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Reliability-Based Analysis and Design of Strip Footings
against Bearing Capacity Failure

Dalia S. Youssef Abdel Massih; Abdul-Hamid Soubra; and Bak Kong Low

Abstract: This paper presents a reliability-based approach for the analysis and design of a shallow strip footing subjected to a vertical
load with or without pseudostatic seismic loading. Only the punching failure mode of the ultimate limit state is studied. The deterministic
models are based on the upper-bound method of the limit analysis theory. The random variables used are the soil shear strength parameters
and the horizontal seismic coefficient. The Hasofer-Lind reliability index and the failure probability are determined. A sensitivity analysis
is also performed. The influence of the applied footing load on the reliability index and the corresponding design point is presented and
discussed. It was shown that the negative correlation between the soil shear strength parameters highly increases the reliability of the
foundation and that the failure probability is highly influenced by the coefficient of variation of the angle of internal friction of the soil

and the horizontal seismic coefficient. For design, an iterative procedure is performed to determine the breadth of the footing for a target

failure probability.

E Database subject headings: Bearing capacity; 
arthquake loads; Limit analysis; Probability; Reliability; 
hallow foundations; Punching; Failure loads.

Introduction

In the analysis and design of geotechnical structures, all the input
data have some degree of uncertainty and, thus, may be consid-
ered as random variables or stochastic processes. Geotechnical
engineers have always recognized the presence of uncertainty in
their analysis and design. However, traditional deterministic mod-
els simplify the problem by considering the uncertain parameters
to be deterministic and by accounting for the uncertainties
through the use of a global safety factor, which is essentially a
“factor of ignorance.” This factor is derived based on past expe-
rience and does not reflect the inherent uncertainty of each pa-
rameter. A reliability-based analysis or design is more rational,
since it takes into account the inherent uncertainty of each input
variable. Nowadays, this is possible because of the improvement
of our knowledge on the statistical properties of the soil �Phoon
and Kulhawy 1999�.

In the last decade, the reliability-based analysis has been ex-
tensively applied to the slope stability problem �see, for instance,
Christian et al. �1994�; Low and Tang �1997b,c�; Low et al.
�1998�; Hassan and Wolff �1999�; El-Ramly et al. �2002�, �2003�;
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among others�. However, very few authors have investigated the
reliability-based analysis and design of foundations. Some �Grif-
fiths and Fenton 2001; Fenton and Griffiths 2002, 2003, 2005;
Griffiths et al. 2002; Przewlocki 2005; Popescu et al. 2005� mod-
eled the uncertain parameters as random processes and examined
the effect of the spatial variability of these parameters on the
settlement or on the bearing capacity of foundations. Most of
these studies considered the uncertainty of one single parameter
�such as the soil elastic modulus, the cohesion, or the angle of
internal friction of the soil�. Others modeled the uncertainties of
the different parameters as random variables and conducted
reliability-based analysis using formulas of the bearing capacity
factors �Cherubini 2000; Low and Phoon 2002�. These ap-
proaches have the merit of simplicity, but also some shortcomings
because they are based on approximate theoretical formulations.

In this study, a reliability-based analysis and design of a strip
foundation resting on a c−� soil is presented. Two performance
functions may characterize the footing behavior: The serviceabil-
ity limit state and the ultimate limit state. Only the punching
failure mode of the ultimate limit state is analyzed herein. Two
loading cases are considered. The first examines the case of a strip
footing subjected to a vertical load only; the second considers the
case of a vertically loaded strip footing situated in a seismic area
and subjected to a pseudostatic seismic loading. Two rigorous
deterministic limit analysis models are used. The uncertainties of
the soil shear strength parameters and the seismic coefficient are
modeled as random variables. The basic concepts of the theory of
reliability are described next, followed by the two deterministic
models, and discussions of the probabilistic numerical results

based on these models.



Basic Reliability Concepts

Two different measures are commonly used in the literature to
describe the reliability of a structure: The reliability index and the
failure probability.

Reliability Index

The reliability index of a geotechnical structure is a measure of
the safety that takes into account the inherent uncertainties of the
input variables. A widely used reliability index is the Hasofer
and Lind �1974� index defined as the shortest distance from
the mean value point of the random variables to the limit state
surface in units of directional standard deviations, namely
�HL=min�R��� /r���� �Fig. 1�. Its matrix formulation is �Ditlevsen
1981�

�HL = min
x�F

��x − ��TC−1�x − �� �1�

in which x=vector representing the n random variables;
�=vector of their mean values; C=covariance matrix; and
F=failure region. The minimization of Eq. �1� is performed
subject to the constraint G�x��0 where the limit state surface
G�x�=0, separates the n dimensional domain of random variables
into two regions: A failure region F represented by G�x��0 and
a safe region given by G�x��0.

The classical approach for computing �HL by Eq. �1� is based
on the transformation of the limit state surface into the rotated
space of standard normal uncorrelated variates. The shortest dis-
tance from the transformed failure surface to the origin of the
reduced variates is the reliability index �HL.

An intuitive interpretation of the reliability index was sug-
gested in Low and Tang �1997a, 2004�, where the concept of an
expanding ellipse �Fig. 1� led to a simple method of computing
the Hasofer-Lind reliability index in the original space of the
random variables using an optimization tool available in most
spreadsheet software packages. When there are only two uncor-
related nonnormal random variables x1 and x2, these variables
span a two-dimensional random space, with an equivalent one-
sigma dispersion ellipse �corresponding to �HL=1 in Eq. �1� with-
out the min.�, centered at the mean values ��1

N ,�2
N� and whose

axes are parallel to the coordinate axes of the original space. For
correlated variables, a tilted ellipse is obtained. Low and Tang

Fig. 1. Design point and equivalent normal dispersion ellipses in the
space of two random variables
�1997a, 2004� reported that the Hasofer-Lind reliability index �HL
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may be regarded as the codirectional axis ratio of the smallest
ellipse �which is either an expansion or a contraction of the
1−� ellipse� that just touches the limit state surface to the 1−�
dispersion ellipse. They also stated that finding the smallest ellip-
soid that is tangent to the limit state surface is equivalent to find-
ing the most probable failure point.

Failure Probability

Given a vector of n random variables X and a performance func-
tion defined by G�x�, the failure probability Pf is defined by

Pf =�
G�x��0

f�x�dx �2�

where f�x�=joint probability density function of the random vari-
ables X. By introducing the indicator function I�x� defined as

I�x� = �1 if G�x� � 0

0 elsewhere
� �3�

The integral that gives the failure probability �Eq. �2�� can be
written as

Pf =�
�

I�x�f�x�dx �4�

where �=total domain. A brief description of the methods used in
this paper for the evaluation of this integral �i.e., FORM, MC, and
IS� follows.

First-Order Reliability Method
From the first-order reliability method �FORM� and the Hasofer-
Lind reliability index �HL, one can approximate the failure prob-
ability as follows:

Pf 	 	�− �HL� �5�

where 	�·�=cumulative distribution function of a standard nor-
mal variable. In this method, the limit state function is approxi-
mated by a hyperplane tangent to the limit state surface at the
design point.

Crude Monte Carlo Simulation
Monte Carlo is the most robust simulation method in which
samples are generated with respect to the probability density of
each variable. For each sample, the response of the system is
calculated. An unbiased estimator of the failure probability is
given by

P̃f =
1

N

i=1

N

I�xi� �6�

where N=number of samples and I�x� is as defined in Eq. �3�. The
coefficient of variation of the estimator is given by

COV�P̃f� =��1 − Pf�
PfN

�7�

Importance Sampling Simulation
Generally, for a given target of the coefficient of variation, the
crude Monte Carlo simulation requires a large number of samples,
i.e., a large computation time. This is especially the case for small
values of the failure probability Pf. The importance sampling �IS�

simulation method is a more efficient approach; it requires fewer



sample points than the crude Monte Carlo method. In this ap-
proach, the initial sampling density is shifted to the design point
in order to concentrate the samples in the region of greatest prob-
ability density within the zone defined by G�x��0. The design
point may be determined by using any of the classical methods
such as Rackwitz-Fiessler algorithm �Rackwitz-Fiessler 1978�,
Low and Tang’s ellipsoid approach �Low and Tang 1997a, 2004�,
etc. An estimator of the failure probability Pf is obtained as fol-
lows �Melchers 1999�:

P̃f =
1

N

i=1

N

I�vi�
f�vi�
h�vi�

�8�

where h�·�=new sampling density centred at the design point, and
v=vector of sample values with probability density function h�·�.
The coefficient of variation of the estimator is given by �Melchers
1999�

COV�P̃f� =
1

Pf
� 1

N� 1

N

i=1

N �I�vi�
f�vi�
h�vi�

2

− �Pf�2� �9�

Sensitivity Factors

The sensitivity factors convey the relative importance of the ran-
dom variables in affecting reliability. The “omission sensitivity
factor” is used in this paper. It gives the relative error in the
reliability index when a random variable is replaced by its deter-
ministic mean value. It is given by


i��i� =
�HL�xi = �i�

�HL
�10�

where �HL=value of the reliability index calculated when all
parameters are considered as random variables, and �HL�xi=�i�
=reliability index determined when xi is replaced by its determin-
istic mean value.

Reliability Analysis of Shallow Strip Foundations

The aim of this paper is to perform a reliability analysis of a strip
footing resting on a c−� soil and subjected to a vertical load. The
case of a vertically loaded strip footing situated in a seismic area
is also studied. Quasi-static representation of earthquake effects
using the seismic coefficient concept is adopted. The earthquake
acceleration for both the soil and the structure is assumed to be
the same: Only the horizontal seismic coefficient Kh is consid-
ered, the vertical seismic coefficient often being disregarded. The
deterministic models are based on the upper-bound method of the
limit analysis theory �Soubra 1999�. Due to uncertainties in soil
shear strength parameters and horizontal seismic coefficient, the
cohesion c, the angle of internal friction �, and the seismic coef-
ficient Kh are considered as random variables. The performance
function used in the reliability analysis is defined with respect to
the bearing failure of the soil. It is given as follows:

G =
Pu

PS
− 1 �11�

where Pu=ultimate foundation load, and PS=applied load. One
may use another performance function as G= Pu− PS. However,
this leads exactly to the same value of the reliability index since
the Hasofer-Lind reliability index does not vary with alternative

but equivalent definitions of the performance function. Notice,
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however, that the first definition has an advantage over the second
one since it makes it possible to introduce the concept of the
safety factor as follows: G=F−1.

Limit Analysis Models

Two deterministic models are used in this paper. In these models,
the upper-bound theorem of limit analysis is applied to the bear-
ing capacity problem of a strip footing using two kinematically
admissible failure mechanisms referred to in the following as M1
and M2. These mechanisms were presented by Soubra �1999�.
The approach is simple and self-consistent and it obtains rigorous
upper-bound solutions in the framework of limit analysis theory.
Although the results given by this approach are upper-bound so-
lutions, they are the smallest upper-bounds against the available
ones given by rigid block mechanisms. In some cases �i.e., for
weightless soil�, they are the exact solutions, since they are equal
to the results given by the lower-bound method.

M1 is a translational symmetrical multiblock failure mecha-
nism �Fig. 2� and is used for the computation of the bearing
capacity of a vertically loaded footing. M2 is a translational non-
symmetrical multiblock failure mechanism and is suitable for the
calculation of the bearing capacity of vertically loaded founda-
tions situated in seismic areas by a pseudostatic approach �Fig. 3�.
The calculation of the bearing capacity is performed by equating
the total rate at which work is done by the foundation load, the
soil weight in motion, the horizontal seismic loads �in the case of
seismic loading�, and the ground surface surcharge to the total
rate of energy dissipation along the lines of velocity discontinui-
ties. For both M1 and M2, it is found that an upper-bound on the
bearing capacity of the soil is given as follows:

Fig. 2. Failure mechanism M1 for static bearing capacity analysis

Fig. 3. Failure mechanism M2 for seismic bearing capacity analysis



Pu =
1

2

B2N
 + qBNq + cBNc �12�

in which the bearing capacity factors N
, Nq, and Nc can be ex-
pressed in terms of the geometrical parameters of each mecha-
nism. For the M1 mechanism, these factors are given as follows:

N
 = − �f1 + f2� �13�

Nq = − f3 �14�

Nc = 2�f4 + f5 + f6� �15�

where the expressions of f i�i=1, . . . ,6� are given in Appendix I.
For the M2 mechanism, the bearing capacity factors are given by

N
 = −
1

sin��1 − �� + Kh cos��1 − ��
�g1 + Khg2� �16�

Nq = −
1

sin��1 − �� + Kh cos��1 − ��
�g3 + Khg4� �17�

Nc =
1

sin��1 − �� + Kh cos��1 − ��
�g5 + g6� �18�

where the expressions of gi�i=1, . . . ,6� are given in Appendix II.
The ultimate load of the foundation is obtained by minimization
of Eq. �12� with regard to the mechanism’s geometrical param-
eters. For further details on the failure mechanisms, the reader can
refer to Soubra �1999�.

Ellipsoid Approach via Spreadsheet

Low and Tang �1997a, 2004� showed that the minimization of the
Hasofer-Lind reliability index can be efficiently carried out in the
Excel spreadsheet environment. The spreadsheet approach is
simple and easy to understand because it works in the original
space of random variables and does not require the additional step
of transforming x to u where u is a transformed vector of the
random variables in the uncorrelated Gaussian space. However,
the optimization in original space is not preferred from a compu-
tational perspective �STRUREL 1991�. This is because optimiza-
tion in standardized space is mathematically more desirable in
nonlinear optimization. For example, when minimizing the qua-
dratic form of Eq. �1� in the original space, in some cases the
correct solution is obtained only when the solver option “use
automatic scaling” is activated. As an alternative, Cholesky fac-
torization of the convariance matrix can be used. The robustness
of the latter approach is investigated in Phoon �2004�.

When the random variables are nonnormal, the Rackwitz-
Fiessler equivalent normal transformation was used to compute
the equivalent normal mean �x

N and the equivalent normal stan-
dard deviation �x

N. The iterative computations of �x
N and �x

N for
each trial design point are automatic during the constrained opti-
mization search.

In the present paper, by the Low and Tang method, one liter-
ally sets up a tilted ellipsoid in the Excel spreadsheet and mini-
mizes the dispersion ellipsoid subject to the constraint that it be
tangent to the limit state surface using the Excel Solver with the
automatic scaling option. Eq. �1� may be rewritten as �Low and

Tang 1997c, 2004�
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�HL = min
x�F

�� x − �x
N

�x
N �T

�R�−1� x − �x
N

�x
N � �19�

in which �R�−1=inverse of the correlation matrix. This equation
will be used �instead of Eq. �1�� since the correlation matrix �R�
displays the correlation structure more explicitly than the covari-
ance matrix �C�.

Additional information on Solver’s options and algorithms
can be found in the Microsoft Excel Solver’s help file and at
www.solver.com. The FORM implementation procedure in the
spreadsheet is described in Low �2005� and Low and Tang
�1997a,b,c, 2004�. Some Excel files are available at http://
alum.mit.edu/www/bklow.

Probabilistic Numerical Results

For both M1 and M2 failure mechanisms, the numerical results
presented in this paper consider the case of a shallow strip foun-
dation with breadth B=2m. The soil has a unit weight of
18 kN /m3. No surcharge loading �q=0� is considered in the
analysis. Different values of the coefficients of variation of the
angle of internal friction and cohesion are presented in the litera-
ture. For most soils, the mean value of the effective angle of
internal friction is typically between 20 and 40°. Within this
range, the corresponding coefficient of variation as proposed by
Phoon and Kulhawy �1999� is essentially between 5 and 15%. For
the effective cohesion, the coefficient of variation varies between
10 and 70% �Cherubini 2000�. For the coefficient of correlation,
Harr �1987� has shown that a correlation exists between the ef-
fective cohesion c and the effective angle of internal friction �.
The results of Wolff �1985� ��c,�=−0.47�, Yuceman et al. �1973�
�−0.49��c,��−0.24�, Lumb �1970� �−0.7��c,��−0.37�, and
Cherubini �2000� ��c,�=−0.61� are among the ones cited in the
literature. In this paper, the illustrative values used for the statis-
tical moments of the shear strength parameters and their coeffi-
cient of correlation �c,� are as follows: �c=20 kPa, ��=30°,
COVc=20%, COV�=10%, and �c,�=−0.5. These values are
within the range of the values cited above.

Mechanism M1

For the configuration presented above, the ultimate footing load
determined for the mean values of the soil shear strength param-
eters is Pu=2,136.72 kN /m. For the probability distribution of
the random variables, two cases are studied. In the first case,
referred to as normal variables, c and � are considered as normal
variables. In the second case, referred to as nonnormal variables,
c is assumed to be lognormally distributed while � is assumed to
be bounded and a beta distribution is used �Fenton and Griffiths
2003�. The parameters of the beta distribution are determined
from the mean value and standard deviation of � �Haldar and
Mahadevan 2000�. For both cases, correlated or uncorrelated vari-
ables are considered.

Probabilistic Failure Surface
The conventional deterministic approach for the calculation of a
safety factor or an ultimate load on a soil mass is based on the
minimization of these functions over a range of trial failure sur-
faces. The surface of minimum factor of safety or ultimate load is
referred to as the critical deterministic surface. A common ap-

proach to determine the reliability of a stressed soil mass is based



on the calculation of the reliability index �HL corresponding to
this surface �Christian et al. 1994�. In this paper, a more rigorous
approach is used. It consists of the determination of the reliability
index by minimizing the quadratic form of Eq. �19� not only with
respect to the random variables, but also with respect to the geo-
metrical parameters of the failure mechanism �� ,�i ,�i�. Twelve
rigid blocks �i.e., n=12 in Fig. 2� are considered for each side of
the footing. Therefore, the minimization is performed with respect
to 27 parameters �� ,�i ,�i ,c ,��. The surface obtained corre-
sponding to the minimum reliability index is referred to here as
the critical probabilistic surface. The reliability index calculated
with respect to the critical probabilistic surface is smaller �i.e.,
more critical� than the one calculated by using the critical deter-
ministic surface. Had one considered the deterministic critical
surface, a slightly higher reliability index value of 3.49 would
have been obtained instead of 3.27 for the case with normal un-
correlated soil shear strength parameters. In all subsequent re-
sults, for both the M1 and M2 mechanisms, the reliability index is
calculated using the probabilistic failure surface.

Reliability Index and Sensitivity Factors
Table 1 presents the Hasofer-Lind reliability index and the corre-
sponding design point for different values of the vertical applied
load PS varying from small values up to the deterministic ultimate
load. This ultimate load is the one for which the design point is
equal to the mean point for normal variables and equivalent nor-
mal mean point for nonnormal variables. The table also gives the
omission sensitivity factors of the angle of internal friction and
the cohesion. All these results are presented for normal and non-
normal, correlated and uncorrelated shear strength parameters.
For all cases, the reliability index decreases with the increase of
the applied load PS �i.e., with the decrease of the safety factor
F= Pu / PS� until it vanishes for an applied load equal to the deter-
ministic ultimate load. This case corresponds to a deterministic
state of failure for which F=1 using the mean values of the ran-
dom variables and the failure probability is equal to 50%.

The comparison of the results of correlated variables with
those of uncorrelated variables �Fig. 4� shows that the reliability
indices corresponding to uncorrelated variables are smaller than
those of negatively correlated variables for both normal and non-
normal variables. One can conclude that assuming uncorrelated
shear strength parameters is conservative in comparison to assum-
ing negatively correlated shear strength parameters. For instance,
when the safety factor is equal to 4.27 �i.e., PS=500 kN /m�, the
reliability index increases by 40% if the variables c and � are
considered to be negatively correlated. Fig. 4 also shows that for
small values of the safety factor, the results of normal and non-
normal variables are nearly identical. A difference appears for
large values of the safety factor.

From Table 1, when PS=700 kN /m, the most probable failure
point for uncorrelated and correlated normal variables is found to
be at �c*=12.45 kPa, �*=22°� and �c*=16.55 kPa, �*=19.88°�,
respectively. These are the points of tangency of the �HL−� el-
lipses with the limit state surface. Notice that the limit state sur-
face divides the combinations of �c ,�� that would lead to failure
from the combinations that would not. The �c ,�� values defining
the limit state surface are obtained by searching c �or �� for a
prescribed � �or c� that achieve both the conditions �i� a minimum
ultimate load Pu and �ii� a safety factor F= Pu / PS=1. For this
purpose, a numerical procedure was coded in Microsoft Excel
Visual Basic. It calls the Excel Solver iteratively in order to si-
multaneously satisfy the two conditions above. Fig. 5 provides

graphical representation of the reliability analysis for both corre-
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lated and uncorrelated shear strength parameters in the physical
space of the random variables. One can easily see that negative
correlation between shear strength parameters rotates the major
axis of the ellipse from the horizontal direction.

The values �c* and �*� of the design points corresponding to
different values of the vertical applied load can give an idea about
the partial safety factors of each of the strength parameters c and
tan � as follows:

Fc =
�c

c*
�20�

F� =
tan����
tan �*

�21�

For uncorrelated shear strength parameters, the values of c* and
�* at the design point are smaller than their respective mean
values and increase with the increase of the applied load. For
negatively correlated shear strength parameters, c* slightly ex-
ceeds the mean for some values of the applied load.

The values of the omission sensitivity factors have shown that
the effect of the randomness of the angle of internal friction on
the reliability index is much more pronounced than that of the
cohesion, especially for the case of nonnormal random variables.

Failure Probability
Figs. 6 and 7 present, respectively, the failure probability and the
corresponding coefficient of variation as a function of the number
of samples for both MC and IS simulations when the soil shear
strength parameters are normal and uncorrelated and the footing
applied load is equal to 700 kN /m. In this paper, MC and IS
simulations were performed in the standardized space of uncorre-
lated variables. Hence, only uncorrelated normal random vari-
ables have been generated. For nonnormal and correlated
variables, the limit state surface, which is determined point by
point as explained in the previous section, is transformed to the
standardized space of uncorrelated normal variables using the
equivalent normal transformation �i.e., the Rackwitz-Fiessler
equations� for each couple of �c ,��. The two equations used for
the transformation of each �c ,�� of the limit state surface from
the physical space to the standarized normal uncorrelated space
�u1 ,u2� are �Lemaire 2005�

u1 = � c − �c
N

�c
N  �22�

u2 =
1

�1 − �2��� − ��
N

��
N  − �� c − �c

N

�c
N � �23�

where �=coefficient of correlation of c and �; and �c
N, ��

N, �c
N,

and ��
N=respectively, the equivalent normal means and standard

deviations of the random variables c and �. They are determined
from the translation approach using the following equations:

c − �c
N

�c
N = 	−1�Fc�c�� �24�

� − ��
N

��
N = 	−1�F����� �25�

where Fc and F�=non-Gaussian cumulative distribution functions
of c and �; and 	−1�·�=inverse of the standard normal cumulative
distribution. If desired, the original correlation matrix ��ij� of the

nonnormals can be modified to �ij� in line with the equivalent



normal transformation, as suggested in Der Kiureghian and Liu
�1986�. Some tables of the ratio �ij� /�ij are given in Appendix B2
of Melchers �1999�, including closed form solution for the special
case of lognormals. For the cases illustrated herein, the correla-
tion matrix, thus modified, differs only slightly from the original
correlation matrix. Hence, for simplicity, the examples in this
study retain their original unmodified correlation matrices.

The importance sampling density function used is given in the

Table 1. Reliability Index and Sensitivity Factors

PS �kN/m� c* �kPa� �* �deg� �H

�a� Uncorrelat

500 8.87 20.69 4.1

700 12.45 22.00 3.2

900 14.76 23.47 2.5

1,100 16.35 24.84 1.9

1,300 17.49 26.08 1.4

1,500 18.35 27.19 1.0

1,700 19.00 28.17 0.6

1,900 19.52 29.06 0.3

2,100 19.93 29.86 0.0

2,136.72 20.00 30.00 0.0

�b� Correlate

500 10.80 19.41 5.8

700 16.55 19.88 4.4

900 18.89 21.66 3.3

1,100 19.89 23.46 2.5

1,300 20.29 25.09 1.8

1,500 20.40 26.51 1.2

1,700 20.36 27.76 0.8

1,900 20.22 28.86 0.4

2,100 20.04 29.83 0.0

2,136.72 20.00 30.00 0.0

�c� Uncorrelated

500 12.46 18.35 4.5

700 14.39 20.98 3.4

900 15.76 23.02 2.5

1,100 16.80 24.67 1.9

1,300 17.60 26.04 1.4

1,500 18.25 27.22 0.9

1,700 18.77 28.25 0.6

1,900 19.21 29.15 0.3

2,100 19.59 29.96 0.0

2,114.15 19.61 30.00 0.0

�d� Correlated

500 14.99 16.77 6.2

700 17.41 19.45 4.5

900 18.82 21.68 3.3

1,100 19.57 23.59 2.4

1,300 19.92 25.22 1.7

1,500 20.01 26.64 1.2

1,700 19.96 27.88 0.7

1,900 19.82 28.97 0.3

2,100 19.63 29.95 0.0

2,114.15 19.61 30.00 0.0
standard uncorrelated space as follows �Lemaire 2005�:

6

f�u� =
1

�2
e−1/2�u − u*�2 �26�

where u*=transformed value of the design point in the standard
uncorrelated space of the random variables. The convergence of
the failure probability calculated by IS is achieved for a sample
size of 20,000. The corresponding coefficient of variation is about


��c� 
���� Fc F�

mal variables

1.30 1.39 2.25 1.53

1.21 1.60 1.61 1.43

1.16 1.81 1.35 1.33

1.13 2.01 1.22 1.25

1.11 2.20 1.14 1.18

1.09 2.38 1.09 1.12

1.08 2.56 1.05 1.08

1.08 2.74 1.02 1.04

1.02 2.91 1.00 1.01

— — 1.00 1.00

al variables

0.92 0.99 1.85 1.64

0.88 1.17 1.21 1.60

0.87 1.36 1.06 1.45

0.87 1.54 1.01 1.33

0.87 1.72 0.99 1.23

0.87 1.90 0.98 1.16

0.87 2.07 0.98 1.10

0.88 2.23 0.99 1.05

0.93 2.40 1.00 1.01

— — 1.00 1.00

ormal variables

1.20 5.44 1.61 1.74

1.18 5.27 1.39 1.51

1.15 4.87 1.27 1.36

1.13 3.89 1.19 1.26

1.12 3.51 1.14 1.18

1.12 3.29 1.10 1.12

1.13 3.16 1.07 1.07

1.19 3.03 1.04 1.04

1.37 2.17 1.02 1.00

— — 1.02 1.00

rmal variables

0.89 4.03 1.33 1.92

0.89 3.99 1.15 1.63

0.89 3.76 1.06 1.45

0.89 3.05 1.02 1.32

0.89 2.80 1.00 1.23

0.90 2.66 1.00 1.15

0.92 2.57 1.00 1.09

0.97 2.49 1.01 1.04

1.13 1.80 1.02 1.00

— — 1.02 1.00
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2%, which is smaller than the commonly adopted value used in



the literature �i.e., 10%�. For the Monte Carlo simulation, a
sample size of 5,000,000 is needed to achieve a constant value of
the failure probability and a corresponding coefficient of variation
of 2%. In order to have a clear visualization of the convergence of
the IS method, the maximal number of samples represented on the
x-axis of Figs. 6 and 7 was limited to 200,000. In the following,
only IS simulation method will be used since it gives accurate
results with reasonable sample size. All the subsequent calcula-
tions are performed for a coefficient of variation of the estimator
of 2%.

By varying the target of the ultimate load, the reliability index
is calculated and the CDF is plotted in Figs. 8 and 9 using FORM
approximation and importance sampling �IS� simulation. From
these figures, it is observed that the CDFs obtained from FORM
approximation are in good agreement with those obtained from IS
simulation for normal, nonnormal, uncorrelated, and correlated
variables for the commonly used values of the coefficients of
variation of the soil shear strength parameters �i.e., COVc=20%,
COV�=10%�. This means that FORM approximation is an ac-
ceptable approach for estimating the failure probability for the
commonly used values of the soil variability. In order to explain

Fig. 4. Reliability index versus safety factor for COVc=20%,
COV�=10%

Fig. 5. �HL—ellipses for correlated and uncorrelated variables in the
physical space
7

the good agreement between the two approaches, the limit state
surface is plotted. Fig. 10 shows the limit state surface corre-
sponding to an applied load PS=1,300 kN /m for nonnormal cor-
related random variables in the standard space of normal
uncorrelated variables. This figure also shows the linear FORM
approximation, which is tangent to the limit state surface at the
design point. From this figure, it can be shown that the linear
FORM approximation is very close to the exact limit state surface
within the circle centred at the origin of the rotated and trans-
formed space and having a radius equal to 3. This explains why a
good agreement between the two approaches is obtained. The
difference between the two failure probabilities shown in Fig. 10
is 1.25%. For larger values of the coefficients of variation �i.e.,
COVc=50%, COV�=20%�, the difference between the two ap-
proaches increases and attains 3.32% as can be shown from the
values given in Fig. 11. This can be explained by the curvature of
the limit state surface near the design point. Since the limit state
surface is convex with respect to the origin of the rotated and
transformed space, the FORM approximation overestimates the
failure probability.

Fig. 6. Failure probability versus the number of samples

Fig. 7. Coefficient of variation of the failure probability versus the
number of samples



Fig. 12 presents the CDFs of the ultimate load for normal,
nonnormal, correlated, and uncorrelated variables as given by
FORM. When no correlation between shear strength parameters is
considered, one can notice a more spread out CDF of the ultimate
load �i.e., a higher coefficient of variation of the ultimate load�.
The chosen probability distribution �i.e., normal, lognormal, and
beta distribution� does not significantly affect the values of the
failure probability.

Fig. 13 presents the effect of the coefficient of variation of the
shear strength parameters on the CDF of the ultimate load. It can
be seen that a small change in the coefficient of variation of �
highly affects the CDF curve. On the other hand, the CDF curve
is not sensitive to changes in the uncertainty of the cohesion.
Thus, the failure probability is highly influenced by the coeffi-
cient of variation of �. The greater the scatter in �, the higher the
failure probability. This means that accurate determination of the
uncertainties of the angle of internal friction � is very important

Fig. 8. Comparison of the CDFs of the ultimate load given by FORM
and IS for normal variables

Fig. 9. Comparison of the CDFs of the ultimate load given by FORM
and IS for nonnormal variables
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in obtaining reliable probabilistic results. In contrast, the coeffi-
cient of variation of c does not significantly affect the failure
probability.

Reliability-Based Design
The conventional approach used in the design of a shallow foun-
dation is to prescribe a target safety factor �generally F=3� and to
determine the corresponding breadth B of the footing. Recently, a
reliability-based design approach �RBD� has been used by several
authors �e.g., Low �2005� and Phoon et al. �2003�, among others�.
This approach was used in this section. It consists of the calcula-
tion of B for a target reliability index of 3.8 as suggested by
Eurocode 7 for the ultimate limit states �Calgaro 1996�. This
foundation breadth is called hereafter “probabilistic foundation
breadth.”

Fig. 14 presents the probabilistic foundation breadth for differ-
ent values of the coefficients of variation of the shear strength
parameters and their coefficient of correlation. This figure also
presents the deterministic breadth corresponding to a safety factor

Fig. 10. Limit state surface and FORM approximation for nonnor-
mal correlated variables, for COVc=20%, COV�=10%

Fig. 11. Limit state surface and FORM approximation for nonnormal
correlated variables and large coefficients of variation COVc=50%,
COV�=20%



of 3. The probabilistic foundation breadth decreases with the in-
crease of the negative correlation between the shear strength pa-
rameters and the decrease of their coefficients of variation. It can
become smaller than the deterministic breadth for the common
values of the soil variability �i.e., COV�=10%, COVc=20%,
−0.7��c,��−0.3�. For high values of the coefficients of varia-
tion and small correlation coefficient, the design breadth for nor-
mal variables is higher than that of nonnormal variables. This
means that, for the case in hand, assuming normal distributions
for the random variables is more conservative than assuming non-
normal distributions. As a conclusion, the deterministic footing
breadth may be higher or lower than the reliability-based footing
width, depending on the uncertainties.

Contrary to Eurocode 7, which prescribes constant values of
the partial safety factors Fc and F�, the present RBD has the
advantage of providing different values of these factors depending
on the soil variability. These factors are the optimal ones and are
determined rigorously by a maximization of the failure probabil-
ity for a given soil variability. Hence, a reliability-based design
has the merit of explicitly reflecting the correlation structure, the

Fig. 12. Comparison of the CDFs of the ultimate load for normal,
nonnormal, correlated, and uncorrelated variables

Fig. 13. Comparison of CDFs of the ultimate load for different values
of the coefficients of variation
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standard deviations, and the probability distributions of the
underlying random variables, and of automatically seeking the
design point without relying on prescribed values of partial safety
factors.

Mechanism M2

The number of rigid blocks used in the M2 mechanism �Fig. 3� is
equal to 12 since further increase in the number of blocks im-
proves the optimal solution by less than 0.5%. For the seismic
coefficient, an exponential distribution �Exp D� and an extreme
value type II distribution �EVD� are used �Haldar and Mahadevan
2000�. The mean value of the horizontal seismic coefficient is
assumed to be 0.15. The angle of internal friction is considered to
follow the beta distribution.

It was shown for the M1 mechanism �Fig. 13� that the failure
probability of a vertically loaded footing is more sensitive to a
variation of the angle of internal friction than the cohesion. For
the seismically loaded footing in hand, Fig. 15 presents the effect
of the randomness of the soil cohesion on the reliability index for
both exponential and extreme value distributions of the seismic
coefficient. In this figure, the cohesion c is assumed to be either a
lognormally distributed random variable with the commonly used

Fig. 14. Comparison between probabilistic and deterministic design

Fig. 15. Effect of the variability of c on the reliability index



coefficient of variation �20%� or as a deterministic parameter with
value equal to the mean value �i.e., 20 kPa�. One may note that
whether c is random or deterministic has only a minor effect on
the value of the reliability index.

Reliability Index, Failure Probability, and Sensitivity Factors
Tables 2 and 3 present the reliability results �i.e., Hasofer-Lind
reliability index, the corresponding design point, the omission
sensitivity factors, and the failure probability� for different values
of the applied load PS varying from small values up to the deter-
ministic ultimate load defined earlier for both exponential and
extreme value distributions on Kh. The reliability index decreases
with the increase of the vertical applied load PS. The exponential
distribution on Kh gives more conservative results than the ex-
treme value distribution on Kh. The values of the omission sensi-
tivity factors suggest that, when the applied load is relatively
small compared to the deterministic ultimate load, whether � is
random or deterministic has only a minor effect on the reliability
index since 
����	1 for both types of the probability distribu-
tions on Kh. On the other hand, the randomness of the seismic
coefficient has a significant effect on the reliability index. Hence,
for small values of the applied load, one can neglect the uncer-
tainty in �. In contrast, for higher values of the applied load, the
uncertainties of both the angle of internal friction and the seismic
coefficient should be considered in the reliability analysis.

Probability Distribution of the Punching Safety Factor
Fig. 16 shows the CDF of the punching safety factor obtained
from FORM approximation for the exponential distribution and
for different values of the coefficient of variation of the extreme
value distribution. It can be seen that the choice of the probability
distribution on Kh significantly affects the probability distribution
of the safety factor. The dispersion of F is significantly larger
when an exponential distribution is assumed for the seismic
coefficient.

Table 2. Probabilistic Results When Kh Follows the Exponential
Distribution

PS

kN/m
�*

�deg� K
h
* �HL 
���� 
��Kh

� Pf�%�

200 28.58 0.70 2.44 1.02 2.03 3.87

450 28.77 0.45 1.71 1.03 2.62 6.52

700 28.84 0.32 1.25 1.06 1.95 11.45

1,000 29.01 0.22 0.80 1.09 1.34 21.41

1,300 29.40 0.15 0.37 1.20 0.47 35.33

1,600 30.01 0.10 0.00 — — 50.00

Table 3. Probabilistic Results When Kh Follows the Extreme Value
Distribution and COVKh=40%

PS

kN/m
�*

�deg� K
h
* �HL 
���� 
��Kh

� Pf�%�

200 28.86 0.71 3.22 1.02 1.54 0.06

450 28.08 0.44 2.65 1.02 1.69 0.41

700 26.90 0.27 2.05 1.10 1.18 2.00

1,000 27.08 0.16 1.11 1.45 0.97 13.25

1,300 29.15 0.14 0.31 2.18 0.54 37.96

1,450 30.00 0.13 0.00 — — 50.00
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Probabilistic Design
For the design of a vertically loaded footing situated in seismic
area, a reasonable target failure probability of 1% is used. Fig. 17
presents the probabilistic foundation breadth for the extreme
value distribution on Kh and for different values of the coefficient
of variation of Kh. The deterministic breadth corresponding to a
safety factor of 3 is also shown. The applied load is 700 kN /m.
The probabilistic foundation breadth increases with the increase
of the coefficient of variation of Kh. It can be greater than
the deterministic breadth for large values of the coefficient of
variation.

Conclusion

A reliability-based analysis and design of a shallow strip founda-
tion subjected to a vertical and a pseudostatic horizontal seismic
loading was performed. Only the punching failure mode of the
ultimate limit state was studied. Two rigorous deterministic mod-
els based on limit analysis failure mechanisms were used.

For the vertically loaded footing, the reliability index calcu-
lated based on the critical probabilistic surface is more critical
than that determined using the critical deterministic surface. The
reliability index decreases with the increase of the applied load
PS. The assumption of uncorrelated shear strength parameters is

Fig. 16. CDF of the punching safety factor for PS=450 kN /m

Fig. 17. Comparison between deterministic and probabilistic design



conservative in comparison to that of negatively correlated pa-
rameters. The reliability index is much more sensitive to � than to
c, especially for the case of nonnormal variables. The greater the
scatter in �, the higher the failure probability. This means that the
accurate determination of the uncertainties of the angle of internal
friction � is important in obtaining reliable probabilistic results.
FORM approximation is an acceptable approach for estimating
the failure probability for the commonly used values of the soil
variability. When no correlation between shear strength param-
eters is considered, a more spread out CDF of the ultimate load
was obtained. For the case in hand, the chosen probability distri-
bution does not significantly affect the values of the failure prob-
ability. The probabilistically-designed foundation breadth
decreases with the increase of the negative correlation between
the shear strength parameters and the decrease of their coeffi-
cients of variation. Contrary to Eurocode 7, which prescribes
constant values of the partial safety factors Fc and F�, a
reliability-based design has the advantage of providing different
values of these factors depending on the soil variability and cor-
relation structure. These factors are by-products of a reliability-
based design and reflect parametric sensitivities from case to case
in a way rigid partial safety factors cannot.

For the seismically loaded footing, the extreme value distribu-
tion was used to model the uncertainties of Kh. For values of the
vertical load much below the deterministic ultimate load, one can
neglect the uncertainty in �. In contrast, for higher values of the
vertical load, the uncertainties of both � and Kh should be con-
sidered in the reliability analysis.
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Appendix I

The expressions of the functions f i �i=1, . . . ,6� are given as
follows:

f1 =
tan �

2

f2 =
cos�� − ��

2 cos2 � sin��1 − 2��

· 

i=1

n � sin �i sin �i

sin��i + �i�
sin��i − � − 


j=1

i−1

� j − �
· �

j=1

i−1
sin2 � j sin�� j + � j − 2��

sin2�� j + � j�sin�� j+1 − 2���
f3 =

cos�� − ��
cos � sin��1 − 2��

sin �n

sin��n + �n�

· sin��n − � − 

j=1

n−1

� j − �
· �

n−1
sin � j sin�� j + � j − 2��

sin�� j + � j�sin�� j+1 − 2��
j=1
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f4 =
cos���cos��1 − � − ��
2 cos � sin��1 − 2��

f5 =
cos�� − ��cos���

2 cos � sin��1 − 2��

· 

i=1

n � sin �i

sin��i + �i�
�
j=1

i−1
sin � j sin�� j + � j − 2��

sin�� j + � j�sin�� j+1 − 2���
f6 =

cos�� − ��cos���
2 cos � sin��1 − 2��

· 

i=2

n � sin��i−1 − �i + �i−1�
sin��i − 2��

· �
j=1

i−1
sin � j

sin�� j + � j�

· �
j=1

i−2
sin�� j + � j − 2��
sin�� j+1 − 2�� �

Appendix II

The expressions of the functions gi �i=1, . . . ,6� are given as
follows:

g1 =
sin2 �1

sin2��1 + �1�


i=1

n � sin �i sin��i + �i�
sin �i

sin��i − � − 

j=1

i−1

� j
��

j=2

i
sin2 � j

sin2�� j + � j�
�
j=1

i−1
sin�� j + � j − 2��
sin�� j+1 − 2�� �

g2 =
sin2 �1

sin2��1 + �1�


i=1

n � sin �i sin��i + �i�
sin �i

cos��i − � − 

j=1

i−1

� j
��

j=2

i
sin2 � j

sin2�� j + � j�
�
j=1

i−1
sin�� j + � j − 2��
sin�� j+1 − 2�� �

g3 =
sin �1

sin��1 + �1�
sin��n − � − 


j=1

n−1

� j
��

j=2

n
sin � j

sin�� j + � j�
�
j=1

n−1
sin�� j + � j − 2��
sin�� j+1 − 2��

g4 =
sin �1

sin��1 + �1�
cos��n − � − 


j=1

n−1

� j
��

j=2

n
sin � j

sin�� j + � j�
�
j=1

n−1
sin�� j + � j − 2��
sin�� j+1 − 2��

g5 =
sin �1 cos �

sin��1 + �1�
i=1

n � sin �i

sin �i
�
j=2

i
sin � j

sin�� j + � j�
�
j=1

i−1
sin�� j + � j − 2��
sin�� j+1 − 2�� �

g6 =
sin �1 cos �

sin��1 + �1�


i=1

n−1 � sin��i − �i+1 + �i�
sin��i+1 − 2��

��
j=2

i
sin � j

sin�� j + � j�
�
j=1

i−1
sin�� j + � j − 2��
sin�� j+1 − 2�� �
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