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Keywords:

Deformable models

Non-linear behavior

Model reduction

Proper orthogonal decomposition

In this paper we introduce a new technique for the real-time simulation of non-linear tis-

sue behavior based on a model reduction technique known as proper orthogonal (POD) or

Karhunen–Loève decompositions. The technique is based upon the construction of a com-

plete model (using finite element modelling or other numerical technique, for instance, but

possibly from experimental data) and the extraction and storage of the relevant informa-

tion in order to construct a model with very few degrees of freedom, but that takes into

account the highly non-linear response of most living tissues. We present its application to

the simulation of palpation a human cornea and study the limitations and future needs of
the proposed technique.

For that to be possible, it is commonly accepted that a
. Introduction

eal-time surgery simulation [1] has attracted the attention
f a wide community of researchers, from computer scien-
ists to mechanical engineers, together with computational
eometers, surgeons, etc. The utility of such techniques are
bvious, and they include, for instance, surgery planning,
raining of surgeons in image-guided surgery or minimally
nvasive surgery, etc.

The state of the art of the technique has evolved very
apidly, see for instance [2] or [3] for interesting surveys.
tarting from spring-mass systems, the nowadays real-time

urgical simulators are now mostly based on finite element
FE) or boundary element (BE) technologies, able to account for
quite realistic behavior and even large deformations, see, for
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instance [4–6]. Cuts, contact detection of tools, or even auto-
contact of tissues are common in many of these simulators.

The requirements of such simulators are also clear: they
should provide a physically more or less accurate response
such that, with the use of haptic devices, a realistic feedback
is transmitted to the surgeon in terms of both visual feedback
and force feedback. By “accurate response” we mean that an
advanced user should not encounter “unphysical” sensations
when handling the simulator. We definitely do not pursue an
accurate solution in engineering terms. Following [7], “. . . the
model may be physically correct if it looks right”.
minimum bandwidth of 20–60 Hz for visual feedback and
300–1000 Hz for haptic display is necessary, see [8]. In this
paper we focus our attention in the second requirement for



the deformable model. All the simulations performed were
designed to run under that requirements.

One of the main limitations of existing real-time sim-
ulation algorithms is that they not take into account the
anisotropic and highly non-linear response of virtually all soft
tissues, see [3] for a recent survey on the topic. Very recently,
geometric non-linearities have been taken into account in
a work also based in model reduction, see [4]. But in this
case, only linear materials have been considered (i.e., the
so-called Saint-Vénant-Kirchhoff models, or homogeneous
isotropic linear elastic materials undergoing large deforma-
tions). Most soft tissues, however, exhibit complex non-linear
responses, possibly with anisotropic characteristics, and are
frequently incompressible or quasi-incompressible. Geomet-
ric non-linearities (those deriving from large strains) should be
also taken into consideration on top of this complex material
behavior. The correct simulation of these materials requires
the employ of Newton–Raphson or similar techniques in an
iterative framework. In other words, a tangent stiffness matrix
must be inverted, possibly many times, at each time step. This
makes the existing engineering FE codes unpractical for real-
time simulations.

While most of the existing simulation techniques in real-
time, as mentioned before, are based upon finite element or
boundary element techniques, we have pursued a different
philosophy. Following Cotin and Bro-Nielsen, “. . . We do not
care about the time taken for one-time pre-calculation such
as setting up equations, inverting matrices, etc.” [7].

The technique here presented is based upon existing data
on the behavior of the simulated tissues. These data can
be obtained after numerical simulations made off-line and
stored in memory. But they can be also obtained from phys-
ical experiments, for instance. For the work here presented
we have chosen the first option, and FE models of the organs
being simulated will be considered as an “exact” to compare
with. From these data we extract the relevant information
about the (non-linear) behavior of the tissues, with the help of
Karhunen–Loève decompositions and employ it to construct a
very fast Galerkin method with very few degrees of freedom.

To this end, we employ model reduction techniques based
on proper orthogonal decompositions [9–12]. FE methods have
had a tremendous success in many branches of science and
engineering because of their simplicity and good performance
in many fields. They employ piece-wise polynomials as a
basis to construct an interpolation of the unknown field of
interest (usually the displacement field, but also velocities,
pressure and stresses are unknowns in different FE formu-
lations). These piece-wise polynomials are very simple and
general functions defined over a very restricted domain (the
element itself). In model reduction techniques we employ
global (and hence not restricted to an element) basis functions.
But these functions are of “high quality”. This means that in
the construction of these basis we employ available informa-
tion on the problem. The more information we have, the better
quality basis functions will be obtained. And, of course, the
better results will be obtained.
To obtain the information necessary to construct these
“good” basis functions, as mentioned before, we employ
proper orthogonal decomposition (POD) techniques. And
these can be built upon finite element results (or, in general
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any numerical simulation results, if available) or also upon
experimental results. Of course, these simulations are made
off-line and their results are stored prior to starting the simu-
lation.

In order to show the performance of the method, we
have chosen to simulate the behavior of the human cornea,
although the technique is equally applicable to any other soft
tissue. Other tissues, such as bones, that in short periods
of time present almost linear response, could be also simu-
lated with this technique, obtaining even better results. The
cornea presents a highly non-linear response, with anisotropic
and heterogeneous behavior due to its internal collagen fiber
reinforcement. As an accurate enough model we have imple-
mented that employed in [13]. This model is briefly reviewed
in Section 2. The interested reader is referred to that paper
and references therein for further details on the mechanical
response of the cornea.

In Section 3 we review the basics of model reduction tech-
niques based upon proper orthogonal decomposition.

2. A hyperelastic mechanical model for the
human cornea

As mentioned before, we have chosen the human cornea as an
example of highly non-linear tissue. This non-linearity comes
from a variety of reasons, such as the internal collagen fiber
reinforcement (material non-linearity) and also from the very
large strains it could suffer. The human cornea is composed
by a highly porous material, composed by nearly 80% by water,
and thus quasi-incompressible. Most of the cornea’s thick-
ness (around 90%) constitutes the stroma, that is composed
of 300–500 plies of collagen fibers, distributed in parallel to
the surface of the cornea. This microstructure induces in the
corneal tissue a highly non-linear and heterogeneous behav-
ior.

The model here employed for the simulation of the human
cornea [13] considers the cornea as a hyperelastic material.
We will denote the initial, undeformed, configuration of the
cornea by �0. A continuous movement � translates a point
X ∈ �0 to its location at time t, x ∈ �t. Reinforcing fibers, that
move continuously together with the cornea, posses a direc-
tion m0, with |m0| = 1. After the deformation, this orientation
changes to m(x, t), always with unit modulus. The fiber stretch-
ing after the deformation will be given by

�m(x, t) = Fm0 (1)

where F = dx/dX represents the deformation gradient. A sec-
ond family of fibers, n0, is also consider as reinforcement at
each point.

Due to the dependence of strain on the considered direc-
tion, the existence of a strain energy density functional, �,
depending on the right Cauchy–Green tensor, C = FTF, and the
initial fiber orientations, m0 and n0, is postulated. Based on the

volumetric incompressibility restrictions, this functional can
be expressed as [13]

�(C) = �vol(J) + �̄(C̄, m0 ⊗ m0, n0 ⊗ n0) (2)
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here �vol(J) describes the volumetric change and �̄(C̄, m0 ⊗
0, n0 ⊗ n0) the change in shape. Both are scalar functions of

= det F, C̄ = F̄
T
F̄, where F̄ = J−1/3F, m0 and n0.

Once this energy density functional is known, the second
iola–Kirchhoff stress tensor, S, and the fourth-order tangent
onstitutive tensor, C, can be determined by

= 2
∂�

∂C
, C = 2

∂S(C)
∂C

(3)

detailed derivation of the model can be obtained in [13]. The
nterested reader is referred to this paper for reference.

We have considered �vol = (1/D)(Ln(J))2 to enforce the
uasi-incompressible behavior of the cornea through the
enalty parameter 1/D, and to model the corneal tissue we
ave employed the model proposed by Holzapfel and Gasser

14], initially developed for arterial tissue:

¯ = C1

2
(Ī1 − 3) + C2

2
(Ī2 − 3) + k1

2k2
{exp[k2(Ī4 − 1)

2
] − 1}

+ k3

2k4
{exp[k4(Ī6 − 1)

2
] − 1} (4)

ence, similar approaches can be employed for most soft
issues. Material characteristics are summarized in Table 1.

1, Ī2, Ī4, . . . , Ī9 are different invariants of the modified symmet-
ic right Cauchy–Green tensor [14]. They are defined as:

1 = tr(C̄), Ī2 = 1
2

(tr(C̄))
2 − tr(C̄

2
) (5)

4 = m0 · C̄m0, Ī5 = m0 · C̄
2
m0 (6)

6 = n0 · C̄n0, Ī7 = n0 · C̄
2
n0 (7)

8 = (m0 · n0)m0 · C̄n0, Ī9 = (m0 · n0)2 (8)

or this particular implementation we have chosen, based on
13], Ī5 = Ī7 = 0.

. Model reduction techniques

.1. Fundamentals: Karhunen–Loève or proper
rthogonal decomposition
he technique we employed is known by a wide variety of
ames, since it has been employed and re-discovered in many
ranches of science and engineering. Maybe the most com-
on names are Karhunen–Loève decomposition [9,10], proper
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orthogonal decomposition [15] or empirical orthogonal functions
[11].

In this technique we assume that the evolution of a cer-
tain field T(x, t) is known. In practical applications (assume
that we have performed off-line some numerical simulations,
for instance), this field is expressed in a discrete form which
is known at the nodes of a spatial mesh and for some times
tm. Thus, we consider that T(xi, tm) = Tm(xi) ≡ Tm

i
(tm = m × �t)

are known. We can also write Tm for the vector containing
the nodal degrees of freedom at time tm. The main idea of
the Karhunen–Loève (KL) decomposition is to obtain the most
typical or characteristic structure �(x) among these Tm(x), ∀m.
This is equivalent to obtain a function that maximizes ˛:

˛ =

m=M∑
m=1

[

i=N∑
i=1

�(xi)Tm(xi)]

2

i=N∑
i=1

(�(xi))
2

(9)

where N represents the number of nodes of the complete
model and M the number of computed time steps. The maxi-
mization leads to:

m=M∑
m=1

⎡
⎣( i=N∑

i=1

�̃(xi)T
m(xi)

)⎛⎝ j=N∑
j=1

�(xj)T
m(xj)

⎞
⎠
⎤
⎦

= ˛

i=N∑
i=1

�̃(xi)�(xi); ∀�̃ (10)

which can be rewritten in the form

i=N∑
i=1

⎧⎨
⎩

j=N∑
j=1

[
m=M∑
m=1

Tm(xi)T
m(xj)�(xj)

]
�̃(xi)

⎫⎬
⎭=˛

i=N∑
i=1

�̃(xi)�(xi); ∀�̃

(11)

Defining the vector � such that its ith component is �(xi), Eq.
(11) takes the following matrix form

�̃
T
c� = ˛�̃

T
�; ∀�̃ ⇒ c� = ˛� (12)

where the two-point correlation matrix is given by

cij =
m=M∑
m=1

Tm(xi)T
m(xj) ⇔ c =

m=M∑
m=1

Tm(Tm)T (13)

which is symmetric and positive definite. If we define the
matrix Q containing the discrete field history:

⎛ 1 2 M⎞

Q =

⎜⎜⎝
1 1 1

T1
2 T2

2 · · · TM
2

...
...

. . .
...

T1
N T2

N · · · TM
N

⎟⎟⎠ (14)



then it is easy to verify that the matrix c in Eq. (12) results

c = QQT (15)

3.2. A posteriori reduced modelling of transient models

If some direct simulations have been carried out, we can
determine Tm

i
, ∀i ∈ [1, . . . , N] and ∀m ∈ [1, . . . , M], and from these

solutions the n eigenvectors related to the n-highest eigen-
values that are expected to contain the most important
information about the problem solution. For this purpose we
solve the eigenvalue problem defined by Eq. (12) retaining all
the eigenvalues �k belonging to the interval defined by the
highest eigenvalue and that value divided by a large enough
value (108 in our simulations). In practice n is much lower than
N, and this constitutes the main advantage of the technique.
Thus, we can try to use these n eigenfunctions �k for approx-
imating the solution of a problem slightly different to the one
that has served to define Tm

i
. For this purpose we need to define

the matrix B = [�1· · ·�n]

B =

⎛
⎜⎜⎝

�1(x1) �2(x1) · · · �n(x1)
�1(x2) �2(x2) · · · �n(x2)

...
...

. . .
...

�1(xN) �2(xN) · · · �n(xN)

⎞
⎟⎟⎠ (16)

Now, if we consider the linear system of equations coming
from the discretization of a generic problem, in the form:

GTm = Hm−1 (17)

where the superscript refers to the time step, then, assum-
ing that the unknown vector contains the nodal degrees of
freedom, it can be expressed as:

Tm =
i=n∑
i=1

�m
i �i = B�m (18)

from which Eq. (17) results

GTm = Hm−1 ⇒ GB�m = Hm−1 (19)

and by multiplying both terms by BT we obtain

BTGB�m = BTHm−1 (20)

which proves that the final system of equations is of low order,
i.e. the dimension of BTGB is n × n, with n 	 N.

3.3. A posteriori reduced modelling of parametric
models

From Eq. (20) we can notice that the reduced model employs
the tangent stiffness matrix, G, linearized from the non-linear

problem formulation at a given time instant. Instead if invert-
ing the full stiffness matrix, of size N × N, we employ model
reduction techniques to inverse the matrix BTGB, of size n × n,
and much lower than the original size, as mentioned before.
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However, this tangent stiffness matrix G corresponds to
a given state of the model (i.e., a given load position, for
instance, in mechanical problems). Different load positions
would lead to different matrices G along the loading path
(this is due to the non-linear character of the problem). The
proper orthogonal decomposition can also be used in param-
eter space, that is, after obtaining system snapshots while
allowing a parameter to vary. In this case the considered value
is the contact position with the tool. A procedure to obtain the
system response for any position of the load was described by
Ly and Tran [16]. Let [Tm(Xi)]

k
i=1 be the response of the system

for k different parameter values (in this case, loads at positions
Xi), at time step m. The basic algorithm is described as

(1) Perform the complete model simulation for each parame-
ter value.

(2) Apply the standard POD procedure to the complete set of
snapshots of the system to obtain an orthonormal basis
B = [�1· · ·�n]. Although this is the standard procedure, we
have noticed that it is better to apply the POD to the snap-
shots of the nearest neighboring load cases in order to
obtain a more precise basis with fewer degrees of freedom.

(3) Project each system snapshot onto this new basis, by
Tm(Xi) = B�m

i
.

(4) Assuming that the coefficients �m
i

are a smooth function of
X, we interpolate among the nearest available values from
the set �m

i
. Thus, the response of the system for a new load

position, Tm(X) can be expressed as

Tm(X) = B�m
X (21)

with �m
X interpolated from the set �m

i
.

This procedure is known in the literature as proper orthog-
onal decomposition with interpolation (PODI) [16].

In order to establish a good basis B = [�1· · ·�n], a good sam-
pling strategy should be chosen for the position of the loads
in the complete models. In this case, a lattice was established
over the domain. Loads were applied at every lattice position.
Obviously, other strategies can also be implemented. If the lat-
tice is not dense enough, it is clear that the PODI interpolation
described in this section would lead to less accurate results.

4. Numerical results

In order to test the performance of the proposed technique,
we have focused our attention mainly in two aspects. First,
the accuracy of the results. Second, the compliance with
the requirements of haptic feedback, i.e., all results must be
obtained at a frequency between 300 and 1000 Hz. Aspects
related to image rendering, contact detection, tissue cutting,
etc., have not yet been addressed in this work and constitute
the authors’ topic of research at this moment.

A set of tests have been accomplished, all based in the
model of the human cornea presented before. Inertia effects

are neglected in this problem, due to the typical slow velocity
in the application of the loads in this kind of organs. Thus, we
face a parametric problem like the one described in Section
3.3. Considering the dynamics of the problem would imply to
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Fig. 1 – Geometry of the finite el

olve the equations described in Section 3.2. This is still a work
n progress.

The cornea was discretized with trilinear three-
imensional finite elements. The mesh consisted of 8514
odes and 7182 elements. A view of the geometry of the
odel is shown in Fig. 1.
The orientation of the two families of fibers, distributed

long the thickness of the cornea, is shown in Fig. 2.

.1. Palpation of the cornea

he first test for the proposed technique consists of simulating
he palpation of the cornea with a surgical instrument. In order
o validate the results, a load was applied to the complete FE

odel in the central region of the model. The obtained result
as compared to the one obtained by employing the model

eduction techniques presented before, for the load applied at
he same location.

Once the complete model is solved, the most important
igenmodes are extracted from the computed displacements
eld, together with the initial tangent stiffness matrix. The
umber of eigenmodes employed in this case was only six,
hich is, in our experience, the minimum number of modes

hat should be employed in such a simulation. Other tan-
ent stiffness matrices different to the initial one can also

e used, perhaps with more accurate results. The modes are
epicted in Fig. 3. The associated eigenvalues are, from the
iggest to the smallest one, 9.02 × 104, 690, 27, 2.63, 0.221 and
.0028. As can be seen, the relative importance of these modes

ig. 2 – Fiber distribution in the finite element model of the corne
ach other, are considered.

5

t model for the human cornea.

in the overall solution, measured by the associated eigen-
value, decreases very rapidly. Note that the reduced model
employed only six degrees of freedom, while the complete
model employed 8514 nodes with three degrees of freedom
each, thus making 25,542 degrees of freedom. The computa-
tional savings are obvious: instead of inverting a matrix of
25,542 × 25,542, we invert a matrix of only 6 × 6. Of course,
if more accurate solutions are needed, a higher number of
modes can be employed.

The displacement field obtained for the complete model is
compared to that of the reduced model. We chose different
positions of the load and compared the results. The applica-
tion of loads at different locations produced levels of error of
similar values as the examples here reported. For a first loca-
tion of the load, the obtained vertical displacement is shown
in Fig. 4.

In Fig. 5 the load was applied at a point located slightly
towards the outer boundary of the model. In this case, as can
be seen from Fig. 5, the displacement obtained at the point
of application of the load is nearly exact, although the shape
of the deformed cornea is somewhat different. This is not the
case for Fig. 4, where errors of about 20% are noticed. The L2

error norm ranged from very low values (0.08) in the early steps
of the simulation, to higher values (around 0.34) for the last
step. In our experience, this is a typical upper bound of the

obtained error, even if very large deformations are imposed to
the simulated organ, as is the case. This error can be attributed
to a severe buckling phenomenon that appears in the com-
plete model. The reduced model is not able, obviously, to

a. Two families of collagen fibers, roughly perpendicular to
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Fig. 3 – Six first eigenmodes of the problem employed as glo
(b) ˛ = 690; (c) ˛ = 27; (d) ˛ = 2.63; (e) ˛ = 0.221; (f) ˛ = 0.0028

capture exactly this behavior. We believe, however, that the
present technique can be ameliorated in order to account for
buckling phenomena. This constitutes our present topic of
research.

All the simulations presented here ran on a PC equipped
with two processors (only one was employed, no parallel com-

puting was used) AMD Quad Opteron running at 2.2 GHz and
with 16 Gb RAM, under Scientific Linux. The prototype code
was implemented under MATLAB, which is not obviously the
best solution for such type of problems. It was chosen, how-

6

asis for the reduced model simulation. (a) ˛ = 9.02 × 10 ;

ever, for its ease of implementing these early versions of the
method. Lim and De [17] reported very recently similar levels
of error (even more, up to 30%), but for linear elastic materials
undergoing large strains (thus, only geometrically non-linear
problems). They employed a meshless method called the
method of finite spheres.
The simulations ran at 472–483 Hz, which is among the lim-
its imposed by haptic feedback realism, as mentioned before.
Of course, the use of more sophisticated, maybe parallelized,
codes, could give even faster results.



Fig. 4 – Vertical displacement field for a first position of the load. Complete model (left) vs. reduced model (right).
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Then, we applied a new load at a different position, in between
the two and computed the response of the system by means
of PODI techniques. We assume that the three loads increase

Table 2 – Error in the predicted force response on the tool

u FROM(N) FFEM(N) Error (%)

0.1 0.0045 0.0055 18
0.2 0.0091 0.0108 16
0.3 0.0136 0.0158 14
0.45 0.0204 0.0227 10
0.675 0.0307 0.0321 4
0.9 0.041 0.0405 −1
1.125 0.0511 0.0482 −6
1.35 0.0614 0.0555 −10
1.575 0.0716 0.0628 −14
Fig. 5 – Vertical displacement field for a second position

.2. Force prediction

he architecture of a real-time simulator requires, however,
he prediction of the response force to a given displacement
mposed to the model by means of the haptic device. To
nalyze the behavior of the proposed technique under these
equirements, we studied precisely a prescribed displacement
roblem for the case analyzed in previous section.

A vertical displacement was imposed to node 4144, located
ore or less in the center of the cornea, with linearly increas-

ng value. The response force exerted by the cornea on the
ool tip was simulated with the aid of the complete model
s well as the reduced one. While the complete model took
round 3 h to solve the problem, due to the large displace-
ent imposed at the last steps of the simulation, the reduced
odel still runs at between 400 and 500 Hz. The results are

ummarized in Table 2.
As can be noticed, the predicted response is very accurate

t the middle of the simulation, and gives some error both at
he very beginning of the simulation and for very large strains.

.3. Force located at an arbitrary point

s mentioned before, the strategy here presented includes
he off-line calculation of the response of the organ to pre-
cribed loads. Thus, a sampling strategy must be adopted to

onstruct a basis capable of representing the overall response
f the organ to virtually any load (although it is expected that
good surgeon will not make unexpected movements away

rom “good practice” rules in the surgery). It is therefore of

7

e load. Complete model (left) vs. reduced model (right).

utmost importance to know the quality of the response of the
system to a force located in a position whose response has not
been calculated. To this end, we employ the PODI approach
mentioned before [16], by placing loads in between the loaded
nodes in the complete model, in order to seek for the worst
case scenario for the method.

To study this behavior, we have implemented a simple test.
We computed the response of the cornea to two different loads
located at different locations by means of complete FE model.
1.8 0.0818 0.0702 −16
2.025 0.092 0.0779 −18
2.135 0.097 0.0818 −19

Reduced order modelling (ROM) vs. finite element modelling (FEM).



Fig. 6 – Vertical displacement (mm) for (a) the reduced model and (b) the complete model of a load in a position not

previously computed.

their value from zero linearly with time. The complete model
for this third load was also solved in order to test the accuracy
of the method. As before, this complete model is assumed
as “exact” in the absence of nay further knowledge on the
behavior of this cornea.

The obtained results for a very large strain are shown in
Fig. 6. The results for the PODI model are, as can be noticed, in
good agreement with the results of the complete model, see
Fig. 6(b).

The error in the prediction of the vertical displacement
under the load is 27.18% at the end of the simulation (max-
imum of the strain). We have also computed the error in || · ||2
norm, defined as:

||e||2 = 1
n

√√√√ n∑
I=1

e2
I (22)

where eI represents the nodal error and n the number of nodes
in the model. This error took a value of 29.5%, still within
the limits for the best techniques available today for linear
elastic materials [17]. Of course, larger values of error can
be obtained in larger strains are imposed, but they remain
bounded if “expected” values are given to the loads. For situa-
tions that will not likely occur, out of surgeons’ good practice,
the error can of course be very large. In any case, the reduced
basis of the model could be completed with more basis modes
corresponding to non-expectable behavior of the surgeons.

5. Conclusions

In this paper a novel strategy is presented for real-
time interactive simulation of non-linear anisotropic tis-
sues. The presented technique is based on model reduc-
tion techniques and, unlike previous works [4], it allows
for the consideration of both geometrical and material

non-linearities.

The reduced models are constructed by employing a set of
“high quality” global basis functions (as opposed to general-
purpose, locally supported FE shape functions) in a Galerkin
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framework. These functions are constructed after some direct
simulations of the organs performed by standard FE or BE tech-
niques, for instance. These simulations (their tangent stiffness
matrices) are made off-line and stored in memory prior to
beginning with the real-time simulation.

Results obtained showed good accordance with complete
model results, and ran at frequencies of around 400–500 Hz,
enough for real-time requirements, even for this very rude
code prototypes.

Some aspects remain, however, open for future work. For
instance, the possibility of determining a loss of accuracy
during the simulation and enriching the approximation by
adding some Krylov subspaces to the computed basis is open.
This constitutes the so-called a priori model reduction [12].
However, this requires the evaluation of the residual of the
equilibrium and possibly the updating of the stiffness matrix.
Updating the stiffness matrix is always a delicate question in
terms of computing time, albeit it is frequently done in mod-
ern real-time simulators for cutting simulation, for instance.

The possibility of validating the technique here proposed
by employing experimentally obtained results is also part of
our current effort of research. Not only the validation of the
results is possible, as mentioned before, but the improvement
of the technique by using “snapshots” obtained by physi-
cal measures, instead of numerical results. In our opinion,
although complex to obtain, these data would very much
improve the quality of the reduced models.

Contact detection in a reduced basis is another open issue.
Also, perhaps more important, is the simulation of cutting
in reduced basis. Cutting always involves a mesh updating
and consequently an updating in the stiffness matrix, as
mentioned before. However, modern techniques such as the
so-called eXtended finite element method (X-FEM) [18] are
able to simulate cutting without remeshing. The application
of these techniques to the technique before presented con-
stitutes our topic of research at this moment and will be
presented elsewhere.
In sum, the technique presented constitutes in our modest
opinion an alternative to standard FE simulation tech-
niques for real-time applications involving non-linear and
anisotropic materials. Further improvements that could take
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nto account more properly the non-linearity of the problem
ithout resorting to tangent stiffness matrix updating in the

omplete model are also under investigation.
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