
HAL Id: hal-01007262
https://hal.science/hal-01007262

Submitted on 12 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Risk analysis of structures in presence of stochastic
fields of deterioration: flowchart for coupling inspection

results and structural reliability
Franck Schoefs

To cite this version:
Franck Schoefs. Risk analysis of structures in presence of stochastic fields of deterioration: flowchart
for coupling inspection results and structural reliability. Australian Journal of Structural Engineering,
2009, 9 (1), pp.67-78. �10.1080/13287982.2009.11465011�. �hal-01007262�

https://hal.science/hal-01007262
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Risk analysis of structures in presence 
of stochastic fi elds of deterioration: Flowchart for 

coupling inspection results and structural reliability

F Schoefs
Institute for Research in Civil and Mechanical Engineering (GeM), Nantes Atlantic University, France

SUMMARY: Inspection by non-destructive testing techniques of existing structures is not 
perfect and it has become a common practice to model their reliability in terms of receiver operating 
characteristic (ROC) curves. This paper suggests a method of building ROC curves in case of 
random fi elds of defects on a structure by using polynomial chaos decomposition. Knowledge of 
spatial distribution of defects allows a reliability analysis to be performed. When selecting stochastic 
fi nite element analysis to solve this problem, the format is the same as the one chosen for modelling 
inspections results. The paper shows how to link these quantities (ie. reliability and inspection 
results) in a risk analysis by using polynomial chaos decomposition as a common language.

1 INTRODUCTION

Reassessment of existing structures generates a need 
for up-dated materials properties. Commonly, on-
site inspections are needed and in some cases visual 
inspections are not suffi cient for an accurate sizing 
or detection. For example, non-destructive testing 
(NDT) tools are required for the inspection of coastal 
and marine structures where marine growth acts as 
a mask. In these fi elds, the cost of inspection can be 
prohibitive and an accurate description of the on-
site performance of NDT tools must be provided. 
Inspection of existing structures by a NDT tool is 
not perfect and it has become a common practice 
to model its reliability in terms of probability of 
detection (PoD), probability of false alarms (PFA) and 
receiver operating characteristic (ROC) curves. These 
quantities are generally the main inputs needed by 
owners of structures in view to achieve Inspection, 
maintenance and repair plans (IMR) (Sheils et al, 
2008). The assessment of PoD and PFA comes either 
from inter-calibration of NDT tools or from the 
modelling of the probability density functions of 
the noise caused by the NDT imperfection and the 
signal. In this last case, if the noise and the signal 

depend on the location on the structure then PoD 
and PFA are spatially dependent. The decomposition 
on polynomial chaos (PC) is then used to represent 
the underlying stochastic fi elds. It is then natural 
to perform reliability analysis in the presence of a 
stochastic fi eld of defects by using the same format. 
It is shown that PC decomposition offers in this case 
a common language for the two inputs of the RBI: the 
modelling of inspection results and the computing 
of the structural reliability. 

This paper presents fi rstly how to defi ne PoD and 
PFA when damage and detection are stochastic fi elds, 
ie. spatially dependent (section 2). Section 3 deals 
with PC decomposition of the marginal distributions 
of the stochastic fi elds obtained at given locations 
along the structure. It is shown how to identify the 
coeffi cients of the PC decomposition from data.

However, it has been shown (Rouhan & Schoefs, 
2003) that PoD and PFA cannot be directly linked 
with consequences when an IMR policy has been 
defi ned. From the decision theory and a Bayesian 
description of inspection results, it is shown in 
section 4 how to introduce new events for risk-based 
inspection (RBI). Expressions of their likelihood as 
functions of PoD, PFA and γ, the probability of defect 
presence are presented. Results are then generalised 
to use ROC curves for RBI. By knowing the spatial 
stochastic fi eld for the signal and the noise, ROC 
curves are deduced in each point of the fi eld. This 
section is illustrated with the ultrasonic measurement 
of the spatially distributed corrosion of a sheet pile 
in a marine environment.
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Finally, section 5 gives the last output needed 
for risk assessment based on reliability analysis: 
the computing of the probability of failure. From 
loading modelling and by knowing the stochastic 
fi eld of defects, a stochastic computation can be 
performed in view to estimate the spatial distribution 
of probability of failure. This section ends with a 
complete application of risk analysis of a corroded 
sheet-pile in steel.

2  ASSESSMENT OF STOCHASTIC FIELDS 
OF DEFECTS THROUGH NDT TOOLS

2.1  Hazards and uncertainties when assessing 
defect sizes on structures

Let us consider the assessment of a defect d through 
a NDT tool. Inspection is generally not perfect. We 
consider the case where harsh conditions affect 
the measurement of the d. Then, depending on the 
environment and the location of the inspected area, 
the measurement of the size is affected by hazards. 
We model this quantity as a stochastic fi eld d(X, t, θ), 
where X denotes the spatial coordinates, t the time 
and θ the hazard. When assessing this defect, the 
chain of measurement (accessibility of the inspected 
area, calibration of NDT tool, experience and 
tiredness of the operator) introduces uncertainties, 
called noise in the signal processing theory (Rouhan 
& Schoefs, 2003). The result of the inspection, ie. the 
measured defect size, is a stochastic fi eld denoted 
ˆ( , , )d X t . In section 2.2, d(X, t, θ) and ˆ( , , )d X t  are

written as d and d̂ for simplicity. 

2.2  Modelling capability of NDT
tools in a probabilistic context

The most common concept that characterises 
inspection tool performance is the PoD. Let ad be 
the minimal defect size, under which it is assumed 
that no detection is done. Parameter ad is called the 
detection threshold in the following. Thus, the PoD 
is defi ned as:

ˆPoD dP d a
(1)

The detection threshold ad is a deterministic parameter 
or a random variable. This defi nition implies that 
PoD is a monotonic increasing function.

Detection theory allows for the introduction of another 

useful quantity, the PFA. From the signal theory, d̂ is 
called the complete signal or “signal + noise” with a 
probability density function (pdf) fSN. The real defect 
size d is unknown and it is deduced from the knowledge 

of the noise η by the relationship d̂ d . The pdf of
noise is denoted fN. Noise depends on environmental 
conditions, human interference and the nature of what 
is being measured. Let’s assume that noise and signal 
amplitudes are independent random variables, then 

Figure 1: Illustration of PoD and PFA (signal and 
noise normally distributed) (Rouhan & 
Schoefs, 2003).

PoD and PFA have the following expressions (2) and 

(3): 

ˆ ˆPoD
d

SN
a

f d d (2)

PFA ( )
d

N
a

f (3)

where δ denotes the increment. Figure 1 illustrates 

the corresponding pdf in the case where variables 

are normally distributed and the computation of PFA 

and PoD for a given detection threshold.

For a given detection threshold, the couple (PoD, 

PFA) allows the performance of a NDT to be defi ned; 

this is the ROC. This couple can be considered as 

the coordinates of a point. Let us consider that ad is 

unknown and takes values in the range [–∞; +∞], 

this point belongs to a curve called ROC curve. It is 

a parametric curve defi ned by equations (2) and (3) 

with parameter ad.

The ROC curve, which is plotted in figure 2, is 

computed using the pdf presented on figure 1. 

From a theoretical point of view, this is a convex 

curve corresponding to a monotonically increasing 

function, always lying above the diagonal line, where 

the fi rst derivative is closely linked to the sensitivity 

of the receiver (Arques, 1982; Fücsök et al, 2000). 

The diagonal line running from the lower left to 

the upper right (curve “PoD=PFA”) is the line of 

no “performance”, since in that case the inspection 

PoD equals PFA whatever the detection threshold 

(Rouhan & Schoefs, 2003).
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inspections is reasonable and allows a rich data 
base of information to be accessed.

We follow the second approach in this paper. Note 
that the PFA is named PFI (probability of false 
indication) too. The defi nition of discrete values 
for PFI is generally expressed as a percentage of 
false indications on the inspected length (Silk, 1996; 
Rudlin et al, 2006). Finally, as the number of samples 
is limited, authors provide confi dence bounds: 90% 
PoD for example (Barnouin et al, 1993; Rudlin et al, 
2006).

In some cases, the performance of NDT tools depends 
on the location of the point to be inspected on the 
structure. For example, when locations of defects 
are on welded joints in the sea, the corresponding 
PoD and PFA should be changed according to the 
access, the luminosity and the wave shaking for 
instance. When defects are continuous fi elds on the 
structure, the PoD and PFA should be indexed by the 
coordinates X of the inspected point M. We consider 
here that the defect is induced by a deterioration 
mechanism indexed by time t and can be modelled 
by a stochastic fi eld: d(X, t, θ).

2.3  Defi nitions of PoD and PFA for
stochastic deterioration model

As described in the previous section, after inspection 
with a NDT tool, the size of the defect d(X, t, θ) 

becomes ˆ( , , )d X t . Then the noise η(X, t, θ) is defi ned
from the knowledge of these two stochastic fi elds by 
equation (4).

ˆ, , , , , ,X t d X t d X t  (4)

For each location X and at each time t, the PoD and 
PFA are, respectively, computed from equations (2) 
and (3). Thus the PoD and PFA, as well as the ROC 
curves, are functions indexed by X and t. We denote 
PoD(X, t) and PFA(X, t) as functions of time and 
space. The fi eld d̂ at a given time t being assessed 
from inspection, the computation of PoD(X, t) and 
PFA(X, t) requires the knowledge of one of the other 
stochastic fi elds in equation (4): d(X, t, θ) or η(X, t, θ). 
Two situations can be considered:

(i)  The noise is known because it is constant 
whatever the location of the NDT tool on the 
structure or because it is constant on given areas 
on the structure. It is generally time invariant and 
zero mean.

(ii)  The real size is known because it has been 
measured before on-site inspections as in the 
ICON project (Barnouin et al, 1993) or because 
an assumption is made.

In both situations, the defi nition of continuous spatial 
functions needs the complete characterisation of the 
stochastic fi elds by their joint distribution. Practically, 
no models of joint distribution are available for on-
site inspection and almost all NDT tools give data on 

Figure 2:  Receiver operating characteristic 
curve.

Looking for the best detection performance, the PoD 
should always take larger values than the PFA (low 
noise sensitivity). We have then PoD ≥ PFA. When 
analysing ROC curves, one must keep in mind that 
the PFA depends on the noise and detection threshold 
only. It does not depend on defect unless the noise 
depends on defect size. That is the case for instance 
if the operator adjusts the device to detect smaller 
defects when the current adjustment does not give 
any signal. The PoD is a function of the detection 
threshold, the defect size and the noise. Thus, for 
a given detection threshold, the PFA is a constant, 
but the PoD is an increasing function of the defect 
size. The ROC curve is a fundamental characteristic 
of the NDT tool performance for a given defect 
size. A perfect tool is represented by a ROC curve 
reduced to a single point whose coordinates are
(PoD, PFA) = (1, 0). The distance between this “best 
performance point” and the ROC curve is a measure 
of the NDT ability (Schoefs & Clement, 2004); we call 
it NDT-PI (NDT Performance Index). Theoretical 
ROC curves are presented in Rouhan & Schoefs 
(2003), where each one is obtained for several signal/
noise ratios of a NDT tool.

When assessing a ROC curve, two approaches can 
be considered:

• the statistical approach, which aims to provide
discrete values for PFA and PoD and requires
the knowledge of the real size; this is performed
within specifi c inter-calibration projects such as
the ICON project in the fi eld of offshore platform
analysis (Barnouin et al, 1993), when on-site
measurements on real structures are costly or
when on-site conditions are affected by a lot of
factors as for the detection of corrosion pitting
(Pakrashi et al, 2008)

• the probabilistic approach, which requires a
modelling of the (signal + noise) and noise pdf;
it is generally preferred when the cost of on-site
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specifi c locations; thus, only marginal distributions 
can be assessed. Moreover, the owner generally does 
not base its inspection planning on RBI methods; 
then the inspection campaign aims to give a global 
overview of the state of the structure. Thus the 
distance between measurements is generally larger 
than the distance of correlation and additional 
assumptions on the structure of correlation for the 
stochastic fi elds are needed.

Finally, note that the knowledge of ageing laws for 
d allows predicting evolution of ROC curves with 
time. This can be implemented in a RBI method 
for optimising the period between inspection, as 
well as the location of inspections. For example, for 
corrosion processes, several models are available 
(Melchers, 2003; Paik et al, 2003a; Paik et al, 2003b; 
Guedes Soares & Garbatov, 1999). In the fi eld of 
uniform corrosion, spatially dependent ROC curves 
are available (Schoefs et al, 2007a).

3  MODELLING RANDOM FIELDS OF 
DEFECTS FROM NDT MEASUREMENTS

Only the spatial dependence is addressed here. We 
suggest a representation with PC decomposition for 
modelling marginal distributions or random fi elds. 
It allows for the systematic identifi cation of random 
variables or random fi elds. We choose the estimate 
of maximum likelihood for the identifi cation of PC 
decomposition (Desceliers et al, 2007). This method 
has already been applied for the identification 
of random variables from structural monitoring 
(Schoefs et al, 2007b). The question is to identify 

the coeffi cients di, 
ˆ
id  and ηi of the one-dimensional

PC decomposition for every random variable. 
For generality, let us denote x(θ) as the random 
variable and xi as the PC coeffi cients. Equation (5) 
gives the general form of a one-dimensional PC 
decomposition.

0

( ) ( )
p

i i
i

x x x h (5)

where p is the order of the PC decomposition; ξ(θ) is 
the Gaussian germ, ie. a standardised normal variable; 
and hi is the Hermite polynomial of degree i. By using 
the maximum likelihood method, coeffi cients xi are 
solutions of the optimisation problem:

( ) arg max ( )L L (6)

where  is the vector of components xi (  = [x
0
, …, xp]) 

with dimension (p+1), and L is the likelihood 
function:

1

( ) ( );
N

x j
j

L p x
(7)

where x(θj) is the jth realisation (here measurement) 
of x; and px(.;  ) is the probability distribution of x, 
parameterised by .

The likelihood function (7) takes very fair values close 
to the numerical precision. Then the problem (6) is 
replaced by equation (8):

Log ( ) arg min Log ( )L L (8)

The algorithm for solving the optimisation problem 
(8) is detailed in Schoefs et al (submitted) and only the 
main steps are described here. Basically, the question 
is to build a solution by stating conditions (9):

0 0

2

1

Var( ( ( ))
p

i x
i

x

x x (9)

where μx and σx are, respectively, the statistical 
average and standard deviation of variable x(θ). 
They are computed from the N measurements x(θj). 
In equation (9), the fi rst condition reduces the number 
of unknown PC coeffi cients to p and the second one 
facilitates the search for other coeffi cients on an 
hyper-sphere with radius σx. Moreover, by denoting 
xi

* the quantity xi/σx, the second condition of (9) 
becomes equation (10):

2*

1

1
p

i
i

x (10)

This new condition facilitates the search for p 
coeffi cients x

1
*, ... xi

*, ... xp
* on a hyper-sphere with 

radius 1. This last condition is interesting for the 
optimisation process. Let us now consider a PC of 
order 3. To parametrise the hyper-sphere, we can 
introduce two angular parameters φ

1
 and φ

2
:

*
1 1 2
*
2 1 2

*
3 1

cos( )cos( )
cos( )sin( )  

sin( )

x

x

x
(11)

1 2with  ; and ;
2 2

A two-step optimisation fl owchart is used solving 
equation (8) by knowing equation (11):

• a first localisation of the minimum is found
through Monte Carlo simulations (size 100 and
1000, respectively, for PC of order 2 and 3)

• starting from this point, the Nelder-Mead Simplex
Method is used (Lagarias et al, 1998).

This process allows us to avoid a pseudo-convergence 
around minimum values. Figure 3(a) presents 
the fi tting of distributions in the case of uniform 
corrosion of piles in harbours for the two variables: 

measured loss of thickness d̂ and noise η with PC 
for several orders p. Figure 3(b) plots iso-values of 
–Log(L) for PC chaos of order 3, in the space (φ

1
, φ

2
).

ROC curves are then deduced from integration of 
these decompositions. Thus both PoD and PFA are 

functions of polynomial coeffi cients xi. Denoting ˆ

and  the vectors, respectively, of ith components ˆ
id  

and ηi, expressions of PoD and PFA as functions of PC 
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Figure 3(a): Fitting of loss of thickness and
noise with polynomial chaos for
several orders p (corrosion of
piles in harbours).

Figure 3(b):  Representation of –Log(L) in the space 
(φ

1
, φ

2
) for PC chaos of order 3.

Figure 4:  Comparison between ROC curves coming from polynomial chaos with order 3 identifi cation 
(left) and experimental data (right) for several inspections in depth.

coeffi cients are presented in equations (12) and (13). 

When d̂ and η are independent, a germ of dimension 
2 is needed respectively (ξ = (ξ

1
, ξ

2
). Note that the PC 

decomposition of signal d is obtained from equation 

(4) by knowing 
ˆ, , ξ

1
 and ξ

2
. 

0

ˆPoD ( )
p

i i d
i

d a (12)

0

PFA ( )
p

i i d
i

a (13)

with ( )
da

i d ia h u p du

where pξ is the probability density function of ξ 
(standard normal pdf). Practically, integrals ℑi(ad) 
in equations (12) and (13) are computed through 
Monte-Carlo simulations using 106 samples. These 
quantities are independent of the study: they can 
be preprocessed once for all and used for each 
application.

The stochastic fi eld of corrosion for sheet piles in 
harbours is spatially indexed by the vertical abscissa 
only (Schoefs et al, 2007a). ROC curves at six depths 
between –1 m and +2 m along a pile are plotted in 
fi gure 4 for a PC chaos of order 3. Abscissa (+1 m) and 
(+2 m) represent points located in the tidal area where 
others refer to locations in the immersion area.

Note that the identifi cation of a variance-covariance 
matrix is generally more complex due to the distance 
of inspected points that is much larger than the 
correlation length as mentioned previously in section 
2.3. In this case we suggest using independent germs 
ξi(θ) for each inspected point and to interpolate PC 
coeffi cients between two inspected points (14).

, ( ).i k i j
j

d X X d X (14)

where φk(X) are linear functions for interpolation 
from knowledge of coefficients at coordinate 
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Figure 5:  Corroded sheet-pile and profi le
of the loss of thickness.

Xj. Note that this representation needs at least 

measurements where the average trajectory of the 

process takes its minimum and maximum value. 

In the case of corrosion of coastal structures, shape 

of profiles and position of extreme values are 

generally known and inspections are carried out at 

these positions (see fi gure 5). In view to compare 

this method with another one based on the fi tting 

with a classical pdf, we used the NDT-PI: it is the 

distance between the best performance point in (PFA, 

PoD) space of coordinates (0, 1) and the ROC curve. 

Table 1 gives a comparison between the NDT-PI 

obtained with predefi ned pdf (table 1(a)) (Normal, 

Generalised Extreme Value (GEV), Student pdf) and 

PC identifi cations (table 1(b)) at a given position 

along the vertical axis (X = +2 m). The value of NDT-

PI deduced from the original curve (experimental) 

being 0.054, only PC chaos of order 3 allows us to 

reach this value (0.052) when both lower order PC 

decomposition and predefi ned pdf leads to values of 

around 0.075. The tables give the detection threshold 

ad at the best performance point. Values of coeffi cients 

are given at each inspected level on fi gure 6 for PC 

decomposition of order 3.

Table 1(b): Values of NDT-PI and corresponding 
detection threshold for PC 
decomposition (order 1 to 3).

ROC curves
X = +2 m

NDT-PI ad

Experimental 0.054 0.25

PC order 1 0.079 0.26

PC order 2 0.072 0.026

PC order 3 0.052 0.026

Table 1(a): Values of NDT-PI and corresponding 
detection threshold for predefi ned pdf.

ROC curves
X = +2 m

NDT-PI ad

Experimental 0.054 0.25

Normal 0.079 0.26

GEV 0.081 0.29

Student 0.072 0.25

Figure 6:  PC coeffi cients (order 3) identifi ed at several depths.

We notice that the normal pdf and order 1 PC 

decomposition are the same, leading to the same 

result.

4  RISK-BASED DECISION AID-TOOLS 

BASED ON INSPECTION RESULTS

Rouhan & Schoefs (2003) further developed this 

methodology by focusing on the probability that a 

defect exists after an inspection has been carried out. 

The PoD is the probability that an existing defect is 

detected, whereas the decision is based on the event 

that a defect exists, given the results of an inspection. 

We consider the events:
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• the real state δ: “δ = 1” means that “defect is
present”

• “D(δ)” the decision on this state after inspection:
“D(δ) = 1” means that “defect is detected”.

From Bayesian point of view, PoD can then be 
defi ned as the conditional probability of the event
“(D(δ) = 1|δ = 1)”. The conditional probability of the 
event of interest “(δ = 1|D(δ) = 1)” can be evaluated 
using Bayes Theorem. It is subsequently introduced 
into cost functions, which are used to investigate the 
effect of cost overrun due to inaccurate inspection 
results. Four events Ei (i =1:4) are then defi ned. For 
example, the expression of the probability of event 
E

3
 “(δ = 1|D(δ) = 0)” is given in equation (15). This 

event is of fi rst importance in risk analysis because 
it can lead to a failure. 

3

1 PoD
1 PoD 1 PFA 1

P E
 

(15)

Other events are:

• E
1
, is the event “absence of defect knowing no

detection” or “(δ = 0|D(δ) = 0)”

• E
2
, is the event “absence of defect knowing a

detection” or “(δ = 0|D(δ) = 1)”

• E
4
, is the event “presence of defect knowing a

detection” or “(δ = 1|D(δ) = 1)”.

They can be associated to costs and subsequently 
introduced in a complete RBI planning (Sheils et al, 
2008). The occurrence of these events also depends 
on another parameter, γ, the probability of presence 
of a defect. The probability density function of γ is 
related to the natural size of existing defects and their 
spatial variation (which comes from expert judgment 
or an historical data base).

An alternative approach is to introduce a parameter 
known as the probability of indication (PoI): 

PoI(d) = PoD(d) + (1 – PoD(d))PFI (16)

where PFI is the probability of false indication (Straub 
& Faber, 2003). The parameter PFI must be defi ned 
relative to a specifi c size of the inspected area (Straub 
& Faber, 2003).

From equations (12) and (13), P(Ei) and PoI are 
expressed as functions of spatial dependant 

quantities d̂ and . Figure 7 gives the evolution 
of P(E

2
) and P(E

3
) for three assumptions of expert 

judgement and the result after selection of a standard 
expert judgement. This factor strongly affects the 
shape of these curves.

5  RELIABILITY ANALYSIS BASED ON 
STOCHASTIC FINITE ELEMENT IN CASE 
OF RANDOM FIELDS OF DEFECTS

The stochastic (or probabilistic) finite element 
method refers to finite elements methods that 

account for uncertainties in the geometry or material 

properties of a structure, as well as the applied 

loads. Since the 1980s, quite a lot of developments 

have been made. They are mainly concerned with 

uncertainties of materials properties or hazards in 

loading. The question of the random geometry due 

to defects during building or the effect of ageing 

laws (corrosion) is still a challenge. Methods such as 

X-SFEM are effi cient in this context (Nouy et al, 2007; 

2008a; 2008b; Clément et al, 2008). In this paper, the 

computation is based on the so-called non-intrusive 

stochastic fi nite element analysis (Berveiller, 2005). 

We consider in this section that the loss of thickness 

d(X, t, θ) can be introduced in reliability through 

“macro” variables, ie. quantities such as diameter, 

section or inertia are explicit function of d. Then no 

specifi c method that deals with random geometries 

such as X-SFEM is needed.

Firstly, a quantity of interest or a limit state is selected. 

Here, we are interested in displacement of each 

point of the structure displacements u(X). The limit 

state is then expressed: G(X) = u(X) – uc, where u
c
 is 

the acceptable critical displacement. The structural 

computation is made by using deterministic software. 

The question is then to fi nd an approximation ( , )u X  

of the PC decomposition u(X, ξ). By knowing the 

decomposition of basic input variables such as

d(X, t, θ), on a PC decomposition with germ ξ, ( , )u X  

is expressed in equation (17) and can be assessed by 

computing uα through the quadrature formula (18).

( ) ( )u u u H (17)

( ) ( ) k k
k

u H u dP E H u H u

(18)

where α is a multi-index, P is a measure of probability 

associated with ξ, and Hα is an Hermite polynomial

associated to this multi-index. θk are the elementary 

events where the deterministic computation is needed 

(generally called point of integration or Gauss points 

in the case of normal measure of probability) and 

ωk is the corresponding weights associated with the 

measure of probability P. 

A post-processing allows the computation of the 

probability of failure Pf to be carried out with very 

low computational costs. This is of primary interest 

when carrying out risk analysis where a good 

assessment of Pf is needed. 

For illustration, we can consider an application where 

an explicit form of the solution can be obtained by 

the static balance of the structure assuming an elastic 

behaviour of the material (see fi gure 5). 

Considering here a limit state relying on yield 

momentum, the probability of failure with depth is 

plotted on fi gure 8, with the loss of matter on fi gure 

6 and the confi guration of loading on fi gure 5.
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Figure 7:  Evolution of P(E
2
) and P(E

3
) with depth (top) for several expert judgements γ (in bold line 0.9, 

in fi ne line 0.5 and in dotted line 0.1); standard expert judgement (middle); and corresponding 
evolution of P(E

2
) and P(E

3
) with depth with this standard judgement (bottom).

6  CONCLUSION: FLOWCHART FOR 
COUPLING RESULTS OF INSPECTION 
AND STRUCTURAL RELIABILITY 

Sections 4 and 5 provide the main steps for a 
fl owchart that couples the results of inspection and 
structural reliability with a formulation based on PC 
decomposition. From inspection results and noise 
modelling, it is based on the PC decomposition of 
basic variables describing the risk based modelling 

of inspection results ˆ( , , )d X t  and η(X, t, θ) on the one 
hand, and a PC decomposition of geometrical basic 
variables for the reliability study d(X, t, θ) on the 
other hand. The corresponding terms of risk analysis 
P(E

3
) and Pf can be assessed. The fl owchart in fi gure 9 

resumes the steps of methodology. When considering 

only event E3 (there is a defect knowing we do not 

detect it), which leads to failure and the probability 

of failure, fi gure 8 presents the result of the integrated 

risk analysis: the evolution of risk with depth. The PC 

decomposition is shown to be an interesting common 

language between reliability analysis and RBI when 

stochastic fi elds of degradation occur. Note that quite 

a lot of uncertainties and hazards are introduced:

(i)  The natural hazard of the corrosion process:

d(X, t, θ)

(ii)  The uncertainty in the inspection results from 

on-site measurements: η(X, t, θ)

(iii)  The uncertainty of the previous knowledge on 

the corrosion process: γ (X, t).
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Figure 8: Evolution of probability of failure and selected P(E
3
) with depth (top and middle), and result 

in terms of risk (bottom).
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