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Recent Advances and New Challenges in the Use of the Proper
Generalized Decomposition for Solving Multidimensional Models

Francisco Chinesta · Amine Ammar · Elías Cueto

Abstract This paper revisits a powerful discretization tech-
nique, the Proper Generalized Decomposition—PGD, illus-
trating its ability for solving highly multidimensional mod-
els. This technique operates by constructing a separated rep-
resentation of the solution, such that the solution complexity
scales linearly with the dimension of the space in which the
model is defined, instead the exponentially-growing com-
plexity characteristic of mesh based discretization strategies.
The PGD makes possible the efficient solution of models
defined in multidimensional spaces, as the ones encoun-
tered in quantum chemistry, kinetic theory description of
complex fluids, genetics (chemical master equation), finan-
cial mathematics, . . . but also those, classically defined in
the standard space and time, to which we can add new
extra-coordinates (parametric models, . . . ) opening numer-
ous possibilities (optimization, inverse identification, real
time simulations, . . . ).
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1 Introduction

Many models encountered in science and engineering are
defined in multidimensional spaces, as the ones involved in
quantum chemistry, kinetic theory descriptions of materi-
als (including complex fluids), the chemical master equa-
tion governing many biological processes (e.g. cell signal-
ing), models of financial mathematics (e.g. option pricing),
among many others. These models exhibit the redoubtable
curse of dimensionality when usual mesh-based discretiza-
tion techniques are applied. Other times, standard mod-
els can become multidimensional if some of the parame-
ters that they involve are considered as new coordinates.
This possibility is specially attractive when these coeffi-
cients are not well known, they have a stochastic nature, or
when one is interested in optimization or inverse identifica-
tion.

The difficulty related to the solution of multidimensional
models is quite obvious and it needs the proposal of new ap-
propriate strategies able to circumvent the curse of dimen-
sionality. One possibility lies in the use of sparse grids [12].
However, as argued in [1], the use of sparse grid is restricted
to models with moderate multidimensionality (up to 20).
Another technique able to circumvent, or at least alleviate,
the curse of dimensionality consists of using a separated rep-
resentation of the unknown field (see [10, 44] for some nu-
merical elements on this topic). Basically, the separated rep-
resentation of a generic function u(x1, . . . ,xD) (also known
as finite sum decomposition) writes:

u(x1, . . . ,xD) ≈
i=N∑

i=1

F 1
i (x1) × · · · × FD

i (xD) (1)

Remark 1 The coordinates xi , i = 1, . . . ,D, are defined
in spaces of moderate dimension, i.e. xi ∈ Ωi ⊂ R

di ,
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di ≤ 3. Thus, the dimension of the model results
∑i=D

i=1 di .
Eventually, one of these coordinates could be the time
t ∈ I ⊂ R

+.

This kind of representation is not new, it was widely
employed in the last decades in the framework of quan-
tum chemistry. In particular the Hartree-Fock (that involves
a single product of functions) and post-Hartree-Fock ap-
proaches (as the MCSCF that involves a finite number of
sums) made use of a separated representation of the wave-
function [13, 19].

We proposed recently a technique able to construct, in
a way completely transparent for the user, the separated
representation of the unknown field involved in a multi-
dimensional partial differential equation. This technique,
originally described and applied to multi-bead-spring FENE
models of polymeric liquids in [3], was extended to transient
models of such complex fluids in [4]. More complex mod-
els (involving different couplings and non-linearities) based
on the reptation theory of polymeric liquids were analyzed
in [34].

In the current life when one is buying a car there are many
choices concerning the color, the power, . . . . In some cases
the number of possible variants reaches astronomical values:
1050 in the case of a highly appreciated luxury car. Thus,
the construction of a high dimensional matrix representing
all the possible variants is simply impossible (we must re-
call that the presumed number of elementary particles in our
universe is of around 1080!). Obviously, the only possibility
of following the sales of such a car is using a sparse storage
structure. This is well known and widely used in practice.
However, our present interest is not only in storing infor-
mation, but in solving models defined in multidimensional
spaces.

When the solution of highly multidimensional models
explores the whole space there is no possibility to follow or
represent such a system. This is a well known phenomenon
in quantum systems. However, one could track the evolution
of such a system in a time interval of moderate length by
using a “sparse” representation. In our knowledge two pos-
sibilities exist, the first one consists in using Monte Carlo
simulations within a stochastic framework. The second one,
within a purely deterministic framework, lies in using sep-
arated representations like the one expressed by (1) where
the number of sums increases as the solution explores the
more and more larger domains. On the other hand, if the so-
lution only explores a small enough subdomain of the whole
domain the use of sparse grids or separated representations
are some appealing candidates for discretizing such mod-
els.

Coming back to models defined in spaces of moder-
ate dimension (d × D, d = 1,2,3) but whose solutions

evolve in large time intervals, if one uses standard incre-
mental time-discretizations, in the general case (models in-
volving time-dependent parameters, non-linear models, . . .),
one must solve at least a linear system at each time step.
When the time step becomes too small as a consequence
of stability requirements, and the simulation time interval is
large enough, standard incremental simulation becomes in-
efficient. To illustrate this scenario, one could imagine the
simple reaction-diffusion model that describes the degrada-
tion of plastic materials, where the characteristic time of the
chemical reaction involved in the material degradation is in
the order of some microseconds and the one related to the
diffusion of chemical substances (that also represents the
material degradation characteristic time itself) is of the or-
der of years. In this case standard incremental techniques
must be replaced by other more efficient strategies.

One possibility consists again in performing a separated
representation of the unknown field, that in the present case
reduces to:

u(x, t) ≈
i=N∑

i=1

Xi(x) · Ti(t) (2)

that allows, as we describe later, to non-incremental time in-
tegration strategies, which can reduce spectacularly the CPU
time.

This space-time separated representation is not a new
proposal. In fact such decompositions were proposed many
year ago by Pierre Ladeveze as an ingredient of the pow-
erful non-linear-non-incremental LATIN solver that he pro-
posed in the 80s. During the last twenty years many works
were successfully accomplished by the Ladeveze’s group.
The interested reader can refer to [29, 30, 32] and the ref-
erences therein. In the radial approximation approach (the
name given in the pioneer works of Ladeveze) functions de-
pending on space and the ones depending on time were a
priori unknown, and they were computed by an appropriate
minimization technique.

In what follows we are reporting the recent advances in
the solution of multidimensional models by applying the
Proper Generalized Decomposition (PGD), that is, a sepa-
rated representation of the unknown fields.

1.1 Motivating the Use of Separated Representations

From a historical point of view, separated representations
were extensively used. The analytical solution of PDEs (el-
liptic, parabolic and hyperbolic) that the reader can find in
any book devoted to the solution of PDEs starts assum-
ing a separated representation: the method of separation of
variables. After some manipulations, simple but sometimes
quite technical, the final solution could be some times found
in the form expressed by (1).
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Another well established and widely employed tech-
nique allowing to define a separated representation of a
given space-time function is based on the application of
a proper orthogonal decomposition. We are illustrating the
main ideas related to this technique.

Let u(x, t) be the solution of a certain transient model
(in what follows x ∈ Ω ⊂ R

d , d = 1,2,3, and t ∈ I ⊂ R
+).

We are also assuming that this field is known in a discrete
manner, that is, at some points xi (the nodes of a mesh or a
grid) and at certain times tp = p×Δt , where i ∈ [1, . . . ,Nn]
and p ∈ [1, . . . ,P ].

Now, we introduce the notation u
p
i ≡ u(xi , tp) and con-

struct the matrix Q that contains the snapshots:

Q =

⎛

⎜⎜⎜⎜⎜⎜⎝

u1
1 u2

1 · · · uP
1

u1
2 u2

2 · · · uP
2

...
...

. . .
...

u1
Nn

u2
Nn

· · · uP
Nn

⎞

⎟⎟⎟⎟⎟⎟⎠
(3)

The proper orthogonal decomposition (POD) of this dis-
crete field consists in solving the eigenvalue problem:

(
QQT

)
φ = λφ (4)

that results in Nn couples eigenvalue-eigenvector (λi,φi ),
i = 1, . . . ,Nn.

When the field evolves smoothly, the magnitude of the
eigenvalues decreases very fast, fact that reveals that the
evolution of the field can be approximated from a reduced
number of modes (eigenvectors). Thus, if we define a cut-
off value ε (ε = 10−8 × λ1 in practice, λ1 being the highest
eigenvalue) only a reduced number of modes are retained.
Let R (R � Nn) be the number of modes retained, i.e.
λi ≥ 10−8 × λ1, i = 1, . . . ,R and λi < 10−8 × λ1,∀i > R

(the eigenvalues are assumed ordered). Thus, one could
write:

u(x, t) ≈
i=R∑

i=1

φi(x) · Ti(t) ≡
i=R∑

i=1

Xi(x) · Ti(t) (5)

where for the sake of clarity the space modes φi(x) will be,
from now on, denoted as Xi(x). Equation (5) represents a
natural separated representation (also known as finite sums
decomposition).

These modes could be now used to solve other “simi-
lar” problems, that is, models involving slight changes in
the boundary conditions, model parameters, . . . [33, 39, 46].
Other possibility is to compute the reduced basis from the
standard transient solution within a short time interval (with
respect to the whole time interval in which the model is de-
fined) and then solve the remaining part of the time interval

by employing the reduced basis. Obviously, both strategies
induce the introduction of an error whose evaluation, control
and reduction is a challenging issue.

One possibility to construct an adaptive reduced approxi-
mation basis, that should be the best reduced approximation
basis for the treated problem, consists in alternating a reduc-
tion step (based on the application of the proper orthogo-
nal decomposition) and an enrichment stage to improve the
quality of the reduced approximation basis in order to cap-
ture all the solution features. We proposed recently an en-
richment technique based on the use of some Krylov’s sub-
spaces generated by the equation residual. This technique
known as “a priori” model reduction was originally pro-
posed in [47], widely described in [48] and successfully
applied for solving complex fluid flows within the kinetic
theory framework [2, 17] and for speeding up thermome-
chanical simulations [18]. However, some difficulties were
noticed in the application of this strategy: (i) the enrichment
based on the use of the Krylov’s subspaces is far to be opti-
mal in a variety of models (e.g. the wave equation); (ii) the
incremental nature of the algorithm; . . . .

From the previous analysis we can conclude: (i) the tran-
sient solution of numerous models can be expressed using
a very reduced number of products each one involving a
function of time and a function of space; and (ii) the func-
tions involved in these functional products should be deter-
mined simultaneously by applying an appropriate algorithm
to guarantee robustness and optimality.

In what follows we are illustrating the simplest strategy
able to compute these separated functional couples.

2 Illustrating the Proper Generalized Decomposition

In this section we are illustrating the discretization of par-
tial differential equations using a separated representation
(radial approximation in the Ladeveze’s terminology) of the
unknown field.

Let us consider the advection-diffusion equation

∂u

∂t
− aΔu + v · ∇u = f (x, t) in Ω × (0, Tmax] (6)

with the following initial and boundary conditions

{
u(x,0) = u0, x ∈ Ω

u(x, t) = ug, (x, t) ∈ ∂Ω × (0, Tmax]
(7)

where a is the diffusion coefficient and v the velocity field,
Ω ⊂ R

d,1 ≤ d ≤ 3, Tmax > 0. The aim of the separated
representation method is to compute N couples of functions
{(Xi, Ti)}i=1,...,N such that {Xi}i=1,...,N and {Ti}i=1,...,N are
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defined respectively in Ω and [0, Tmax] and the solution u

of this problem can be written in the separate form

u(x, t) ≈
N∑

i=1

Ti(t) · Xi(x) (8)

The weak form of problem (6) yields:
Find u(x, t) verifying the boundary conditions (7) such

that

∫ Tmax

0

∫

Ω

u�

(
∂u

∂t
− aΔu + v · ∇u − f (x, t)

)
dxdt = 0

(9)

for all the functions u�(x, t) in an appropriate functional
space.

We compute now the functions involved in the
sum (8). We suppose that the set of functional couples
{(Xi, Ti)}i=1,...,n with 0 ≤ n < N are already known (they
have been previously computed) and that at the present it-
eration we search the enrichment couple (R(t), S(x)) by
applying an alternating directions fixed point algorithm that
after convergence will constitute the next functional couple
(Xn+1, Tn+1). Hence, at the present iteration, n, we assume
the separated representation

u(x, t) ≈
n∑

i=1

Ti(t) · Xi(x) + R(t) · S(x) (10)

The weighting function u� is then assumed as

u� = S · R� + R · S� (11)

Introducing (10) and (11) into (9) it results
∫ Tmax

0

∫

Ω

(S · R� + R · S�)

·
(

S · ∂R

∂t
− aΔS · R + (v · ∇S) · R

)
dxdt

=
∫ Tmax

0

∫

Ω

(S · R� + R · S�) ·
(

f (x, t) −
n∑

i=1

Xi · ∂Ti

∂t

+ a

n∑

i=1

ΔXi · Ti −
n∑

i=1

(v · ∇Xi) · Ti

)
dxdt (12)

We apply an alternating directions fixed point algorithm
to compute the couple of functions (R,S):

– Computing the function S(x).
First, we suppose that R is known, implying that R� van-
ishes in (11). Thus, (12) writes
∫

Ω

S� · (αtS − aβtΔS + βt v · ∇S)dx

=
∫

Ω

S� ·
(

γt (x) −
n∑

i=1

αi
t Xi + a

n∑

i=1

βi
t ΔXi

−
n∑

i=1

βi
t v · ∇Xi

)
dx (13)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αt =
∫ Tmax

0
R(t) · ∂R

∂t
(t) dt

αi
t =

∫ Tmax

0
R(t) · ∂Ti

∂t
(t) dt

βt =
∫ Tmax

0
R2(t) dt

βi
t =

∫ Tmax

0
R(t) · Ti(t) dt

γt (x) =
∫ Tmax

0
R(t) · f (x, t) dt; ∀x ∈ Ω

(14)

The weak formulation (13) is satisfied for all S�, there-
fore we could come back to the associated strong formu-
lation

αtS − aβtΔS + βt v · ∇S

= γt −
n∑

i=1

αi
t Xi + a

n∑

i=1

βi
t ΔXi

−
n∑

i=1

βi
t v · ∇Xi (15)

that one could solve by using any appropriate discretiza-
tion technique.

– Computing the function R(t).
From the function S(x) just computed, we search R(t). In
this case S� vanishes in (11) and (12) reduces to

∫ Tmax

0

∫

Ω

(S · R�)

·
(

S · ∂R

∂t
− aΔS · R + (v · ∇S) · R

)
dxdt

=
∫ Tmax

0

∫

Ω

(S · R�) ·
(

f (x, t) −
n∑

i=1

Xi · ∂Ti

∂t

+ a

n∑

i=1

ΔXi · Ti −
n∑

i=1

(v · ∇Xi) · Ti

)
dxdt (16)

where all the spatial functions can be integrated in Ω .
Thus, by using the following notations
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αx =
∫

Ω

S(x) · ΔS(x) dx

αi
x =

∫

Ω

S(x) · ΔXi(x) dx

βx =
∫

Ω

S2(x) dx

βi
x =

∫

Ω

S(x) · Xi(x) dx

λx =
∫

Ω

S(x) · (v · ∇S(x)) dx

λi
x =

∫

Ω

S(x) · (v · ∇Xi(x)) dx,

γx(t) =
∫

Ω

S(x) · f (x, t) dx; ∀t

(17)

(16) reads

∫ Tmax

0
R� ·

(
βx

∂R

∂t
+ (λx − aαx)R − γx(t)

+
n∑

i=1

βi
x

∂Ti

∂t
+

n∑

i=1

(λi
x − aαi

x)Ti

)
dt = 0 (18)

As (18) holds for all S�, we could come back to the
strong formulation

βx

∂R

∂t
= (a αx − λx)R + γx(t) −

n∑

i=1

βi
x

∂Ti

∂t

+
n∑

i=1

(a αi
x − λi

x)Ti (19)

which is a first order ordinary differential equation that
can be solved easily (even for extremely small time steps)
from its initial condition.

These two steps must be repeated until convergence, that
is, until verifying that both functions reach a fixed point. If
we denote by R(q)(t) and R(q−1)(t) the computed functions
R(t) at the present and previous iteration respectively, and
the same for the space functions: S(q)(x) and S(q−1)(x), the
stoping criterion used in this work writes:

e =
∥∥∥R(q)(t) · S(q)(x) − R(q−1)(t) · S(q−1)(x)

∥∥∥
2
< 10−8

(20)

where 10−8 represents the square root of the machine preci-
sion.

We denote by Qn+1 the number of iterations for solving
this non-linear problem to determine the enrichment couple
of functions Xn+1(x) and Tn+1(t). After reaching conver-
gence we write Xn+1(x) = S(x) and Tn+1(t) = R(t). The

enrichment procedure must continue until reaching the con-
vergence of the enrichment global procedure at iteration
N , when the separated representation of the unknown field
writes:

u(x, t) ≈
N∑

i=1

Xi(x) · Ti(t) (21)

The more usual global stopping criteria are:

– For models whose exact solution uref is known:

E = ‖u − uref ‖2

‖uref ‖2
< ε (22)

– For models whose exact solution is not known:

E = ‖ ∂u
∂t

− aΔu + v · ∇u − f (x, t)‖2

‖f (x, t)‖2
< ε (23)

with ε a small enough parameter (ε = 10−8 in our simula-
tions and the L2-norm applies in the whole space-time do-
main).

Discussion on the Space-Time Separated Representations
The just proposed strategy needs for the solution of about
N × Q space and time problems (with Q = (Q1 + · · · +
QN)/N and N the number of functional couples needed
to approximate, up to the desired precision, the searched
solution). Thus, one must compute N × Q d-D problems,
d = 1,2,3, whose complexity depends on the spatial mesh
considered, and also N × Q 1D problems (defined in the
time interval I ) that only need the solution of an ordi-
nary differential equation from its initial condition. Obvi-
ously, even for extremely small time steps, the solution of
these transient 1D problems does not introduce any diffi-
culty.

If instead the separated representation just discussed, one
performs a standard incremental solution, P dD models,
d = 1,2,3, must be solved (P being the number of time
steps, i.e. P = Tmax/Δt , where the time step Δt must be
chosen for verifying the stability conditions).

In all the analyzed cases N and Q are of the order of tens
that implies the solution of about hundred three-dimensional
problems defined in Ω , instead the thousands (or even mil-
lions) needed for solving those models using standard incre-
mental solvers.

A first comparison between both kind of approaches (the
one based on the separated representation and the one based
on standard incremental strategies) was presented in [6].
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3 Recent Advances

3.1 Some Advances in Kinetic Theory, Quantum
Chemistry and Cell Signaling

3.1.1 Solving the Fokker-Planck Equation

The first works focusing in the solution of multidimensional
models by applying the PGD described in the previous sec-
tion concerned the modeling of polymeric liquids. These flu-
ids are composed of an unimaginable number of molecules,
that are modeled as a series of dumbbells (on which the dif-
ferent forces arising from the flow drag, interactions, sol-
vent molecules bombardment, . . . apply) connected by lin-
ear or non-linear springs that represent the stiffness between
each two consecutive dumbbells. Let q1, . . . ,qD be the vec-
tors defining the orientation and extension of each one of
these springs. A kinetic theory approach of the molecular
nature of such fluids consists of introducing a distribution
function Ψ (x, t,q1, . . . ,qD) that represents the fraction of
molecules that at position x and time t have a conformation
given by vectors q1, . . . ,qD . As x ∈ Ωx ⊂ R

3, t ∈ I ≡ R
+

and qi ∈ Ωq ⊂ R
3, ∀i ∈ [1, . . . ,D], the distribution function

is then defined in a space of dimension 3 + 1 + 3 × D, i.e.
Ψ : Ωx × Ωt × (Ωq)D → R

+.

Remark 2 In the case of linear springs Ωq = R
3, for non-

linear springs of finite extension (let b be the maximum
spring extension) Ωq reduces to the ball of radius b, B(0, b).
Finally, in the case of rigid rods of unit length, Ωq reduces
to the surface of the unit sphere S(0,1).

The evolution of the molecular configuration q̇i , ∀i, is
due to both advective and diffusive terms, the first ones aris-
ing from the presence of a prescribed flow with non-zero
gradient of velocities. The system should verify the momen-
tum balance at any time, i.e. the equilibrium of forces in
absence of inertia terms. For the particular expressions of q̇i

the interested reader can refer to [11] that constitutes a huge
catalogue of physical systems.

The balance equation for the distribution function (also
known as the Fokker-Planck equation) writes:

DΨ

Dt
= −

i=D∑

i=1

∂

∂qi

(q̇i · Ψ ) (24)

where D
Dt

denotes the material derivative.
The solution of this multidimensional equation by apply-

ing the PGD assumes a separated representation of the dis-
tribution function

Ψ (x, t,q1, . . . ,qD) ≈
i=N∑

i=1

Xi(x) · Ti(t) ·
(

j=D∏

j=1

Q
j
i (qj )

)

(25)

The case of steady-state multi-bead-finite-extension-
spring models of polymeric liquids in homogeneous flows
was addressed in [3]. Later, we considered the transient case,
in which the time was introduced as an additional coordinate
being careful on its upwinding discretization [4]. The case
of short fiber suspensions in which the beads connector is in-
extensible was addressed in [40]. All these models are linear
even when the spring behavior is strongly non-linear (the re-
sulting Fokker-Planck equations (24) are linear with respect
to the unknown function Ψ ).

In more complex systems like liquid crystalline poly-
mers or entangled polymeric systems involving double rep-
tation and convective constraint release, as the one proposed
in [23], the resulting models are no more linear and a lin-
earization procedure is compulsory. In [34] we considered
the simplest one, a fixed point strategy for solving some
models associated with entangled polymeric systems.

Finally the case of non-homogeneous flows was deeply
analyzed in [40] and [35]. The main issue in treating non-
homogenous flows using the fully separated representa-
tion (25) including physical space, time and conformation
spaces lies in the convective stabilization issues, because
the stabilization in the conformation space depends on the
gradient of velocities that is defined in the physical space.
Thus, the adequate separated representation of the stabiliza-
tion term remains an open issue.

In [17] we addressed the difficulty related to the re-
duced modeling of systems composed of moving particles
within the framework of Brownian dynamics simulations.
We proved that classical model reduction techniques based
on the use of the proper orthogonal decomposition fails, and
that POD or PGD based discretizations perfectly run as soon
as the models are rewritten as Brownian configuration fields.
Thus, the issue related to updated Lagrangian simulations
(the reference configuration is changing in time)—of capital
importance in material forming simulations, finite transfor-
mations thermomechanic or molecular dynamics—moved
to the first plane. We come back to this challenging issue
later.

3.1.2 Solving the Schrödinger Equation

After treating kinetic theory models we were interested in
models arising from quantum chemistry. These models are
redoubtable because the equations that govern the electronic
distribution, the Schrödinger equation or its fully relativis-
tic counterpart—the Dirac’s equation—are defined in spaces
whose dimensionality scales with the number of elemen-
tary particles involved in the quantum system. The first one,
within the Born-Oppenheimer hypothesis (the wavefunction
depends parametrically on the nuclei positions), writes:

i�
∂Ψ

∂t
= − �

2

2me

e=De∑

e=1

∇2
e Ψ +

e=De−1∑

e=1

e′=De∑

e′=e+1

Vee′Ψ
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+
e=De∑

e=1

n=Dn∑

n=1

VenΨ (26)

where i = √−1, � is the Planck’s constant divided by
2π , me is the electron mass, De and Dn are the num-
ber of electrons and nuclei in the system respectively,
Ψ (x1, . . . ,xDe, t;X1, . . . ,XDn) is the wavefunction, being
xe the space in which the electron e lives (xe ∈ R

3), and Xn

the position of nuclei n. The differential operator ∇e refers
to the gradient with respect to the coordinates xe. Finally
Vee′ and Ven represent the electron-electron and electron-
nuclei Coulomb potentials respectively.

The Schrödinger and Dirac equations are defined in a
space that scales with the number of elementary parti-
cles involved in the system, each one living in R

3. Thus,
when one considers few particles D, the time-independent
Schrödinger equation is defined in a space of dimension
3 × D. However, we have proven in [19] that in many sys-
tems the real issue is not the model multi-dimensionality,
that could be circumvented by using the PGD, but the
Pauli’s exclusion principle that enforces the anti-symmetry
of the wavefunction. For enforcing this constraint, the use
of Slater’s determinants is the simplest alternative, but the
number of terms that these determinants involve explodes
as the number of concerned particles grows. The interested
reader can refer to [5, 19] for more details concerning the
treatment of quantum systems by using the PGD.

3.1.3 Solving the Chemical Master Equation

We also considered recently in [7] the treatment of the chem-
ical master equation, modeling, among many other physics,
the cell signaling. In chemical systems involving some (or
several) species each one composed by a few number of in-
dividuals, the state of the system is given by a probability
(the deterministic approach fails when the number of indi-
viduals is too reduced for introducing the concept of chem-
ical concentration): P(z, t |z0, t0) where z = (#s1, . . . ,#sD)

and #si refers to the number of individuals of each species
si . Obviously #si is changing in time because the different
chemical reactions that are producing or destroying indi-
viduals in the population si . The chemical master equation
writes:

∂P (z, t |z0, t0)

∂t
=

∑

j

(
aj (z − vj )P (z − vj , t |z0, t0)

− aj (z)P (z, t |z0, t0)
)

(27)

where aj are the propensities (the chemical reaction j oper-
ates growing the population z from z − vj : z − vj → z, and
simultaneously population z decreases originating individu-
als of other populations).

Despite the fact that this equation does not imply partial
derivatives other that the temporal one, we assumed a sepa-
rated representation

P(z, t) ≈
i=N∑

i=1

Ti(t) ·
⎛

⎝
j=D∏

j=1

S
j
i (#sj)

⎞

⎠ (28)

and we proceed in a standard manner as described in [7].

3.2 Further Considerations on Non-linear Models

For illustrating the treatment of non linear models we are
treating the following simple nonlinear parabolic problem,
that we considered in [6]
⎧
⎪⎨

⎪⎩

∂u
∂t

− aΔu = u2 + f (x, t) in Ω × (0, Tmax]
u(x, t) = 0 on ∂Ω × (0, Tmax]
u(x,0) = 0 in Ω

(29)

where Ω ⊂ R
d, d ≥ 1, Tmax > 0 and a > 0 is the diffusion

coefficient. To build-up the approximated solution of (29)
by using a separated representation, we propose two alter-
natives

– An incremental linearization
– A Newton linearization

which we describe in sections below.

3.2.1 Incremental Linearization

We look for writing the solution of problem (29) in the sep-
arated form

u(x, t) ≈
N∑

i=1

Xi(x) · Ti(t)

We suppose that at iteration n, with n < N , the n first
modes (Xi, Ti), i = 1, . . . , n, are already known and that at
present iteration we search the new enrichment functional
product R(t) · S(x) such that the updated approximation
writes

u(x, t) ≈
n∑

i=1

Xi(x) · Ti(t) + S(x) · R(t) (30)

The weak form of problem (29) writes

∫ Tmax

0

∫

Ω

u�

(
∂u

∂t
− aΔu − u2 − f (x, t)

)
dxdt = 0; ∀u�

(31)

The alternating directions scheme proceed by calculating
S(x) from the temporal function R(t) just computed, and
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then, updating R(t) from the just computed S(x), as we de-
scribed in Sect. 2. The iteration procedure should continue
until reaching convergence. Here, the novelty is the treat-
ment of the non-linear term u2. The simplest possibility con-
sists in computing this term at the previous iteration, that is,
assuming at the present iteration the following approxima-
tion of the non-linear term

u2 ≈
(

n∑

i=1

Xi(x) · Ti(t)

)2

(32)

Thus, we can compute S(x) from

∫

Ω

S� ·
(

αtS − aβtΔS +
n∑

i=1

αi
t Xi

− a

n∑

i=1

βi
t ΔXi − Φ(x) − γt (x)

)
dx = 0 (33)

where the notation introduced in Sect. 2 is used again, and
where Φ(x) and Γ (x) are given by

Φ(x) =
∫ Tmax

0
R(t) ·

(
n∑

i=1

Xi(x) · Ti(t)

)2

dt (34)

The associated strong form writes

αtS − aβtΔS = −
n∑

i=1

αi
t Xi + a

n∑

i=1

βi
t ΔXi + Φ(x) + γt (x)

(35)

From this solution S(x), we can update the temporal
function R(t), by solving its associated strong form

βx

∂R

∂t
− aαx R +

n∑

i=1

βi
x

∂Ti

∂t

− a

n∑

i=1

αi
xTi − Ψ (t) − γx(t) = 0 (36)

where

Ψ (t) =
∫

Ω

S(x) ·
(

n∑

i=1

Xi(x) · Ti(t)

)2

dx (37)

3.2.2 Newton Linearization

From now on we denote by un the solution computed at it-
eration n, i.e.

un(x, t) =
n∑

i=1

Xi(x) · Ti(t) (38)

Now, after linearization, the solution at the next iteration
can be written as un+1 = un + ũ where ũ is the solution of
the problem

∂ũ

∂t
− aΔũ − 2un ũ = −

(
∂un

∂t
− aΔun − (un)2 − f (x, t)

)

(39)

whose weak formulation writes:
∫ Tmax

0

∫

Ω

ũ�

(
∂ũ

∂t
− aΔũ − 2un ũ

)
dxdt

=
∫ Tmax

0

∫

Ω

ũ�

(
−∂un

∂t
+ aΔun

+ (un)2 + f (x, t)

)
dxdt, ∀ũ� (40)

Now, we assume ũ(x, t) = R(t) · S(x) and ũ� = S · R� +
R · S�. To compute both functions R(t) and S(x) we apply
again the alternating directions method deeply described in
the previous sections.

3.2.3 Discussion

Both procedures converge but no significant differences in
the number of required iterations were noticed. The conver-
gence rate and the computing time were similar.

In the case of some linear models, if we solve the problem
and then apply the POD (for a given precision) we obtain

uPOD,N(x, t) =
N∑

i=1

XPOD
i (x) · T POG

i (t) (41)

When the numerical solution is computed using the PGD
described in Sect. 2, the solution obtained using N sums
uPGD,N

uPGD,N(x, t) =
N∑

i=1

Xi(x) · Ti(t) (42)

is very close to uPOD,N even if the space functions XPOD
i

and Xi , and the time functions T POD
i and Ti are very dif-

ferent.
In the case of non-linear models the situation is radically

different. Even when the exact solution can be represented
by a single functional product, i.e.

uex(x, t) = Xex(x) · T ex(t) (43)

the non-linear solver produces a solution composed of many
sums

u(x, t) ≈
N∑

i=1

Xi(x) · Ti(t) (44)

8



with N > 1. The main reason is that the number of sums is in
this case subsidiary of the convergence rate of the non-linear
solver.

In [42] we analyzed many other linearization schemes.
When we considered the improved fixed point, in which the
non-linear term is approximated at iteration q of the enrich-
ment step (the one for computing the couple R(t) and S(x))
according to:

u2 ≈
(

n∑

i=1

Xi(x) · Ti(t) + R(q−1)(t) · S(q−1)(x)

)2

(45)

then we proved, in the case described above, that the solver
converges after computing the first functional couple. In that
sense the solver is optimal (only one couple was required
for representing the solution that contains a single functional
couple) but the computing time is similar to the one required
by using the standard fixed point or the Newton strategy pre-
viously described.

3.3 PGD Tensor Form

The procedure described in section 2 can be generalized by
using a tensor notation [8, 42].

We assume that the discrete problem, that we writes for-
mally as U ∗T A U = U ∗T B, can be written in a separated
form:

A =
nA∑

i=1

Ai
1 ⊗ Ai

2 ⊗ · · · ⊗ Ai
D

B =
nB∑

i=1

Bi
1 ⊗ Bi

2 ⊗ · · · ⊗ Bi
D

U ≈
N∑

i=1

ui
1 ⊗ ui

2 ⊗ · · · ⊗ ui
D

(46)

where Ai , Bi and ui involve only the coordinate xi .
The separated representation of A and B comes directly

from the differential operators involved in the PDE weak
form.

At iteration n, vectors ui
j , ∀i ≤ n and ∀j ≤ D are as-

sumed known. Now we are looking for an enrichment:

U =
n∑

i=1

ui
1 ⊗ · · · ⊗ ui

D + R1 ⊗ · · · ⊗ RD (47)

where Ri , i = 1, . . . ,D, are the unknown enrichment vec-
tors. We assume the following form of the test field:

U ∗ = R∗
1 ⊗ R2 ⊗ · · · ⊗ RD + · · · + R1 ⊗ · · · ⊗ RD−1 ⊗ R∗

D

(48)

Introducing the enriched approximation into the weak
form, the following discrete form results:

nA∑

i=1

n∑

j=1

(R∗
1)

T Ai
1uj

1 × · · · × (RD)T Ai
Duj

D + · · ·

+
nA∑

i=1

n∑

j=1

(R1)
T Ai

1uj

1 × · · · × (R∗
D)T Ai

Duj
D

+
nA∑

i=1

(R∗
1)

T Ai
1R1 × · · · × (RD)T Ai

DRD + · · ·

+
nA∑

i=1

(R1)
T Ai

1R1 × · · · × (R∗
D)T Ai

DRD

=
nB∑

i=1

(
(R∗

1)
T Bi

1 × · · · × (RD)T Bi
D + · · ·

+ (R1)
T Bi

1 × · · · × (R∗
D)T Bi

D

)
(49)

For alleviating the notation we define:

nC∑

i=1

Ci
1 ⊗ · · · ⊗ Ci

D =
nB∑

i=1

Bi
1 ⊗ · · · ⊗ Bi

D

−
nA∑

i=1

n∑

j=1

Ai
1uj

1 ⊗ · · · ⊗ Ai
Duj

D (50)

where nC = nB + nA × n. This sum only contains known
fields. Thus (49) can be written as:

nA∑

i=1

(R∗
1)

T Ai
1R1 × · · · × (RD)T Ai

DRD + · · ·

+
nA∑

i=1

(R1)
T Ai

1R1 × · · · × (R∗
D)T Ai

DRD

=
nC∑

i=1

(
(R∗

1)
T Ci

1 × · · · × (RD)T Ci
D + · · ·

+ (R1)
T Ci

1 × · · · × (R∗
D)T Ci

D

)
(51)

This problem is strongly non linear. To solve it, a method
of alternated directions can be applied. The idea is, starting
with the trial vectors R(0)

i , i = 1, . . . ,D or assuming known

these vector at iteration r − 1, R(r−1)
i , i = 1, . . . ,D, update

them using an appropriate strategy. The simplest alternatives
consist of:

– Update vectors R(r)
i , ∀i, from R(r−1)

1 , . . . ,R(r−1)
i−1 ,R(r−1)

i+1 ,

. . . ,R(r−1)
D .

– Update vectors R(r)
i , ∀i, from R(r)

1 , . . . ,R(r)
i−1,R(r−1)

i+1 ,

. . . ,R(r−1)
D .
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The last strategy converges faster but the advantage of the
first one is the possibility of updating each vector simulta-
neously making use of a parallel computing platform. The
fixed point of this iteration algorithm allows defining the en-
richment vectors un+1

i = Ri , i = 1, . . . ,D.
When we look for vector Rk assuming known all the oth-

ers Ri , i �= k, the test field reduces to:

U ∗T = R1 ⊗ · · · ⊗ Rk−1 ⊗ R∗
k ⊗ Rk+1 · · · ⊗ RD (52)

The resulting discrete weak form writes:

nA∑

i=1

(
RT

1 Ai
1R1 × · · · × R∗T

k Ai
kRk × · · · × RT

DAi
DRD

)

=
nC∑

i=1

RT
1 Ci

1 × · · · × R∗T
k Ci

k × · · · × RT
DCi

D (53)

Making use of the arbitrariness of R∗
K the following lin-

ear system can be easily obtained:
⎛

⎝
nA∑

i=1

⎛

⎝
D∏

j=1,j �=k

RT
j Ai

j Rj

⎞

⎠Ai
k

⎞

⎠Rk

=
nC∑

i=1

⎛

⎝
D∏

j=1,j �=k

RT
j Ci

j

⎞

⎠Ci
k (54)

which can be easily solved.

3.4 Decomposition Optimality: Residual Minimization

The alternating direction strategy that we used in Sect. 2
as well as in Sect. 3.3 converges very fast in the case of
symmetric differential operators. However, when we include
strong non-linearities, advection terms, parameters as ad-
ditional coordinates, . . . the alternating directions strategy
fails (the computed functional couples do not improve no-
ticeably the solution). As Pierre Ladeveze proposed many
years ago in the framework of the LATIN method, in that
case a more efficient strategy consists of minimizing the
residual [42]:

Res =
nA∑

i=1

Ai
1R1 ⊗ · · · ⊗ Ai

DRD −
nC∑

i=1

Ci
1 ⊗ · · · ⊗ Ci

D (55)

We denote by 〈., .〉 the scalar product and by ‖.‖ its asso-
ciated norm. Using this notation the residual norm writes:

‖Res‖2 =
nA∑

i=1

nA∑

j=1

(〈
Ai

1R1,Aj

1R1

〉
× · · ·

×
〈
Ai

DRD,Aj
DRD

〉)

− 2
nA∑

i=1

nC∑

j=1

(〈
Ai

1R1,Cj

1

〉
× · · · ×

〈
Ai

DRD,Cj
D

〉)

+
nC∑

i=1

nC∑

j=1

(〈
Ci

1,Cj

1

〉
× · · · ×

〈
Ci

D,Cj
D

〉)
(56)

The minimization problem with respect to Rk reads:

∂

∂Rk

〈Res,Res〉 = 0 (57)

or:

nA∑

i=1

nA∑

j=1

〈
Ai

1R1,Aj

1R1

〉
× · · · ×

〈
Ai

k−1Rk−1,Aj

k−1Rk−1

〉

×
〈
Ai

k,Aj
kRk

〉
×

〈
Ai

k+1Rk+1,Aj

k+1 × Rk+1

〉
× · · ·

×
〈
Ai

DRD,Aj
DRD

〉

−
nA∑

i=1

nC∑

j=1

〈
Ai

1R1,Cj

1

〉
× · · · ×

〈
Ai

k−1Rk−1,Cj

k−1

〉

×
〈
Ai

k,Cj
k

〉
×

〈
Ai

k+1Rk+1,Cj

k+1

〉
× · · ·

×
〈
Ai

DRD,Cj
D

〉
= 0 (58)

The stoping criterion is defined from the residual norm:
∥∥∥∥∥

nC∑

i=1

Ci
1 ⊗ · · · ⊗ Ci

D

∥∥∥∥∥
2

< ε (59)

Despite the fact that this strategy is much more efficient
than the alternating directions strategy for non-symmetric
operators, it is far to be optimal. Thus, in some particular
cases, even if the exact solution accepts a separated rep-
resentation, the PGD coupled with the residual minimiza-
tion produces a solution that contains much more functional
products that the exact one.

We are at present exploring other strategies, based on
concepts of information theory (maximum entropy, . . .).
Other possibility consists in looking at each iteration for
some functional products (instead of a single one at each
iteration). This strategy improves the convergence rate re-
ducing the number of sums in the computed decomposition,
but at present no strategy allows for a general optimal de-
composition.

The reason of this lack of optimality was understood by
performing a numerical analysis (see [21] in the present is-
sue). However, when we tried to enforce the enrichment
maximizing the residual diminution the numerical proce-
dure exhibits locking.

Previously we identified two major issues of the PGD,
we cited the convective stabilization and the treatment of
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models defined in moving domains, now we should add a
third issue that concerns the decomposition optimality.

3.5 Non Homogeneous Essential Boundary Conditions and
Complex Domains

In [25] we addressed another different topic, the one related
to the enforcement of non-homogeneous boundary condi-
tions and the treatment of complex geometries.

3.5.1 Non Homogeneous Essential Boundary Conditions

The enforcement of homogeneous boundary conditions
is quite simple, it suffices to enforce at each enrichment
stage that the first and last components of vectors Ri ,
i = 1, . . . ,D, vanish. However, consider the 3D problem:

−Δu = f (x) (60)

where x = (x, y, z) ∈ Ω = (0,L)3, with

u(x) = ug �= 0, x ∈ Γ ≡ ∂Ω (61)

In [25] we proposed to determine a function ψ , regu-
lar enough (continuous in Ω and Δψ ∈ L2(Ω)) such that
ψ verifies the essential boundary condition, i.e. ψ(x) = ug ,
x ∈ Γ . This function can be constructed by using the trans-
finite interpolation method [45].

Now, by applying the change of variable u = ψ + Υ , the
problem (60) writes:

−ΔΥ = f (x) + Δψ (62)

where Υ (x) = 0, x ∈ Γ . Thus, the solution of problem (62)
reduces to the ones that we considered previously subjected
to homogenous essential boundary conditions, where the un-
known field is searched in the separated form:

Υ ≈
i=N∑

i=1

Xi(x) · Yi(y) · Zi(z) (63)

The solution procedure simplifies if function ψ is given
in a separated form, i.e.

ψ ≈
i=M∑

i=1

Fi(x) · Gi(y) · Hi(z) (64)

This decomposition can be efficiently performed by in-
voking the SVD or its multidimensional counterpart.

3.5.2 Complex Domains

In [25] we also addressed the question of complex domains.
Until now, the whole domain Ω was considered as the direct

product of the domains in which each coordinate is defined,
Ω = Ω1 × · · · × ΩD , i.e. Ωi , ∀i, does not depend on the
other coordinates x1, . . . ,xi−1,xi+1, . . . ,xD .

Due to this difficulty when we considered in Sect. 3.1.1
models defined in the physical (x) and conformation spaces
(q1, . . . ,qD) we considered the decomposition [3]

u(x,q1, . . . ,qD) ≈
i=N∑

i=1

Xi(x) ·
⎛

⎝
j=D∏

j=1

Q
j
i (qj )

⎞

⎠ (65)

where x ∈ Ω ⊂ R
3. Thus, this decomposition is not affected

at all by the complexity of Ω .
However, a full decomposition of the physical space

would result in:

u(x,q1, . . . ,qD)

≈
i=N∑

i=1

Xi(x) · Yi(y) · Zi(z) ·
⎛

⎝
j=D∏

j=1

Q
j
i (qj )

⎞

⎠ (66)

that can be used without major difficulties if Ω is a paral-
lelepiped, i.e. Ω = Ωx × Ωy × Ωz. However, when it is not
the case, a special treatment is required.

We considered again the problem (60) now with homoge-
neous boundary conditions on ∂Ω ≡ Γ , with Ω quite com-
plex in the sense discussed above.

A fictitious domain technique is considered. Thus, the
real domain Ω is placed inside a larger domain ω (Ω ⊂ ω

and Ω ∩ ω = ∅), with ω = ωx × ωy × ωz.
Thus, we must solve the problem

−Δu = f (x) in ω (67)

with the unknown field u extended to the domain ω by using
u = Φ · Υ . Function Φ is regular enough, defined in the
extended domain ω and it vanishes on Γ ≡ ∂Ω in order to
enforce the boundary conditions. In [25] we proposed the
use of the R-functions [45] for computing function Φ than
should be rewritten again in a separated form by invoking
the SVD. Function Υ is searched again in the separated form

Υ ≈
i=N∑

i=1

Xi(x) · Yi(y) · Zi(z) (68)

3.6 Localization, Interfaces and FE Coupling

In this section we are modifying the technique just presented
in order to capture localized behaviors such as high gradi-
ents or weak and strong discontinuities.

This kind of behaviors induces too many functional prod-
ucts within a standard separated representation. However,
it is well known that they can be easily taken into account
within the finite element framework, by using adaptive local
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mesh refinement in the first case or any of the techniques
able to represent weak and strong discontinuities (meshes
compatible with the interfaces or enriched approximations
when the meshes are not compatible with the interfaces).

Thus, the main goal is how combining separated repre-
sentations, able to approximate the solution in the most part
of the domain where the model is defined, reducing signifi-
cantly the computational cost, and a localized finite element
description, that even if it is expensive in nature, it only
applies in a small region of the whole domain where the
solution is expected to exhibit localized behavior. To this
end, we proposed in [9] a multi-scale approach that some-
what resembles the s-version of the finite element method
by J. Fish [24] or the multi-scale FEM proposed by Rank
[43], but in this case in a global (Ritz) and separated basis
function setting.

For the sake of simplicity we consider a generic 2D prob-
lem

K (u(x, y)) + L (u(x, y)) = 0 (69)

where K and L are two differential operators. We are assum-
ing that the first one only involves derivatives with respect
to the x-coordinate, the second one involving the derivatives
with respect to the other coordinate.

This model is defined in Ω = Ωx × Ωy and we imagine
that the solution u(x, y) is smooth enough everywhere ex-
cept in a small region Ωl ⊂ Ω . Now, we could imagine an
approximation combining both, the separated representation
and a finite element approximation, where the last one only
applies in Ωl . We assume a mesh on Ωl composed of Nl

nodes. We also assume that the finite element shape func-
tions related to the finite element approximation cannot be
expressed from the tensor product of the one dimensional
bases employed to build-up the separated representation to
avoid rank deficiency.

Now, the approximation in the whole domain can be writ-
ten as:

u(x, y) = uSR(x, y) + uFE(x, y) (70)

where uSR(x, y) is defined in the whole domain Ω = Ωx ×
Ωy whereas the finite element enrichment uFE(x, y) is only
defined within Ωl . In order to ensure the continuity of the
resulting approximation we must enforce the nullity of the
enrichment uFE(x, y) on the boundary of Ωl , ∂Ωl .

The resulting approximation writes:

u(x, y) ≈
i=N∑

i=1

Xi(x) · Yi(y) +
j=M∑

j=1

Nj(x, y)uj (71)

where Nj(x, y) are the standard finite element shape func-
tions and uj the associated weights. Because of the contri-
bution of uSR(x, y) in Ωl , uj does not correspond to the

values of the unknown field u(x, y) at the nodal positions
(xj , yj ).

Remark 3 We are assuming that the enrichment is per-
formed by using standard finite elements, but in fact any
kind of compact support approximation could be used. In
order to represent interfaces involving weak discontinuities
one could proceed within the standard finite element method
by ensuring that the interface coincides with the elements
edges. If the interface passes across the elements an enriched
version of the finite element method should be considered
(e.g. the extended finite element [49]).

In [9] we illustrated the application of this enriched sepa-
rated approximation when model solutions exhibit localiza-
tion or for gluing subdomains in which different separated
representations are defined, . . . .

3.7 On the Coupling of Local and Global Models:
The Local Problem Globalization

We are considering again the model given by (6) in absence
of advection, i.e. v = 0, and in a one-dimensional physical
space Ω :

∂u

∂t
− aΔu = f (x, t) in Ω × (0, Tmax] (72)

with the following initial and boundary conditions

{
u(x,0) = u0, x ∈ Ω,

u(x, t) = ug, (x, t) ∈ ∂Ω × (0, Tmax]
(73)

We are assuming that the source term depends on the lo-
cal value of r fields Ci(t,x), i = 1, . . . , r :

f (x, t) =
i=r∑

i=1

γi · Ci(x, t) (74)

where the time evolution of the r fields Ci(x, t) is governed
by r simultaneous ordinary differential equations (the so-
called kinetic model). For the sake of simplicity we consider
the linear case, the non-linear one reduces to a sequence
of linear problems by applying an appropriate linearization
strategy [6]. The system of linear ODEs writes at each point
x ∈ Ω :

dCi(x, t)

dt
=

j=r∑

j=1

αij (x) Cj (x, t) (75)

We are assuming that the kinetic coefficients αij evolve
smoothly in Ω , because in practical applications these co-
efficients depend on the solution of the diffusion problem,
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u(x, t). For the sake of simplicity and without loss of gen-
erality, from now on we assume those coefficients constant
(they were assumed evolving linearly in the physical space
in [20]).

Now, we are describing three possible coupled solution
of (72) and (75).

1. The simplest strategy consists in using a separated repre-
sentation of the global problem solution (72) whereas the
local problems are integrated in the whole time interval
at each nodal position (or integration point). Obviously,
this strategy implies the solution of r ordinary differential
equations at each node (or integration point). Moreover,
the resulting fields Ci(x, t), r = 1, . . . , r , don’t have a
separated structure, and by this reason before of injecting
these fields into the global problem (72) we should sep-
arate them by invoking, for example, the singular value
decomposition (SVD) leading to:

Ci(x, t) ≈
q=m∑

q=1

XC,i
q (x) · T C,i

q (t) (76)

As soon as the source term has a separated structure,
the procedure illustrated in previous sections can be ap-
plied again for computing the new trial solution of the
global problem that writes:

u(x, t) ≈
N∑

i=1

Xu
i (x) · T u

i (t) (77)

Thus, this coupling strategy requires the solution of
many local problems (for all species) and at all nodal po-
sitions (or integration points). Moreover, after these solu-
tions (that we recall that could be performed in parallel) a
singular value decomposition must be applied in order to
separate these solutions prior to inject them in the PGD
solver of the global problem (72).

2. The second coupling strategy lies in globalizing the so-
lution of the local problems. Thus, we assume that the
field related to each species can be written in a separated
form:

Ci(x, t) ≈
q=m∑

q=1

XC,i
q (x) · T C,i

q (t) (78)

and now, we apply the procedure described in Sect. 2
to build-up the reduced separated approximation, i.e. for
constructing all the functions involved in (78). Thus, in-
stead of solving the r ODEs in (76) (that define r one-
dimensional problems) at each nodal position (or integra-
tion point), we should solve only r higher dimensional
coupled models defined in the physical space and time.
Obviously, if the number of nodes (or integration points)

is important (mainly when 3D physical spaces are con-
sidered) the present coupling strategy could offer signifi-
cant CPU time savings.

This strategy allows computing directly a separated
representation, and then, with respect to the previous
one, the application of the SVD is avoided. However, if
the number of species is high, the computational efforts
can become important, because the space-time separated
solver must be apply to each species.

3. The third alternative, that in our opinion is the more ap-
pealing one for solving models involving many species,
as large as one wants, implies the definition of a new vari-
able C(x, t, c), that as we can notice contains an extra
coordinate c, with discrete nature, and that takes inte-
ger values: c = 1, . . . , r , in such manner that C(x, t, i) ≡
Ci(x, t), i = 1, . . . , r . Thus, we have increased the di-
mensionality of the problem, but now, only a single prob-
lem should be solved, instead of one for each species as
was the case when using the previous strategy. This in-
crease of the model dimensionality is not dramatic be-
cause as argued in the first section of this work, the sep-
arated representation allows circumventing the curse of
dimensionality, allowing for fast and accurate solutions
of highly multidimensional models. Now, the issue is the
derivation of the governing equation for this new vari-
able C(x, t, c) and the separated representation construc-
tor able to define the approximation:

C(x, t, c) ≈
q=S∑

q=1

XC
q (x) · T C

q (t) · Aq(c) (79)

As this strategy was retained in our simulations in [20]
we are focusing in its associated computational aspects in
the next section.

3.7.1 Fully Globalized Local Models

The third strategy just referred implies the solution of a sin-
gle multidimensional model involving the field C(x, t, c).
This original introduction deserves some additional com-
ments. The first one concerns the discrete nature of the ki-
netic equations

dCi(x, t)

dt
=

j=r∑

j=1

αij (x) · Cj (x, t) (80)

Now, by introducing C(x, t, c), such that C(x, t, i) ≡
Ci(x, t), the kinetic equations could be written as:

dC

dt
= Lc(C) (81)

where Lc is an operator in the c-coordinate.

13



If for one second we try to discretize (81) by finite differ-
ences, we could write at each node (xk, tp, i):

C(xk, tp, i) − C(xk, tp−1, i)

Δt
= Lc(C)|i (82)

where

Lc(C)|i =
j=r∑

j=1

αij · C(xk, tp, j) (83)

represents the discrete form of the c-operator at point i.
Now, we come back to the separated representation con-

structor for defining the approximation:

C(x, t, c) ≈
q=S∑

q=1

XC
q (x) · T C

q (t) · Aq(c) (84)

For defining such approximation one should repeat the
procedure deeply illustrated in Sect. 2. As the operator here
involved is less standard we are summarizing the main steps.

We assume that the first n iterations allowed computing
the first n sums of (84)

C(x, t, c) ≈
q=n∑

q=1

XC
q (x) · T C

q (t) · Aq(c) (85)

and now, we look for the enrichment R(x) ·S(t) ·W(c), such
that

C(x, t, c) ≈
q=n∑

q=1

XC
q (x) · T C

q (t) · Aq(c)

+ R(x) · S(t) · W(c)

= Cn(x, t, c) + R(x) · S(t) · W(c) (86)

satisfies

∫

Ω

∫ Tmax

0

∫ r

0
C∗(x, t, c) ·

(
dC

dt
− Lc(C)

)
dc dt dx = 0

(87)

Obviously, due to the discrete character of the third co-
ordinate, an integration quadrature consisting of r points,
c1 = 1, . . . , cr = r will be considered later.

Now, for computing the three enrichment functions we
are considering again (as in Sect. 2) an alternating directions
strategy, that proceeds in three steps (that are repeated until
reaching convergence):

1. Assuming functions S(t) and W(c) known, the trial func-
tion C∗(x, t, c) writes C∗(x, t, c) = R∗(x) · S(t) · W(c).
Thus the weak form (87) reads:
∫

Ω

∫ Tmax

0

∫ r

0
R∗ · S · W

· (R · S′ · W − R · S · Lc(W)
)

dc dt dx

= −
∫

Ω

∫ Tmax

0

∫ r

0
R∗ · S · W

·
q=n∑

q=1

(
XC

q · (T C
q )′ · Aq

)
dc dt dx

+
∫

Ω

∫ Tmax

0

∫ r

0
R∗ · S · W

·
q=n∑

q=1

(
XC

q · T C
q · Lc(Aq)

)
dc dt dx (88)

where S′ = dS
dt

and (T C
q )′ = dT C

q

dt
.

Now, time integrals and the ones involving the c-
coordinate can be performed. The ones involving the co-
ordinate c write:

∫ r

0
W · W dc =

i=r∑

i=1

W(ci)
2 (89)

where as just mentioned ci = i, ∀i,

∫ r

0
W · Lc(W) dc =

i=r∑

i=1

⎛

⎝W(ci) ·
j=r∑

j=1

αijW(cj )

⎞

⎠ (90)

and similar expressions can be derived for the integrals
involved in the right hand member.

Thus, finally it results:

ξx

∫

Ωx

R∗ · R dx =
∫

Ωx

R∗Fx(x) dx (91)

where the coefficient ξx contains all the integrals in the
time and c-coordinates related to the left hand member
of (88) and Fx(x) all the integrals appearing in the right
hand member. The strong form related to (91) writes:

ξxR(x) = Fx(x) (92)

whose algebraic nature describes the fact that the kinetic
model is local and then it does not involve space deriva-
tives.

2. Assuming functions R(x) and W(c) known, the trial
function C∗(x, t, c) writes C∗(x, t, c) = R(x) · S∗(t) ·
W(c). Thus the weak form (87) reads:
∫

Ω

∫ Tmax

0

∫ r

0
R · S∗ · W

· (R · S′ · W − R · S · Lc(W)
)

dc dt dx

= −
∫

Ω

∫ Tmax

0

∫ r

0
R · S∗ · W

·
q=n∑

q=1

(
XC

q · (T C
q )′ · Aq

)
dc dt dx
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+
∫

Ω

∫ Tmax

0

∫ r

0
R · S∗ · W

·
q=n∑

q=1

(
XC

q · T C
q · Lc(Aq)

)
dc dt dx (93)

Now, integrals defined in the physical space Ω must
be computed, but this task does not involve additional
difficulties.

Finally it results:

∫ Tmax

0
S∗ ·

(
ξ tS + υt dS

dt

)
dt =

∫ Tmax

0
S∗F t (t) dt (94)

where coefficients ξ t and υt contain all the integrals in
the space and the c-coordinate related to the left hand
member of (93) and F t (t) the associated integrals ap-
pearing in the right hand member. The strong form re-
lated to (94) writes:

υt dS

dt
+ ξ tS(t) = F t (t) (95)

whose first order differential nature results from the first
order time derivatives involved by the kinetic model.

3. Assuming functions R(x) and S(t) known, the trial func-
tion C∗(x, t, c) writes C∗(x, t, c) = R(x) · S(t) · W ∗(c).
Thus the weak form (87) reads:

∫

Ω

∫ Tmax

0

∫ r

0
R · S · W ∗

· (R · S′ · W − R · S · Lc(W)
)

dc dt dx

= −
∫

Ω

∫ Tmax

0

∫ r

0
R · S · W ∗

·
q=n∑

q=1

(
XC

q · (T C
q )′ · Aq

)
dc dt dx

+
∫

Ω

∫ Tmax

0

∫ r

0
R · S · W ∗

·
q=n∑

q=1

(
XC

q · T C
q · Lc(Aq)

)
dc dt dx (96)

After performing integration in space and time, it re-
sults:

∫ r

0
W ∗ · (ξc W − υc Lc(W)

)
dc =

∫ r

0
W ∗Fc(c) dc

(97)

where coefficients ξc and υc contain all the integrals in
the space and time related to the left hand member of (96)

and Fc(c) the associated integrals appearing in the right
hand member. The strong form related to (97) writes:

−υc Lc(W) + ξcW(c) = Fc(c) (98)

that results in the algebraic system:

−υc

j=r∑

j=1

αijW(cj ) + ξcW(ci) = Fc(ci), i = 1, . . . , r

(99)

Again, its algebraic nature comes from the nature of
the kinetic model.

Remark 4 For the sake of simplicity we illustrated the solu-
tion procedure within the alternating directions framework,
but the solutions reported in [20] were computed by enforc-
ing the residual minimization described in Sect. 3.4.

3.8 Error Estimation

In this section we are summarizing an error estimator pro-
cedure proposed in [8] and based on the use of primal and
dual formulations.

For this purpose we assume a generic multidimensional
model whose weak form writes

a(u,u∗) = b(u∗) (100)

defined in Ω = Ω1 × · · · × ΩD , where each Ωd (d =
1,2, . . . ,D) involves a coordinate xd not necessarily one-
dimensional. From now on, the form (100) will be referred
as primal form.

The discrete counterpart of (100) reads

A U = B (101)

where

A =
nA∑

j=1

Aj

1 ⊗ Aj

2 ⊗ · · · ⊗ Aj
D (102)

and

B =
nB∑

j=1

Bj

1 ⊗ Bj

2 ⊗ · · · ⊗ Bj
D (103)

The discrete separated representation of u at iteration nu

writes:

U ≈
nu∑

j=1

uj

1 ⊗ uj

2 ⊗ · · · ⊗ uj
D (104)

where uj
i is the discrete (nodal) form of u

j
i (xi).
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Now, we are interested in a certain function of u, o(u),
of physical interest (the model output). In what follows we
assume that the operator defining the output is linear. Thus,
we could write

o(u) = O

⎛

⎝
nF∑

j=1

uj

1 ⊗ uj

2 ⊗ · · · ⊗ uj
D

⎞

⎠ (105)

If this operator accepts a separated representation, that is:

O =
nO∑

j=1

Oj

1 ⊗ Oj

2 ⊗ · · · ⊗ Oj
D (106)

then, the output can be evaluated from:

o(u) =
nu∑

j=1

nO∑

i=1

(
ujT

1 Oi
1

)
·
(

ujT

2 Oi
2

)
· · ·

(
ujT

D Oi
D

)
(107)

Now, the error on the output, can be evaluated by solv-
ing the so-called dual problem (see [8] and the references
therein):

a(u∗, v) = o(u∗) (108)

whose discrete form writes:

AT V = O (109)

where O was already defined and where AT is given by

AT =
nA∑

j=1

AjT

1 ⊗ AjT

2 ⊗ · · · ⊗ AjT
D (110)

A good error estimation needs for an accurate solution
of the dual problem. Within the separated representation
framework the solution of the dual problem (109) (assumed
accurate enough) can be written as:

V ≈
nv∑

j=1

vj

1 ⊗ vj

2 ⊗ · · · ⊗ vj
D (111)

Now, the error in the output can be evaluated from:

o(e) = b(v) − a(u, v) (112)

whose discrete counterpart writes:

o(e) = V T B − V T A U (113)

that is easily computed from:

o(e) =
nB∑

i=1

nv∑

j=1

(
vjT

1 Bi
1

)
·
(

vjT

2 Bi
2

)
· · ·

(
vjT
D Bi

D

)

−
nA∑

k=1

nu∑

i=1

nv∑

j=1

(
vjT

1 Ak
1ui

1

)

·
(

vjT

2 Ak
2ui

2

)
· · ·

(
vjT
D Ak

Dui
D

)
(114)

3.9 Parametric Models

The case of parametric models was addressed in [42]. In this
section we revisit the main ideas in the treatment of such
models. For this purpose we consider again the heat equa-
tion but in which the thermal diffusivity is unknown. The
most usual strategy in that case lies in solving that equation
for many values of the thermal diffusivity (Monte Carlo pro-
cedure). If the statistical distribution of the realizations of
the thermal diffusivity represents accurately the real thermal
diffusivity distribution, then from the computed temperature
fields we can infer different outputs (in a statistical sense).

However, this problem can also be solved in a fully de-
terministic way if the unknown parameter is considered as
a new coordinate (as the physical ones—space and time).
Thus, the dimensionality of the problem increases, but this
fact is not a serious handicap for the PGD.

We consider again the one-dimensional heat equation

∂u

∂t
− ∂

∂x

(
k
∂u

∂x

)
= 0 ∀t ∈ Ωt ∀x ∈ Ωx (115)

where the thermal diffusivity is assumed depending on the
temperature field, i.e. k(u):

k = au + b (116)

where coefficients a and b are assumed unknown or badly
known.

If we introduce the diffusivity expression into the heat
equation (115) it results:

∂u

∂t
− b

∂2u

∂x2
− au

∂2u

∂x2
− a

(
∂u

∂x

)2

= 0 (117)

The goal in the solution of that equation is the calcula-
tion of the temperature at each point and time, and for any
value of the parameters a and b within theirs domains of
variability, i.e. u(t, x, a, b):

u(t, x, a, b) ≈
N∑

i=1

Ti(t) · Xi(x) · Ai(a) · Bi(b) (118)

In [42] we considered the approximations of the different
functions Ti(t), Xi(x), Ai(a) and Bi(b) performed by us-
ing standard one dimensional piecewise linear finite element
shape functions on a uniform mesh consisting of 500 nodes
in each 1D-domain Ωt, Ωx, Ωa and Ωb . If this problem is
solved using a mesh-based strategy in the whole domain the
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complexity scales with 5004. However, the Proper General-
ized Decomposition needed less than one minute for solving
this problem using a personal laptop.

There is no restriction on the number of parameters
that can be transformed into additional model coordinates.
In [42] we considered the thermal diffusivity, the source
term and the initial condition as additional coordinates.

Remark 5 The introduction of model parameters as extra-
coordinates has not an impact in the computational efforts,
because as the departure model (the heat transfer equation
in the present case) does not involve derivatives with respect
to those parameters, when we compute the functions related
to these coordinates (associated to the model parameters)
only algebraic problems must be solved. Moreover, the use
of the residual minimization described in Sect. 3.4 increases
significantly the convergence rate of the PGD.

3.10 Solvers Coupling and New Integration Procedures

As the PGD operates by solving the different functions in-
volved in the separated representation independently, one
could imagine that different solvers could be applied for
solving the problems in the different coordinates.

A direct consequence of this fact was the definition of
new integration procedures. In [28] we considered the inte-
gration of transient models by applying the Boundary Ele-
ment Method (BEM). In what follows we revisit the main
ideas on this non-incremental boundary element strategy.

3.10.1 Non-incremental Boundary Element Discretizations

The Boundary Element Method allows for an efficient solu-
tion of partial differential equations whose kernel functions
are known. The heat equation is one of these candidates.
When the model involves large physical domains and time
simulation intervals the amount of information that must be
stored increases significantly.

We proposed in [28] an alternative radically different that
leads to a separated solution of the space and time problems
within a non-incremental integration strategy. The technique
is based on the use of a space-time separated representation
of the unknown field that introduced in the residual weight-
ing formulation allows to define a separated solution of the
resulting weak form. The spatial step can be then treated by
invoking the standard BEM for solving the resulting steady
state problem defined in the physical space. Then, the time
problem that results in an ordinary first order differential
equation is solved using any standard appropriate integra-
tion technique (e.g. backward finite differences).

In principle this procedure opens new possibilities for
integrating transient models (linear or non-linear) whose
space-time fundamental solution is not known but whose
steady state fundamental solution is known.

We are illustrating the strategy for constructing these
functional products in the case of an academic transient
problem, the transient linear heat equation:

∂u

∂t
− aΔu = f (x, t) in Ω × (0, Tmax] (119)

with the following initial and boundary conditions

{
u(x,0) = u0, x ∈ Ω

u(x, t) = ug, (x, t) ∈ ∂Ω × (0, Tmax]
(120)

where a is the diffusion coefficient. The weak formulation
yields:

Find u(x, t) verifying the boundary conditions (7) such
that

∫ Tmax

0

∫

Ω

u�

(
∂u

∂t
− aΔu − f (x, t)

)
dxdt = 0 (121)

for all the functions u�(x, t) in an appropriate functional
space.

We compute now the functions involved in the
sum (8). We suppose that the set of functional couples
{(Xi, Ti)}i=1,...,n with 0 ≤ n < N are already known (they
have been previously computed) and that at the present it-
eration we search the enrichment couple (R(t), S(x)) by
applying an alternating directions fixed point algorithm that
after convergence will constitute the next functional couple
(Xn+1, Tn+1). Hence, at the present iteration, n, we assume
the separated representation

u(x, t) ≈
n∑

i=1

Ti(t) · Xi(x) + R(t) · S(x) (122)

The weighting function u� is then assumed as

u� = S · R� + R · S� (123)

Introducing (10) and (11) into (9) it results

∫ Tmax

0

∫

Ω

(S · R� + R · S�) ·
(

S · ∂R

∂t
− aΔS · R

)
dxdt

=
∫ Tmax

0

∫

Ω

(S · R� + R · S�)

·
(

f (x, t) −
n∑

i=1

Xi · ∂Ti

∂t
+ a

n∑

i=1

ΔXi · Ti

)
dxdt

(124)

We apply an alternating directions fixed point algorithm
to compute the couple of functions (R,S). Following the
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procedure described in Sect. 2, functions S(x) and R(t) sat-
isfy:

αtS − aβtΔS = γt −
n∑

i=1

αi
t Xi + a

n∑

i=1

βi
t ΔXi (125)

and

βx

∂R

∂t
= a · αx · R + γx(t) −

n∑

i=1

βi
x · ∂Ti

∂t
+

n∑

i=1

a · αi
x · Ti

(126)

We can notice that (125) defines a steady-state elliptic
equation with constant coefficients. Being the Green solu-
tion associated to that equation known, one could apply the
BEM for solving it. The only issue in applying the BEM for
solving (125) is the integration of the right hand member
that implies volumetric integrations that need the definition
of appropriate approximation everywhere in the domain. In
[28] the approximation was performed by using a moving
least square technique. The main advantage in using this
strategy is the possibility of solving models for which the
Green solution of the space model is known even when it is
not the case for the space-time model.

The interested reader can refer to [28] for some nu-
merical experiments and convergence analysis on this non-
incremental boundary element technique.

3.11 Miscellaneous: High Resolution Solvers,
Multi-physics and Mixed Formulations

Separated representations involving ordinary models (tran-
sient or steady state; 2D or 3D) allow in several cases im-
pressive computing time savings. In the transient case is ev-
ident as discussed previously (see the discussion at the end
of Sect. 2). In the case of rectangular domains is also possi-
ble to separate the different space coordinates x, y and z (in
the case of more complex domains the separated represen-
tation can also be applied by using appropriate strategies, as
the one proposed in [25] and here summarized in Sect. 3.5).

If a fully separated representation can be applied, only 1D
problems have to be solved. These boundary-value problems
ca be solved efficiently even for extremely large number of
nodes distributed in the 1D interval, if the boundary value
problem is transformed into an initial value problem by us-
ing the technique proposed in [14–16] that avoids the solu-
tion of any linear system. The combination of the PGD and
these advanced 1D boundary value solvers allows for im-
pressive CPU time savings of several orders of magnitude.

In [18] we considered linear computational homogeniza-
tion of heterogeneous materials. A simple thermal model
must be solved in a quite simple domain (a cube) but in or-
der to capture all the microstructure details a extremely fine

mesh is needed (high resolution). The use of a fully sepa-
rated representation allows considering millions of nodes in
each space direction, solving models, at present, beyond the
finite elements expectations.

The same kind of techniques were applied for solving
multi-physics models arising in the composites manufactur-
ing processes, where curing kinetics are coupled with the
non-linear thermal and thermo-mechanical behaviors [41].
The simplest coupling lies in the use of a fixed point strat-
egy, but the LATIN framework or the monolithic approaches
could be more efficient alternatives.

Recently we have also solved in a fully separated space
description the incompressible infinitesimal strain elasticity
equations (that are the same the ones that govern the flow of
a Newtonian incompressible fluid—the Stokes equations).
The treatment of these mixed formulations needs to satisfy
the LBB conditions. At present there are no mathematical
results on this topic, but in our numerical experiments we
noticed that the one-dimensional meshes used for approxi-
mating the displacements field must be richer than the ones
used for approximating the pressure field (Lagrange multi-
plier associated with the incompressibility constraint) and
moreover, we must enrich the pressure separated represen-
tation one time for, at least, two displacement enrichments.
The understanding of these observation represents a work in
progress.

4 Future Developments

The separated representation methodology allows in many
cases circumventing the redoubtable curse of dimensional-
ity, or at least alleviating its impact. Thus, the PGD seems
to be an appealing and powerful strategy for solving mod-
els defined in high dimensional spaces including physical
(space and time) and configurational (also known as confor-
mational) coordinates. Thus, the solution of many physical
models suffering the curse of dimensionality illness is now
possible, opening new possibilities in quantum chemistry,
the kinetic theory description of materials within the sta-
tistical mechanics framework, the solution of the chemical
master equation that is present in many branches of biology
(genetics, cell-signaling, . . . ), several models encountered in
financial mathematics, . . . .

However, there are numerous other possibilities based in
transforming usual models (defined in moderate dimensions,
generally space and time) into higher dimensional models
that include all the desired model parameters as new model
coordinates defined in theirs respective intervals. Thus, if the
increase in the model dimensionality is no more a serious
drawback (and it is the case if the PGD is applied) one could
solve a parametric equation only one time and then partic-
ularize the solution for different choices of the parameters.
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This procedure only implies post-processing, the computa-
tion is performed off-line and only one time! It is easy to
infer the impact that such procedure could constitute in the
context of optimization or inverse identification. There are
many other possibilities, it suffices to change our mind, our
way of modeling the physics, without trying to enforce the
models of physics to be three-dimensional: the models of a
physics taking place in the space and time could be multi-
dimensional (the mathematics accepts it!).

In this section we are addressing some comments in dif-
ferent potential and exciting application of the Proper Gen-
eralized Decomposition.

– Optimization and inverse identification
Imagine that we are interested in optimizing a thermal
process by choosing the optimal thermal diffusivity k

(that in what follows we consider constant), or that we
are interested in identifying this thermal diffusivity from
the experimental data recorded by a thermocouple placed
at a certain position. In both cases, when one uses any
standard strategy, the solution of many direct problems is
needed, as well as a minimization strategy able to search
the optimum value with respect to a certain cost function.

Our approach consists in assuming the thermal diffu-
sivity as a new coordinate of the model, as described in
Sect. 3.9. By applying the PGD we can compute the gen-
eral solution

u(x, t, k) ≈
i=N∑

i=1

Xi(x) · Ti(t) · Ki(k) (127)

that represents the value at each position x, time t and for
each value of the thermal diffusivity k.

As soon as a trial thermal diffusivity ktrial is generated
by the minimization algorithm, the temperature field be-
comes defined at each point x ∈ Ωx and time t ∈ I ≡ Ωt

u(x, t; ktrial) ≈
i=N∑

i=1

Xi(x) · Ti(t) · Ki(k
trial) (128)

that allows an easy and fast calculation of the cost func-
tion and its gradient. If we denote the cost function C(u),
its gradient reads:

∂C
∂k

= ∂C
∂u

· ∂u

∂k
(129)

that can be easily determined from the cost function ex-
pression and from the derivative of (128):

∂u

∂k

∣∣∣∣
ktrial

≈
i=N∑

i=1

Xi(x) · Ti(t) · dKi(k)

dk

∣∣∣∣
ktrial

(130)

Moreover, for simple cost functions one could expect
to find directly the extremum points, that is, the points at

which the derivative with respect to the design variables
(in the present case the thermal diffusivity) vanish:

∂C(u)

∂k
= ∂C

∂u
· ∂u

∂k
= 0 (131)

Let K be the set of such extremum points (K =
{k1, . . . , kM}). Now, it suffices calculating the cost func-
tions for each value of the thermal diffusivity k ∈ K:
C1, . . . , CM and select the minimum value, i.e. kop = kj

such that Cj = min{C1, . . . , CM}. Thus, we could com-
pute the global minimum, instead of a simple minimum
(not necessary the global one) obtained by using standard
minimization techniques.

– Evolving domains
Some times we are interested in solving models defined
in a domain that is evolving in time, i.e. the partial differ-
ential equations are defined in Ωx(t). There are probably
many ways to treat this kind of models, but a simple pro-
cedure consists in writing the problem in the reference
domain Ω

ref
x (that could be identified to the domain at

the initial time, i.e. Ω
ref
x = Ωx(t = 0)).

Now, if the kinematics is known, the function given the
position at time t of a point that occupied the position X
at time t = 0 can be easily derived: x = x(X, t). Now, the
partial differential equation defined in Ωx(t) × Ωt can be
transformed in its counterpart now defined in Ω

ref
x × Ωt .

This procedure is quite standard in computational me-
chanics when one proceeds in the Lagrangian framework.

Now, with the problem defined in (X, t) ∈ Ω
ref
x × Ωt ,

the natural separated representation writes:

u(X, t) ≈
i=N∑

i=1

Xi(X) · Ti(t) (132)

The global weak space-time formulation is first writ-
ten, and then the functions of space and time searched af-
ter integration in the time and space domains respectively
(we don’t enforce the balance equation at any particular
time step as is the case when using incremental strate-
gies).

– Towards real time simulations
Many problems in engineering needs for very fast so-
lutions, sometimes in the real time range. As the mod-
els in engineering are quite complex (non-linear, involv-
ing thousands or even millions degrees of freedom, . . . )
the real time constraint is an intractable issue in numeri-
cal simulation by using the standard procedures, despite
the impressive recent progresses in the computational re-
sources. Parallel platforms, high performance computing
. . . do not suffice, at least at present, for reaching the real
time simulation requirements.

One area in which we are specially interested is the
one that concerns surgery simulators. In these applica-
tions, real time is not a caprice, real time is needed to
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be a valuable surgery tool. Living tissues are non-linear,
anisotropic, geometrically complex, and the applied loads
move on their surfaces . . . all them making difficult fast
simulations.

In [36, 37] and [38] we explored the use of model re-
duction techniques based on the use of Proper Orthogo-
nal Decompositions (POD) combined with an advanced
non-linear solver (the asymptotic numerical method) that
avoids the necessity of recomputing the tangent matrix
at each load updating. Despite these advanced computa-
tional ingredients, real time requirements were reached
with some difficulties.

At present we are considering the application of the
PGD. We could solve the non-linear elasticity problem
(involving material and geometrical non-linearities) in-
cluding the moving load applying in the organ surface as
a new model coordinate. Let p the vector representing the
applied force on the organ surface. The point at which
that force applies is designated by y. As we are consid-
ering quasi-static behaviors we don’t need to specify the
dependence y(t).

Now, the non-linear elasticity problem is solved as-
suming the separated representation of the displacement
field given formally by:

u(x,y,p) ≈
i=N∑

i=1

Xi (x) · Yi (y) · Pi (p) (133)

that represents the displacement u at point x when a load
p applies at position y.

Now, as soon as the force and its location are given, pg

and yg , the displacement field is calculated

u(x;yg,pg) ≈
i=N∑

i=1

Xi (x) · Yi (yg) · Pi (pg) (134)

The construction of this general solution is made once,
off line, and then used in-line as a simple post-processing
allowing to fulfill real time constraints.

– Homogenization
Many processes and/or materials exhibit many scales. Mi-
crostructure in materials induces different space scales.
Processes can also induce different time scales. Thus,
for example when one considers processes like ultrasonic
welding [31] the scale related to the load evolution is of
some microseconds, whereas the characteristic time re-
lated to the welding process itself is of some seconds.

When these scales are well separated (turbulence is a
nice couner-example!) we could consider separated (and
independent) coordinates related to the different scales.
For the sake of simplicity we consider two time scales.
The fastest one implies a time τ being t̃ the one related
to the slowest one. The characteristic times of both scales
define the scale factor ε: t̃ = ετ .

Thus, the time dependence of a generic field u(t) can
be rewritten as u(t̃, τ ) and then

du

dt
= ∂u

∂t̃
· ∂t̃

∂t
+ ∂u

∂τ
· ∂τ

∂t
(135)

that taking into account that t̃ = t reduced to:

du

dt
= ∂u

∂t̃
+ ∂u

∂τ
· 1

ε
(136)

and so on for the higher order derivatives. Thus, the partial
differential equations involved in the thermo-mechanical
model of the process can be rewritten making use of the
two new time coordinates.

In general, for solving the resulting model an asymp-
totic expansion of the different fields is performed, and
then by identifying the equation at the different orders the
model is solved and the effects of the microscopic scale
appears naturally in the macroscopic one. However, in
some situations this procedure becomes quite technical.

The use of the PGD avoids the asymptotic expansion
because the multidimensional problem that results by in-
troducing the different independent time coordinates can
be efficiently solved without major difficulties by apply-
ing the PGD. Thus, the solution is searched under the sep-
arated form:

u(τ, t̃) ≈
i=N∑

i=1

�i (τ ) · Ti (t̃ ) (137)

In general this procedure can be extended to models in-
volving more than two time scales, for the ones involving
many space scales (rich microstructures with many dif-
ferent characteristic lengths) and for the ones combining
many space and time scales.

– Convective stabilization
It is well-known that standard finite element (Galerkin)
methods do not work well for convection-diffusion or
convection-diffusion-reaction equations, since they lead
to unstable, oscillating, solutions [22]. The first stabiliza-
tion methods including upwinding in the convective term
in order to produce an artificial diffusion that eventually
lead to stable solutions were published in [26].

Among the very numerous methods that have been
proposed for the stabilization of convection-diffusion
equations, the streamline-upwind/Petrov-Galerkin
(SUPG) method [27] is one of the most extended. The
major drawback of this method is that it introduces some
cross-wind artificial numerical diffusion when applied to
two- or three-dimensional equations.

The use of PGD could circumvent, or at least allevi-
ate this drawback. It has been noticed that the use of such
an approximation leads to a sequence of different one-
dimensional problems, for which “exact” SUPG stabiliza-
tions exist. In this way, we can apply a standard SUPG
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method to a sequence of one-dimensional problems to
obtain a properly stabilized solution to a two- or three-
dimensional convection-diffusion(-reaction) problem.

For simplicity, we consider the steady-state 2D con-
vection-diffusion(-reaction) equation. This equation is
given by

v · ∇u − ∇ · (a∇u) + σu = s in Ω ⊂ R
n (138)

with n = 2,3 and with boundary conditions

u = uD on ΓD (139a)

n · a∇u = a
∂u

∂n
= t on ΓN (139b)

where u is the scalar quantity to be transported and also
the unknown field of the problem, v is the advective ve-
locity, a > 0 the diffusivity, assumed constant, σ the reac-
tion term and s(x) a volumetric source term. The function
uD denotes the prescribed value of u on the Dirichlet por-
tion of the boundary given by ΓD and t denotes the value
of the normal diffusive flux on the Neumann boundary
ΓN . In what follows, for the sake of simplicity, we shall
omit the reaction term of the equation, since it does not
imply any special difficulty for the technique here devel-
oped.

The weak form of the problem given by (138)–(139)
is:

Find u(x) ∈ S = {u ∈ H1(Ω)|u = uD on ΓD} such
that for all w ∈ V = {w ∈ H1(Ω)|w = 0 on ΓD}
∫

Ω

w(v · ∇u)dΩ +
∫

Ω

∇w · (a∇u)dΩ

=
∫

Ω

wsdΩ +
∫

ΓN

wtdΓ (140)

which is very often expressed compactly with the help of
the following notation:

a(w,u) =
∫

Ω

∇w · (a∇u)dΩ (141a)

c(v;w,u) =
∫

Ω

w(v · ∇u)dΩ (141b)

(w, s) =
∫

Ω

wsdΩ (141c)

(w, t)ΓN
=

∫

ΓN

wtdΓ (141d)

giving rise to the following compact form of the equation:

a(w,u) + c(v;w,u) = (w, s) + (w, t)ΓN
(142)

The general form of the consistent stabilization tech-
niques is [22]

a(w,u) + c(v;w,u) +
∑

e

∫

Ωe

P (w)τ R(u)dΩ

= (w, s) + (w, t)ΓN
= l(w) (143)

where P (w) is some operator applied to the test functions
and R(u) = L(u) − s is the residual of the equation. In
the SUPG method, P (w) = v · ∇w.

The exact nodal values for 1D convection-diffusion
equation are obtained for a value

τ = h

2v

(
coth Pe − 1

Pe

)
(144)

where Pe is the mesh Péclet number, defined as Pe =
vh/2a. h represents the mesh size parameter and v the
modulus of the convective velocity. The problem with this
type of stabilization is that, on one side, this value has
been defined for one-dimensional problems and linear fi-
nite elements in order to represent exactly the problem
solution.

Within the PGD framework, in the enrichment stage
we look for an improved representation of the essential
field in the form

un+1(x, y) =
n∑

i=1

Xi(x) · Yi(y) + R(x) · S(y) (145)

or, equivalently,

un+1(x, y) = un(x, y) + R(x) · S(y) (146)

The test function will then be given by

w∗(x, y) = R∗(x) · S(y) + R(x) · S∗(y) (147)

When substituting (146) and (147) into the weak form of
the problem, (143), we arrive at

a
(
R∗S + RS∗,RS

)+ c
(
v;R∗S + RS∗,RS

)

= −a
(
R∗S + RS∗, un

)− c
(
v;R∗S + RS∗, un

)

+ l(R∗S + RS∗)

−
∑

e

∫

Ωe

v∇(R∗S + RS∗)τ
[

L(un+1) − s
]
dΩ

(148)

where we have omitted, for clarity, the obvious depen-
dence of R in x and S in y.

After applying such an approximation, the weak form
of the problem given by (148) is solved by using the fixed-
point algorithm (extensively used throughout the present
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paper) in which the R and S functions are sought itera-
tively.

For instance, assuming R(x) known, the resulting ex-
pression will be

a
(
RS∗,RS

)+ c
(
v;RS∗,RS

)

= −a
(
RS∗, un

)− c
(
v;RS∗, un

)

+ l(RS∗)

−
∑

e

∫

Ωe

v∇(RS∗)τ
[

L(un+1) − s
]
dΩ (149)

Assuming ν constant, we have

L(un+1) = v · ∇un+1 − ∇ · (ν∇un+1)

= L(un) + v · ∇RS − ν∇2RS

so that we arrive at

a
(
RS∗,RS

)+ c
(
v;RS∗,RS

)

= −a
(
RS∗, un

)− c
(
v;RS∗, un

)+ l(RS∗)

−
∑

e

∫

Ωe

v · ∇(RS∗)τ
[
v · ∇RS − ν∇2RS − s

]
dΩ

︸ ︷︷ ︸
A

−
∑

e

∫

Ωe

v · ∇(RS∗) · τ · L(un) dΩ

︸ ︷︷ ︸
B

(150)

After some lengthy, yet simple, algebra and after taking
into account that second derivatives of functions R and
S vanish if we approximate them by standard, first-order,
finite elements, we obtain for the term A,

A =
∑

e

∫

Ωe

(
vx · dR

dx
· S∗ + vy · R · dS∗

dy

)

· τ ·
(

vx · dR

dx
· S + vy · R · dS

dy
− s

)
dΩ (151)

For the term B we obtain

B =
∑

e

∫

Ωe

(
vx · dR

dx
· S∗ + vy · R · dS∗

dy

)

· τ ·
(

vx · ∂un

dx
+ vy · ∂un

dy

)
dΩ (152)

The impact of the choice of τ is being evaluated and
PGD solutions compared with fully 2D SUPG stabilized
solutions.

– Separated representation of Molecular Dynamics
The molecular dynamic problems are based on the res-
olution of a set of Newton’s equations for a given num-
ber of particles denoted here by N . The system is de-
scribed by a set of discrete positions varying during time

x1(t), x2(t), . . . , xN(t). The dynamics of each particle de-
pends on the position of the surrounding particles through
an interaction potential as well as on its own position in
the case of an existence of an external field generating
a force on each particle. The general equations are then
written in the next form:

d2xi(t)

dt2
= 1

mi

fi(x1, . . . , xN), i = 1, . . . ,N (153)

mi is the mass and fi is the force applied on the ith par-
ticle which is non linearly dependent on the system state.
These N equations can be gathered into a compact nota-
tion involving a vector x = (x1, . . . , xN)T .

d2x
dt2

= L(x) (154)

where the vectorial discrete operator L contains all forces
and masses contributions.

The main difficulty associated to the solution of this
equations is associated to the high number of iteration
steps for which we have to solve high number of discrete
equations related to each particle. In the context of the
PGD we can look for the solution directly as a product of
time functions Tj (t) by some configurations states of the
particles given by a position coordinates vector Xj . Xj

could be interpreted as a discrete significant mode of the
position vector during the time evolution that has been to
be calculated ‘a priori’. If we look for a general solution
that writes

x(t) ≈
R∑

j=1

Xj .Tj (t) (155)

and if we assume known the first n couples of configura-
tion states and time functions (n < R) then the new couple
Y, S(t) deriving from the enrichment process must satisfy

n∑

j=1

(
Xj

d2Tj

dt2

)
+ Y

d2S

dt2
= L(Xj Tj + YS) (156)

The residual minimization of Sect. 3.4 could be applied
onto this equation. The main difficulty is related to the
updating of the discrete operator L that accounts for high
non linearity. This requires a complete reconstitution of
the time-space solution for each enrichment stage (if we
consider the simplest updating of the non linearity de-
scribed in Sect. 3.2). Even if this technique allows to find
the solution with an ‘a priori’ estimation it costs, unfortu-
nately, R times more expensive than the direct simulation.

– New dreams
The possibility of solving efficiently multidimensional
models including hundreds of coordinates [4] opens new
possibilities in that concerns the solution of models that
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are in nature multidimensional (quantum chemistry, sta-
tistical mechanics, biology, computational finance, . . . )
but also many others (standard in nature) that could be
transformed into highly multidimensional models.

We could expect that some non-linear problems could
be linear in a higher dimensional spaces, making possi-
ble its solution in such spaces and then come back to the
initial one solving a non-linear algebraic problem. Other
possibility that we recently explored lies in the solution
of some simple models that exhibit bifurcations in theirs
solution. The treatment of these models needs some ap-
propriate technique able to identify the bifurcation points
and to follow each solution branch. Our idea was to im-
merse these physics in higher dimensional spaces, such
that the solution can represent simultaneously all the solu-
tion richness. Thus, in the buckling of a column in 2D, we
obtained a solution that after reaching the critical load ex-
hibit all the possible solutions simultaneously. The price
to be paid is obviously the consideration of many extra-
coordinates. Thus, if a solver able to address highly mul-
tidimensional models is available, new and some times
unimaginable possibilities appears suddenly!

5 Conclusions

In this paper we presented the ability of the Proper Gen-
eralized Decomposition—PGD—for solving highly multi-
dimensional models. This technique operates by construct-
ing a separated representation of the solution, such that,
the solution complexity scales linearly with the dimension
of the space in which the model is defined, instead the
exponentially-growing complexity characteristic of mesh
based discretization strategies.

The PGD makes possible the efficient solution of mod-
els defined in multidimensional spaces, as the ones encoun-
tered in quantum chemistry, kinetic theory description of
complex fluids, genetics (chemical master equation), finan-
cial mathematics, . . . but also those, classically defined in
the standard space and time, to which we can add new
extra-coordinates (parametric models, . . . ) opening numer-
ous possibilities (optimization, inverse identification, real
time simulations, . . . ).

Despite the first success in the treatment of the models
described in this paper, this numerical proposal is too recent
to conclude about its limits, . . . Thus, the analysis should
continue for identifying new opportunities but also its limi-
tations.
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