB

when enriched finite element fields are considered.
Consider a 2×2 square-structured mesh of 882 triangular elements as depicted in Figure 8(a).

This mesh is fully enriched with the near-tip basis Equation (6). The displacement field corres-
ponding to a cracked plate in a mixed mode (KI=KII=1.0, E=1.0MPa, �=0 and �x0=2.0 in
Equation (11)) is then projected onto the enriched finite element displacement field by means of
an L2 projection: ∫

�
�uh ·(uh−uexact)d�=0 ∀�uh (18)

As the exact solution field is contained in the enriched finite element approximation, the resulting
numerical field exactly represents the analytical field. The J-integral is then evaluated using a
domain of radius 0.2. The errors due to the different terms of J are summarized in Table I. The
two components of J can be accurately computed, especially J1. The presence of spurious r−1

terms is tested by changing the number of Gauss points for the integration of JB. If r−1 terms are
still present in �W�, then the value of JB2 should degrade as the number of Gauss points increases.
Figure 5 shows that JB2 converges with a O(n) rate (n being the number of Gauss points). This
demonstrates that the computation of J using domain integral is accurate when using mechanical
fields of good quality. Next, the case where the mechanical field is obtained from a finite element
solution is considered: the analytical stress field (Equation (11)) corresponding to the displacement

Table I. Integration error when J is evaluated after L2 projection of the analytical displacement field on
the finite element displacement field (analytical value J1= J2=2.0).

J1 computed Error JV2 computed JB2 computed J2 computed Error

1.999757 0.01% −3.389003 1.38271 −2.006292 0.31%

1 10
0.001

0.01

0.1

1

1

Figure 5. Convergence of JB2 versus the number of Gauss points per element for a given mesh
size (displacement field obtained using an L2 projection).
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Table II. Error partitionment when J is computed using finite element fields.

J1 computed Error JV2 computed Error JB2 computed Error J2 computed Error

1.970936 1.45% −3.329226 1.76% 1.52225 10.09% −1.806975 9.65%

1 10
0.001

0.01

0.1

Figure 6. Convergence of JB2 versus the number of Gauss points for a given mesh size (displacement
field obtained by a finite element solution).

field used in the L2 projection is applied on the boundary of the mesh and the problem is solved.
The radius for the near-tip enrichment is set as 0.4 and J is evaluated using the same domain
radius (equal to 0.2) as in the projection. Table II shows that the degradation in the accuracy of J1
is small, whereas it is huge for J2, and that this degradation is mainly due to the boundary term
JB2 . Finally, the convergence of J

B
2 with respect to the number of Gauss points shows that JB2 does

not converge to its exact value, either because of the quality of the mechanical fields or because
of the remaining spurious r−1 terms (see Figure 6). We can then conclude that the imprecision in
the computation of JB2 is a consequence of a global lack of quality in the finite element solution.
However, it is still not clear whether convergence can be obtained using finite element fields.

5. ROBUST EVALUATION OF THE VECTORIAL J-INTEGRAL

5.1. Improvement in accuracy and robustness for the computation of J

An alternative approach is proposed for the evaluation of the J-integral at the crack tip. Equation
(17) shows that the computation of JB2 leads to the integration of the energy jump between the crack
faces. As shown in Equation (12), this term vanishes if the (regular) T-stress �x0 is zero. Moreover,
if the T-stress can be computed, then the boundary term of the domain integral vanishes if the
regular stress field �x0e1⊗e1 is subtracted from the singular stress field (see Equations (11)). This
operation does not change the value of the J-integral [48], but allows one to remove the boundary
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Figure 7. Concentrated force f= f e1 applied at the crack tip of a cracked semi-infinite body.

term from Equation (17). The T-stress can be evaluated using a path-independent interaction integral
I A+B [51]:

I A+B =
∫
V

(�A
i j u

B
i,1+�B

i j u
A
i,1−�A

ik�
B
ik�1 j )q, j dS (19)

where the superscript A denotes the finite element field and the superscript B denotes an auxiliary
field as originally proposed by Michell [52]. This auxiliary field corresponds to the analytical
solution to an infinite cracked plate loaded at its tip by a force f= f e1 (see Figure 7). Sladek and
Sladek [51] have shown that the interaction integral Equation (19) is related to the T-stress by

I A+B = T

E∗ f (20)

where E∗ =E/(1−�2) and E∗ =E for plane strain and plane stress problems, respectively. After
having determined the T-stress, the J-integral can be evaluated using only domain integrals and
without considering the boundary term, which is the major source of error.

5.2. Convergence study

The convergence of the two domain approaches presented above is now studied by considering
the cracked domain �=[−1,1]×[−1,1] under tension as shown in Figure 8. Tensions applied
on domain boundaries are the tensions corresponding to the problem of an infinite cracked body
under a mixed mode (using the analytical solution Equation (11) with KI=1.0 and KII=1.0).
The material properties are Young’s modulus E=1.0 and Poisson’s ratio �=0.3. A sequence of
gradually refined meshes is considered: those meshes are defined so that the crack always passes
through finite elements (see Figure 8(a) for a typical mesh). Two different enrichment methods
are considered for the near-tip region: first, no near-tip enrichment (only the Heaviside function
is considered); second, the so-called ‘geometrical’ enrichment recently introduced in [42, 45, 53]
is adopted. In the latter case, all nodes lying in a disk (of radius 0.1 here) are enriched with
near-tip fields. The authors have established numerically that the convergence rate in the energy
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TExact

TExact

TExact

TExact

(a) (b)

Figure 8. (a) Domain of interest and (b) deformed shape for KI=1.0 and KII=1.0.

norm is improved from O(h1/2) to O(h) for a given benchmark.‖ Here, this geometrical approach
is applied to study the convergence of J at the crack tip and to exhibit the influence of the
boundary term on the computation of domain integrals. Stress intensity factors are prescribed so
that analytical values of J1 and J2 are known [54]:

J1 = K 2
I +K 2

II

E∗ (21)

J2 = −2
KIKII

E∗ (22)

with E∗ =E/(1−�2) and E∗ =E for plane strain and plane stress problems, respectively.
The T-stress �x0 is set to as 2.0 (the boundary term is then non-zero in Equation (17)), and

the convergence study is performed using a domain of radius 0.2 for the computation of domain
integrals. Four cases are considered:

1. domain integral method (radius 0.2) using X-FEM without near-tip enrichment (the crack tip
ends on the edge of an element);

2. domain integral method (radius 0.2) using X-FEM and geometrical near-tip enrichment
(radius 0.1, basis given by (6));

3. T-stress method (radius 0.2) using X-FEM without near-tip enrichment;
4. T-stress method (radius 0.2) using X-FEM and geometrical (radius 0.1) near-tip enrichment.

The first and second cases allow one to study the influence of the quality of the finite element field
on the convergence properties of the domain integral method. The results are presented in Figure 9.

As shown in Figure 9(a), the first component of J, J1 converges at the expected rate [42, 45],
i.e. O(h2) for the geometrical enrichment. Concerning J2, there is no convergence if the boundary
term JB2 is not taken into account (see the curve labeled ‘J2 Domain Integral X-FEM Geometrical
(w/o Bnd Term)’ in Figure 9(b)). When this term is taken into account, convergence (rate O(h))
is obtained only if near-tip enrichment is considered: the quality of the finite element fields is not
sufficient without near-tip enrichment to ensure convergence (see the curve labeled ‘J2 Domain

‖Note that this convergence improvement was not proved mathematically.
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Figure 9. Convergence for KI=1.0, KII=1.0 and �x0=2.0: (a) J1 component and (b) J2 component.
Curves ‘Jk Domain Integral X-FEM (H only)’ stand for X-FEM computations of Jk (k=1,2) without
near-tip enrichment (the crack tip ends on the edge of an element), and taking into account the boundary
term JB2 . Curves ‘Jk Domain Integral X-FEM Geometrical’ stand for X-FEM computations of Jk (k=1,2)
with geometrical near-tip enrichment, and taking into account the boundary term JB2 . Curve ‘J2 Domain
Integral X-FEM Geometrical (w/o Bnd Term)’ stands for X-FEM computations of J2 with geometrical

near-tip enrichment, and without taking into account the boundary term JB2 .
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Figure 10. Interaction integral method: convergence for KI=1.0, KII=1.0 and �x0=2.0.

Integral X-FEM (H only)’). In fact, this last computational setting corresponds to the one used
in [41]. Finally, even with near-tip enrichment, convergence rates are different for the two compo-
nents of the J-integral: it is optimal for J1 but not for J2.

Consider now the convergence of the method proposed in Section 5.1 as presented in Figure 10.
It is seen now that both J1 and J2 converge at the same rate (O(h2)) with a very low error level
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Table III. Summary of the convergence rates of Jk-integrals.

Geometrical domain Geometrical domain Geometrical T-stress
integral X-FEM integral +bnd term X-FEM domain integral X-FEM

J1 O(h2) O(h2) O(h2)
J2 — O(h) O(h2)

even for coarse meshes. The figure also shows that convergence is obtained even without near-tip
enrichment, which was not the case with the classical domain integrals. Results obtained with this
benchmark are summarized in Table III, and they clearly exhibit the accuracy of the proposed
approach.

6. CONCLUSION

In this paper, the accuracy of the numerical computation of path-independent Jk-integrals using
domain integrals has been investigated. It has been recalled that a boundary term (related to the
near-tip stress field) had to be considered to evaluate these quantities. However, the lack of accuracy
of the numerical scheme adopted for the integration of this boundary term can lead to a loss
of convergence. In particular, Jk-domain integrals do not converge without near-tip enrichment
(contrary to what was assumed in [41]). Moreover, even if it converges, optimal rate cannot be
obtained for J2. To overcome these limitations, an alternative approach based on the evaluation of
the T-Stress has been proposed to avoid the integration of the boundary term. In this case, optimal
rates of convergence are recovered for J2. However, this paper considered only the linear-elastic bi-
dimensional case. Investigations are still needed to extend these results to non-linear elastic–plastic
fracture, and to the 3D setting. In the latter case, the T-stress is no longer scalar, but becomes a
vectorial parameter, which leads to some extra difficulties. In addition, it is important to note that
the results presented here imply consequences in the context of configurational mechanics [55]
(for generalities on this theory, see Gurtin [56], Maugin [57, 58] and Steinmann [59, 60] among
others). As a matter of fact, it can be shown (see Appendix A) that nodal configurational forces,
introduced by Steinmann [59, 60], are similar to the domain J-integral on the support of the node
that contains the crack tip, but without the boundary term, which is mandatory for convergence.
Thus, nodal configurational forces cannot converge to J.

APPENDIX A: RELATIONSHIP BETWEEN DOMAIN J-INTEGRAL AND NODAL
CONFIGURATIONAL FORCES

Recall the expression of the kth component of the nodal material force acting on node I as depicted
in Figure A1 [59]:

Fs
k =

NElem⋃
e=1

∫
�e

(M :∇Nk)dV (A1)

where NElem is the number of elements connected to node I. Next, we consider the kth component
of the domain J-integral (without the boundary term) expressed on the support (denoted as VI)
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Crack

Figure A1. Configurational force acting on node I and support of the node.

of node I

JVk =−
∫
VI

∇Qk :M dV (A2)

where the plateau test function is interpolated using the finite element shape functions

Qk =
Nnodes∑
n=1

�nN
nek (A3)

with Nnodes being the number of nodes on the support of node I . Then, we have

JVk =−
Nnodes∑
n=1

�n

∫
VI

∇(Nnek) :M dV (A4)

The only way to prescribe �=1 at crack tip and �=0 on the contour of VI is to set all (�n)n>1
to zero and �I=1. Thus, Equation (A4) becomes

JVk =−
∫
VI

∇(N Iek) :M dV =−
NElem⋃
e=1

∫
�e

∇Nk :M dV (A5)

Simply comparing Equations (A1) and (A5), we have JVk =−Fs
k . This demonstrates that the

nodal configurational force is not the J-integral, because the boundary term JBk is missing (see
Equation (17)).

This missing term corresponds to a configurational Neumann boundary condition on �C : this
boundary condition should not vanish as a traction-free surface in the physical space does not lead
to a configurational-free surface.
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9. Strouboulis T, Zhang L, Babuška I. Generalized finite element method using mesh-based handbooks: application
to problems in domains with many voids. Computer Methods in Applied Mechanics and Engineering 2003;
192:3109–3161.
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19. Sukumar N, Moës N, Belytschko T, Moran B. Extended finite element method for three-dimensional crack
modelling. International Journal for Numerical Methods in Engineering 2000; 48(11):1549–1570.

20. Bordas S, Moran B. Enriched finite elements and level sets for damage tolerance assessment of complex structures.
Engineering Fracture Mechanics 2006; 73(9):1176–1201.
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