
HAL Id: hal-01007231
https://hal.science/hal-01007231

Submitted on 17 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Real Time Simulation of Biological Soft Tissues: A PGD
Approach

Siamak Niroomandi, David Gonzalez, Icíar Alfaro, Felipe Bordeu Weldt,
Adrien Leygue, Elías Cueto, Francisco Chinesta

To cite this version:
Siamak Niroomandi, David Gonzalez, Icíar Alfaro, Felipe Bordeu Weldt, Adrien Leygue, et al.. Real
Time Simulation of Biological Soft Tissues: A PGD Approach. International Journal for Numerical
Methods in Biomedical Engineering, 2013, 29 (5), pp.586-600. �10.1002/cnm.2544�. �hal-01007231�

https://hal.science/hal-01007231
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Real-time simulation of biological soft tissues: a PGD approach
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A. Leygue 2, E. Cueto 1 and F. Chinesta 2
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We introduce here a novel approach for the numerical simulation of nonlinear, hyperelastic soft tissues 
at kilohertz feedback rates necessary for haptic rendering. This approach is based upon the use of proper 
generalized decomposition techniques, a generalization of PODs. Proper generalized decomposition tech-
niques can be considered as a means of a priori model order reduction and provides a physics-based 
meta-model without the need for prior computer experiments. The suggested strategy is thus composed 
of an offline phase, in which a general meta-model is computed, and an online evaluation phase in which 
the results are obtained at real time. Results are provided that show the potential of the proposed technique, 
together with some benchmark test that shows the accuracy of the method.
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1. INTRODUCTION

Real-time simulation is one of the most challenging scenarios for simulation-based engineering
sciences. The term real time strongly depends on the particular pursued application, but surgery
simulation is among the most restrictive ones. Haptic surgery simulators compute the response of
biological soft tissues and give it back to the peripherals at, at least, 25 Hz of feedback rate if
visual realism is needed and, notably, 500 Hz–1 kHz if haptic (force) response is desired [1, 2]. But
biological soft tissues are known to be highly nonlinear [3–5], very frequently modeled in a hyper-
elastic framework. It is well-known, in addition, that at least nonlinear strain measures should be
incorporated into the simulation, otherwise performing arbitrarily bad in terms of visual perception,
spurious gain in volume, and others [2].

This feedback rate for nonlinear problems constitutes indeed a great challenge for nowaday
simulation techniques based upon FEMs. This is perhaps the ultimate reason for the lack, up to our
knowledge, of surgery simulators of the second generation [1], that is, those that incorporate state-
of-the-art constitutive modeling of soft tissues to the simulation. A few references can be cited that
incorporate nonlinear tissue behavior (mainly Kirchhoff–Saint Venant hyperelasticity) (see [6–8]).
Many of them are indeed based upon explicit finite elements, possibly implemented in graphics
processing units. This is due to the very astringent conditions dictated by the haptic feedback rates
that prevent the use, in nowaday computers, of standard Newton-like methods for the solution of
nonlinear systems of equations.
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Recently, model order reduction has been seen as a powerful means to achieve real-time
performance in the simulation of nonlinear solids. For instance, Barbič and James [9] proposed
recently a method for model order reduction of Kirchhoff–Saint Venant solids at haptic feedback
rates. For more sophisticated constitutive laws, recent work on POD methods showed that visual
feedback performance can be easily obtained, but this is not the case very often if we need haptic
feedback [10–12]. In this case, linearization schemes for the resulting nonlinear systems of equations
is mandatory, although not straightforward to accomplish. Very often, Newton strategies are out
of reach, due to the inherent lack of time employed during stiffness matrix updates. In [13, 14],
a different strategy was developed that employed a combination of POD techniques with asymp-
totic numerical methods [15–18]. In that case, no tangent stiffness matrix updates are necessary, and
only a set of linear problems, all with the same stiffness matrix, must be solved.

Proper generalized decomposition (PGD) methods, on the contrary, arose recently as a means to
overcome the so-called curse of dimensionality associated to problems defined in high-dimensional
spaces [19–23]. Although the origins of the technique can be traced back to the large time increment
method and its associated radial loading [24], PGD is nowadays seen as a powerful method of model
order reduction that generalizes POD (and hence its name). Its field of application has gone far
beyond the initial objectives, and it is now being applied in a variety of fields: simulation-based
control of processes [25, 26], efficient simulation of plates and shells [27], and simulation of gene
regulatory networks [28], to cite a few.

The main idea for the extension of a technique initially developed to deal with high-dimensional
problems to a more general setting lies precisely in its ability to treat standard models as if they
were multidimensional. The key idea was initially put forth in [29]. In it, parametric equations were
cast into a multidimensional setting, thus taking advantage of the PGD solution structure. Going
one step forward, PGD can advantageously be employed into real-time simulation frameworks by
simply considering not only all parameters but also all possible boundary conditions (including
initial boundary conditions, see [30]) as new dimensions of the problem.

The resulting PGD solution to the problem is expressed as a finite sum of separable functions
that provides actually a meta-model for the problem, for which no prior computer experiment
(also known as snapshots in the model order reduction community) is necessary. This meta-model
can then be successfully applied in real time to obtain the response of the system at kilohertz rates,
as will be demonstrated in subsequent sections of this paper. This approach allows even to solve
models on handheld devices such as tablets and smartphones, thus opening the range of possible
applications of the technique.

In this paper, we present a novel technique for the simulation of biological soft tissues under
hyperelasticity assumptions at haptic feedback rates. It is based on the use of the aforementioned
PGD approach and an explicit linearization of the weak form generated by nonlinear strain
measures. The use of PGD therefore allows not only for a complete generalization of previous works
in the field (see [10,11]) but also to a completely new formulation of the problem. For the problem at
hand, POD techniques compute the solution (the so-called snapshots) of different complete models
for different contact positions between a surgical tool—scalpel—and an organ. By performing a
statistical analysis on top of these results, POD techniques extract the so-called modes, that is, those
displacement fields that best represent the solution of the complete problems. These modes, taken
as Ritz-like, global basis, are then used to approximate problems different to the original ones, that
is, for contact positions not initially considered. Therefore, the design of an appropriate simulation,
or computer experiment, campaign is the key aspect of the method. Also, how to efficiently and
accurately interpolate among reduced basis is another crucial aspect not fully resolved.

On the contrary, PGD methods consider a parametric problem. In this case, the parameter is the
contact position. By formulating the parametric problem as a high-dimensional one, PGD methods
allow for the efficient solution and ulterior storage of the model in the form of a sum of separable
functions. Therefore, rather than creating reduced models for particular positions of the tool, PGD
computes a general solution for any position of the tools, so that no subsequent interpolation of
reduced models is necessary, nor the computation of snapshots. Thus, the proposed method is based
upon an offline phase in which this general solution is computed and an online one in which the
solution is only evaluated at impressive feedback rates, here on the order of kilohertz.
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The paper is organized as follows. In Section 2, we introduce the basics of PGD applied to the
problem of a hyperelastic solid under moving punctual loads, which is the most frequent case in
surgery simulation. In Section 3, a very simple linearization of the nonlinear problem is introduced
that allows for a simple yet effective computation of the PGD approach to the problem. Although
this simple linearization is by no means the only possible one, its performance is analyzed in
Section 4, through a series of benchmark problems. It is shown how the PGD approach to the
problem of real-time simulation of soft tissue deformation opens new insights on how the problem
can be attacked.

2. A PROPER GENERALIZED DECOMPOSITION APPROACH TO VIRTUAL SURGERY

As already mentioned in Section 1, the key issue in the use of PGD approaches for real-time
simulation, and the one that makes it completely different in spirit from POD, lies in the formulation
of the original problem as a parametric one. This parametric problem is then reformulated as a high-
dimensional problem by considering each parameter as a new coordinate in the state space. The
PGD method then looks for an effective solution in the form of a finite sum of separable functions,
so as to be able to avoid the curse of dimensionality associated to high-dimensional problems and
mesh-based discretization techniques.

In this framework, the problem of determining the response of an organ to the load transmitted by
the contact with a surgical tool could be formulated to determine the displacement at any point of
the model, u.x,y, ´/, for any load position s and for any force vector orientation and module, t, thus
rendering a problem defined in the physical space .R3/, plus a six-dimensional state space .R6/.

For the sake of simplicity in the following development, and without loss of generality, we assume
a load vector t with unit module and oriented in the vertical direction. This renders a problem defined
in R6.uD u.x, s//, with all the characteristics of the aforementioned one.

Let us consider the weak form of the equilibrium equations (balance of linear momentum). Again,
for the sake of simplicity, we omit inertia terms. The interested reader could consult PGD-ODE [30]
for the treatment of ODEs in the framework of PGD. Under these assumptions, the weak form of
the problem, extended to the whole geometry of the organ, � and the portion of its boundary that
is accessible to the surgeon, N� � �t ,‡ consists in finding the displacement u 2 H1 such that for all
u� 2H1

0: Z
N�

Z
�

r su
� W �d�d N� D

Z
N�

Z
�t2

u� � td�d N� (1)

where � D �u[�t represents the boundary of the organ, divided into essential and natural regions,
and where �t D �t1 [ �t2, that is, regions of homogeneous and nonhomogeneous, respectively,
natural boundary conditions. Here, t D ek � ı.x � s/, where ı represents the Dirac delta function
and ek the unit vector along the ´-coordinate axis (we consider here, for the ease of exposition, a
unit load directed toward the negative ´ axis of reference).

Once regularized, the Dirac delta term is approximated by a truncated series of separable functions
in the spirit of the PGD method, that is,

tj �

mX
iD1

f ij .x/g
i
j .s/ (2)

where m represents the order of truncation and f ij ,gij represent the j th component of vectorial
functions in space and boundary positions, respectively.

‡Typically, of all of the natural regions of the boundary, �t � �—which in this case coincides with virtually all the
boundary of organs, � D @�, because they are not fixed or clamped but in contact to other organs— only a portion is
accessible to the surgeon. In minimally invasive surgery, surgeons operate through a small incision on the skin of the
patient, having access only to a limited portion of the boundary, here termed N� .
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The PGD approach to the problem is characterized by the construction, in an iterative way, of an
approximation to the solution in the form of a finite sum of separable functions. Assume that we
have converged to a solution, at iteration n of this procedure,

unj .x, s/D
nX
kD1

Xkj .x/ � Y
k
j .s/, (3)

where the term uj refers to the j th component of the displacement vector, j D 1, 2, 3, and functions
Xk and Y k represent the separated functions used to approximate the unknown field, obtained in
previous iterations of the PGD algorithm.

If we look for an improvement of this approximation, the (nC 1)th term will look like

unC1j .x, s/D unj .x, s/CRj .x/ � Sj .s/, (4)

where R.x/ and S .s/ are the sought functions that improve the approximation.
In this framework, the admissible variation of the displacement will be given by

u�j .x, s/DR�j .x/ � Sj .s/CRj .x/ � S
�
j .s/. (5)

At this point, several options are at hand so as to determine the new pair of functions R and S .
The most frequently used, due to both its ease of implementation and good convergence properties,
in general, is a fixed-point algorithm in which functionsR and S are sought iteratively. We describe
briefly the implementation of this algorithm.

2.1. Computation of S.s/ assuming R.x/ is known

In this case, following standard assumptions of variational calculus, we have

u�j .x, s/DRj .x/ � S
�
j .s/, (6)

or, equivalently, u�.x, s/ D R ı S �, where the symbol ‘ı’ denotes the so-called entry-wise
Hadamard or Schur multiplication for vectors. Once substituted into Equation (1), it gives

Z
N�

Z
�

r s.R ı S
�/ W C W r s

 
nX
kD1

Xk ı Y k CR ı S

!
d�d N�

D

Z
N�

Z
�t2

.R ı S �/ �

mX
kD1

f k ı gk

!
d�d N� , (7)

or equivalently (we omit obvious functional dependencies)

Z
N�

Z
�

r s.R ı S
�/ W C W r s.R ı S /d�d N�

D

Z
N�

Z
�t2

.R ı S �/ �

 
mX
kD1

f k ı gk

!
d�d N� �

Z
N�

Z
�

r s.R ı S
�/ �Rnd�d N� , (8)
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where Rn represents

Rn D C W r su
n. (9)

Because the symmetric gradient operates on spatial variables only, we have

Z
N�

Z
�

.r sR ı S
�/ W C W .r sR ı S /d�d N�

D

Z
N�

Z
�t2

.R ı S �/ �

 
mX
kD1

f k ı gk

!
d�d N� �

Z
N�

Z
�

.r sR ı S
�/ �Rnd�d N� (10)

where all the terms depending on x are known, and hence, we can compute all integrals over
� and �t2 (support of the regularization of the initially punctual load) to derive an equation to
compute S .s/.

2.2. Computation of R.x/ assuming S.s/ is known

Equivalently, in this case, we have

u�j .x, s/DR�j .x/ � Sj .s/, (11)

which, once substituted into Equation (1), gives

Z
N�

Z
�

r s.R
� ıS / W C W r s

nX
kD1

Xk ı Y k CR ı S

!
d�d N�

D

Z
N�

Z
�t2

.R� ı S / �

mX
kD1

f k ı gk

!
d�d N� . (12)

In this case, all the terms depending on s (load position) can be integrated over N� , leading to a
generalized elastic problem to compute function R.x/.

This simple algorithm renders, in general, excellent convergence properties (see [22] and
references therein).

3. ONE POSSIBLE EXPLICIT LINEARIZATION OF THE FORMULATION

The formulation introduced in Section 2 assumes implicitly small strains. But this assumption
has been found to be very insufficient for virtual surgery. Strains are large very often, and when
solved in a small strain setting, organs appear to suffer an unphysical gain in volume that renders
the simulations clearly nonrealistic [1]. Although real-time simulation of surgery does not look
nowadays for accuracy levels similar to those common in usual engineering practice (quoting Cotin
and Bro-Nielsen, [31], ‘... the model may be physically correct if it looks right’), the inclusion of
nonlinear strain measures seems to be crucial.

Soft tissues are frequently formulated under hyperelasticity assumptions [5]. Again, for the sake
of simplicity, we refer ourselves to a Kirchhoff–Saint Venant constitutive framework. Despite being
very limited (and even unstable under compression due to the lack of polyconvexity of the strain
energy functional), Kirchhoff–Saint Venant constitutive equations are widely used at this moment
for real-time simulation of soft tissues (see [7, 13, 32] among others).
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The Kirchhoff–Saint Venant model is characterized by the energy density functional given by

‰ D
�

2
.tr.E//2C�E WE (13)

where � and � are Lame’s constants. The Green–Lagrange strain tensor, E , has the form

E D
1

2

�
F TF � 1

�
D r suC

1

2

�
ru �ruT

�
(14)

where F D ruC I is the gradient of deformation tensor. The second Piola–Kirchhoff stress tensor
can be obtained by

S D
@‰.E/

@E
D C WE (15)

in which C is the fourth-order constitutive (elastic) tensor.
Very few works have been written about PGD approximations for nonlinear solid mechanics

problems, other than the Ladeveze’s works in complex thermomechanical nonlinear models [24].
Here, we focus on the nonlinear and parametric case within a fully separated representation. In
this case, we restrict ourselves to quasi-static problems, for the sake of simplicity, and therefore
introduce a pseudo-time t 2 Œ0, 1� to perform the linearization.

Consistent linearizations of the resulting set of equations in the framework of PGD approxima-
tions are far from being trivial, so here we keep the formulation as simple as possible by performing
a simple explicit linearization of the weak form of the problem.

Thus, load is applied along a series of time increments �t , provoking increments in the
displacement �u.x, s/. At each time increment, a PGD fixed-point alternating directions algorithm
similar to those introduced in Section 2 is employed. So, if we introduce the nonlinear strain measure
given by Equation (14), into this incremental framework, we have (we omit obvious functional
dependencies for clarity)

E tC�t D r s.u
t C�u/C

1

2

�
r.ut C�u/ �rT .ut C�u/

�
. (16)

Similarly, admissible variation of strain reads

E� D r s.�u
�/C

1

2
.r.�u�// �rT .ut C�u/C

1

2
r.ut C�u/ �rT .�u�/

D r s.�u
�/Cr .�u�/ �rT .ut C�u/. (17)

Once substituted into the weak form of the equilibrium equation, Equations (16) and (17) provide,
for the left hand side term of Equation (1)—strain energy term—,

Z
N�

Z
�.t/

E� W C WEd�d N� D

Z
N�

Z
�.t/

�
r s.�u

�/Cr.�u�/ �rT .ut C�u/
�
W C

W

�
r s
�
ut C�u

�
C
1

2

�
r.ut C�u/ �rT .ut C�u/

��
d�d N� . (18)
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The simplest linearization of Equation (18) consists of keeping in the formulation only constant
terms and those linear in �u. We thus arrive at a weak form composed of 10 terms:Z

N�

Z
�.t/

E� W C WEd�d N�

D

Z
N�

Z
�.t/

r s.�u
�/ W C W r su

td�d N�„ ƒ‚ …
T1

C

Z
N�

Z
�.t/

r s.�u
�/ W C W r s.�u/d�d N�„ ƒ‚ …
T2

C

Z
N�

Z
�.t/

r s.�u
�/ W C W

1

2
rut �rT utd�d N�„ ƒ‚ …

T3

C

Z
N�

Z
�.t/

r s.�u
�/ W C W rut �rT .�u/d�d N�„ ƒ‚ …

T4

C

Z
N�

Z
�.t/

r.�u�/ �rT ut W C W r su
td�d N�„ ƒ‚ …

T5

C

Z
N�

Z
�.t/

r.�u�/ �rT ut W C W r s.�u/d�d N�„ ƒ‚ …
T6

C

Z
N�

Z
�.t/

r.�u�/ �rT ut W C W
1

2
rut �rT utd�d N�„ ƒ‚ …

T7

C

Z
N�

Z
�.t/

r.�u�/ �rT ut W C W rut �rT .�u/d�d N�„ ƒ‚ …
T8

C

Z
N�

Z
�.t/

r.�u�/ �rT .�u/ W C W r su
td�d N�„ ƒ‚ …

T9

C

Z
N�

Z
�.t/

r.�u�/ �rT .�u/ W C W
1

2
rut �rT utd�d N�„ ƒ‚ …

T10

. (19)

This renders a very simple scheme that has revealed, however, for judicious choice of the time
step �t , reasonable convergence properties, as will be demonstrated in Section 4.

Remark 1
The original work of P. Ladeveze on the large time increment method [24] combined a space–time
separated representation and thus produces a nonincremental solution of the problem. Generalized
to this case, the displacement would be sought in the form u D u.x, s, t /. We have preferred, for
simplicity of exposition, to keep the formulation as simple as possible, but the explicit linearization
proposed in Equation (19) is by no means the only possible one.

Remark 2
Another possible choice for the aforementioned linearization is the standard forward Euler scheme.
It has been noted, however, that instabilities in the results appear at zones subjected to compression,
a typical characteristic of Kirchhoff–Saint Venant models [33]. These are analyzed in Section 4.
However, no spurious deformation modes have been observed by employing the simple explicit
algorithm stated in Equation (19).
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4. NUMERICAL RESULTS

4.1. Validation: nonlinear rod

To validate the explicit PGD approach introduced in Section 2 earlier, we considered the simple case
of a Kirchhoff–Saint Venant beam subjected to a pure traction force F . In this simple case, the model
can be simplified to a one-dimensional one, and an analytical solution for the axial displacement u
at the bar tip can be obtained as

uD

�
ˇ � 1C

1

3ˇ

�
, (20)

where

ˇ D K C

r
K2 �

1

27

! 1
3

, (21)

and, in turn,K D F=EA, with E as the Young’s modulus of the material and A the area of the cross
section at the undeformed configuration.

A model was thus constructed by considering a bar of length L D 400 mm, A D 40 � 40 mm2,
E D 1.0 MPa, and F D 320 N. Load F , however, is considered to be applied at any point along
the bar axis. We therefore compute a two-dimensional solution uD u.x, s/, where x represents the
position along the bar axis and s the point of application of the load.

This simple example served to know the importance of the chosen time step in the overall
convergence properties of the proposed method. As can be noticed from Figure 1, the error for a
time step of 10�3 is O.10�4/. Note that one single PGD approach is used, which is enriched at each
time step, not a different PGD approximation within each time step.

It is important to remark that the real-time strategy here introduced is based upon the computation
(only once and off-line) of a general, high-dimensional solution of the problem once for life. This
general solution is then evaluated at real-time feedback rates but not recomputed. That is why the
time taken in the offline computation of this general solution is not so important, because it will be
performed only once.

Δ t
10-510-410-310-210-1

63.6

63.8

64

64.2

64.4

64.6

64.8

65

65.2

u
uref

Figure 1. Convergence of the tip displacement toward the reference solution as a function of the chosen
time step.
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4.2. Kirchhoff–Saint Venant beam bending

Further validation of the proposed strategy is obtained if we consider the problem of a beam bending
under a transverse load (assumed vertical, for simplicity) applied at any point of its boundary.
The problem has no analytical solution, up to our knowledge, and therefore, the general, multi-
dimensional solution has been compared with a reference one obtained by standard finite element
models (one for each considered load position) with consistent linearization and a Newton–Raphson
iterative scheme.

The mesh is composed of tetrahedral elements, with only 9 � 9 nodes in the 40 � 40 mm2 cross
section and 21 nodes in the longitudinal direction, 400 mm long. Material parameters were Young’s
module E D 1.0 MPa and Poisson’s coefficient � D 0.25. With such a poor discretization, and
employing tetrahedral elements, it is expected that a high error with respect to the exact solution
will be obtained. However, it is not the purpose of this paper to obtain an accurate enough solution
of the problem (which of course could be obtained by employing a more refined mesh and a finer
time stepping).

The finite element model is shown in Figure 2, and the load is assumed to be applied at any of the
points of the upper surface of the beam.

The obtained displacement for a particular location of the load (beam tip in this case, for
comparison purposes) is depicted in Figure 3. Noteworthy, the simple explicit linearization algo-
rithm here proposed does not imply a nonphysical gain of volume in the deformed model, which is
the case for purely linear elastic models, nevertheless frequently employed in real-time simulation
of surgery [2].

Standard forward Euler algorithms for the linearization of the weak form of the problem rendered,
in our experiments, spurious deformation modes. Although they are intrinsic of the Kirchhoff–Saint
Venant constitutive model, it continues to be popular among the virtual surgery community because
it constitutes the fastest way to avoid spurious gain in the volume typical of linear elastic models,
when large deformations are being considered [2]. An example of the result given by a forward Euler
scheme for this same problem is shown in Figure 4. Although no unphysical gain in volume—typical
of linear elastic approaches to the problem—is seen, the obtained displacement at beam tip is much
higher than the reference one, obtained by FEMs. This is due to some well-known instabilities of
the Kirchhoff–Saint Venant model under compression.

In general, the number n of functions employed in the approximation depends on the desired level
of accuracy. Increasing the number of separated functions in the approximation leads, of course, to
higher computational costs in the offline part of the method. But we highlight that this computation
is carried out only once for life and stored in memory. The online part of the simulation is virtually

X
Y

Z

Figure 2. Model for the beam bending problem.
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Figure 3. Deformed beam for a particular location of the point load. Note that no unphysical gain in volume
is observed.
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Figure 4. Spurious deformation obtained by employing standard forward Euler schemes. Note the
instabilities near the beam clamping due to compressive stresses.

not affected, because only some vector multiplications should be performed in addition, which do
not alter the overall efficiency of the proposed method.

4.3. Palpation of the liver

The liver is the biggest gland in the human body, after the skin. Liver geometry has been obtained
from the SOFA project [34] and post-processed to obtain a mesh composed of 8559 nodes and
10,519 tetrahedra (Figure 5). The liver is connected to the diaphragm by the coronary ligament so
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Figure 5. Finite element model for the human liver.
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Figure 6. Six first functions Xk
3
.x/, k D 1, : : : 6, for the simulation of the liver.
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it seems reasonable to assume it to be constrained at the posterior face by the rest of the organs,
whereas the anterior face is accessible to the surgeon. The inferior vena cava travels along the
posterior surface, and the liver is frequently assumed clamped at that location. Although the assumed
boundary conditions are not strictly correct from a physiological point of view, our main interest is
to show that the model can be solved under real-time constraints with reasonable accuracy.

Although the literature on the mechanical properties of the liver is not very detailed, we
have assumed a Young’s modulus of 160 kPa, and a Poisson coefficient of 0.48, thus nearly
incompressible [2].

The N� surface, where the load can be located, has been defined as the whole boundary of the
domain, even if in this case, only the frontal part of the organ is usually accessible to the surgeon.
This region includes 2009 of the 8559 nodes of the model.

Model’s solution was composed by a total of n D 167 functional pairs Xkj .x/ � Y
k
j .s/ (see

Equation (3)). The third component (thus j D 3) of the first six modesXk3 .x/ is depicted in Figure 6.
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Figure 7. Six first functions Y k
3
.s/, k D 1, : : : 6, for the simulation of the liver. Note that, in this case,

functions Y k.s/ are defined on the boundary of the liver only.

12



Figure 8. An example of the implementation of the iPGD application for the liver problem.

The same is carried out in Figure 7 for functions Y , although in this case, they are defined only on
the boundary of the domain, that is, N� D @�.

It is noteworthy that both X and Y sets of functions present a structure similar to that generated
by POD methods, despite the fact that they are not, in general, optimal. Note how the frequency
content of each pair of functions increases as we increase the number of the function, k.

The solution provided by the method agrees well with reference finite element solutions obtained
by employing full-Newton-Raphson iterative schemes (following the same tendency than that shown
for the beam bending problem). But, notably, the computed solution can be stored in a so compact
form that an implementation of the method is possible on handheld devices such as smartphones and
tablets. For instance, for Android-operated devices, an application has been developed (we call it
iPGD and is freely downloadable from [35]) that runs the model on a Motorola Xoom tablet running
Android 3.0 without problems (only the surface of the model is represented for simplicity, given the
limitations of the Android OS) (Figure 8). The 25-Hz feedback rate necessary for continuous visual
perception is achieved without problems.

For more sophisticated requirements, such as those dictated by haptic peripherals, a simple laptop
(in our case a MacBook pro running MAC OSX 10.7.4, equipped with 4-Gb RAM and an Intel
core i7 processor at 2.66 GHz) is enough to achieve this performance. Feedback rates in the order
of kilohertz are obtained without problems.

5. CONCLUSIONS

Model order reduction seems to play an important role in real-time simulation of soft biological
tissues. In the last times, there have been a number of publications on the use of POD techniques
to this class of problems. However, POD-based approaches seem to over-simplify models, and
approaches other than those used in [14] do not reproduce properly the nonlinearity of soft tissues.
In this paper, a new approach to the problem has been introduced. It is based on the use of PGD
methods. This implies a complete change of paradigm, because PGD (in contrast to POD) do not
need prior computer experiments to generate the snapshots needed to construct the optimal basis
functions. The reduced approximation bases, in a separated form, are constructed on the fly.

PGD, on the contrary, operate in a two-stage approach. Firstly, a general meta-model is computed
a priori once for life. During this intensive computation phase, the solution to the high-dimensional
model is computed as a finite sum of separable functions. This compact solution, although not
optimal, in general, provides a very light format to store the solution in the form of a meta-
model that provides the solution to the problem for any parameter value. In this particular problem,

13



parameters are chosen as the position of the contact force between organ and surgical tool (scalpel)
and orientation of the load (thus rendering a problem defined in R9).

This meta-model is then evaluated under real-time restrictions very efficiently (e.g., reaching more
than 1 kHZ in a MacBook pro laptop). In this paper, some benchmark examples have been given
to justify the accuracy of the proposed approach. In particular, two different explicit algorithms for
the time integration of the resulting equations have been proposed. These algorithms have shown to
work well, although the development of more robust strategies of linearization of the weak form of
the problem, based on the use of asymptotic numerical methods, is now being sought. This is part
of our current effort in this research.
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