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Models encountered in computational mechanics could involve many time scales. When these time scales 
cannot be separated, one must solve the evolution model in the entire time interval by using the finest time 
step that the model implies. In some cases, the solution procedure becomes cumbersome because of the 
extremely large number of time steps needed for integrating the evolution model in the whole time interval. 
In this paper, we considered an alternative approach that lies in separating the time axis (one-dimensional 
in nature) in a multidimensional time space. Then, for circumventing the resulting curse of dimensionality, 
the proper generalized decomposition was applied allowing a fast solution with significant computing time 
savings with respect to a standard incremental integration.

KEY WORDS: time multiscale, proper generalized decomposition, separated representations, transient
models

1. INTRODUCTION

Many problems in science and engineering remain intractable despite the impressive progresses
in computer science and the computational resources available today, because their numerical com-
plexity is simply unimaginable. Among the models that remain intractable today, we can distinguish
two main families:

� The first family of models consists of standard models usually encountered in computational
mechanics, defined in large and complex three-dimensional (3D) geometries, involving many
multiphysics couplings, many scales (in space and time), strong nonlinearities, and whose tran-
sient simulation needs extremely small time steps. These models are usually encountered in
the mechanics of structures, but they are also present in many other fields. To illustrate this
scenario, one could imagine the simple reaction-diffusion model that describes the degrada-
tion of plastic materials, where the characteristic time of the chemical reaction involved in the
material degradation is of some microseconds, and the one related to the diffusion of chemi-
cal substances (that also represents the material degradation characteristic time itself) is of the
order of years. In these cases, standard incremental techniques must be replaced by other more
efficient techniques.
� The other family of challenging models concerns those models defined in highly dimensional

spaces. This kind of models appears naturally, for example, in the modeling of the structure
and properties of materials at the finest scales. Thus, models in quantum chemistry (e.g., the
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Schroedinger or Dirac equations), the kinetic theory description of materials (e.g., the Fokker–
Planck equation), models in financial mathematics, genetics (the chemical master equation)
. . . are defined in spaces involving hundreds, thousands, or millions of dimensions. These mod-
els exhibit the redoubtable curse of dimensionality when the usual mesh-based discretization
techniques are applied. The curse of dimensionality can be easily illustrated. Imagine a model
defined in a space involving D dimensions. If one proceeds to the solution of such model by
using a standard mesh-based discretization technique, whereM nodes are used for discretizing
each space coordinate, the resulting number of nodes reaches the astronomical value of MD .
With M � 103 (a very coarse description in practice) and D � 30 (a quite simple system in
practice), the numerical complexity results 1090. It is important to recall that 1080 represents
the presumed number of elementary particles in the whole universe. Moreover, as we illustrate
later, many usual models can be expressed by introducing many other extra coordinates that
will be called configurational or conformational coordinates. For example, model parameters
(e.g., the material conductivity involved in a thermal model, the applied loads, the initial or
boundary conditions, parameters describing the geometry . . . ) could be considered as extra
coordinates. Thus, by solving the resulting multidimensional model, we could have access to
the model solution at any point of the space domain, at any time, and for any value of the ther-
mal conductivity, source term, parameter describing the geometry . . . The price to be paid is the
solution of a problem that, until now, no numerical technique was able to perform.

Recently, a novel efficient technique able to circumvent the challenging issues just described was
proposed. It was coined as proper generalized decomposition (PGD). It is based on a separated rep-
resentation of the unknown field. Thus, for circumventing the numerical issues associated with the
first family of models (previously described), one could consider the transient solution under the
separated form:

u.x, t /�
NX
iD1

Xi .x/ � Ti .t/ (1)

representation, which was originally proposed in the 1980s by Pierre Ladeveze as one of the main
ingredients of the LATIN (nonlinear and non-incremental solver), and which was called “radial
approximation” [1–5]. If we look at the performance of such separated representation-based dis-
cretization techniques, the verdict is for many models implacable. If one considers a standard
transient model defined in a 3D physical space, and if one considers P time steps, usual incremental
strategies must solve P (in general nonlinear) 3D problems (do not forget that P can be millions).
However, if space–time PGD (radial approximation) is considered, we should solve around N �m
3D problems for computing the space functions and N �m one-dimensional (1D) problems for com-
puting the time functions (m being the number of iterations needed for computing each term of the
finite sum because of the nonlinear nature of the definition of the PGD). As m � 10 and N � 10

for many models, the computing time savings can reach many orders of magnitude.
If we come back to the second family of models, an appealing choice consists of expressing the

unknown field as a finite sum of functional products, that is, expressing a generic multidimensional
function as

u.x1, � � � , xN /�
NX
iD1

X1i .x1/ � : : : �X
D
i .xD/ (2)

where xi could represent any coordinate, scalar or vector, involving the physical space, the time,
or any other conformation coordinate. It could also represent random variables for the modeling of
parametric uncertainties. This separated representation was proposed by A. Ammar and F. Chinesta
some years ago in the context of multidimensional models encountered in the description of com-
plex fluids within the kinetic theory framework [6, 7], as well as by A. Nouy in the context of
stochastic models [8]. The reader can refer to [9, 10] and the references therein for some more
recent contributions on this topic.
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Within the PGD framework for solving a problem defined in a space of dimensionD, ifM nodes
are used to discretize each coordinate, the total number of unknowns involved in the solution is
M � D instead of the MD degrees of freedom involved in mesh based discretizations. We must
recall that these functions are not known “a priori” but are computed by introducing the approxi-
mate separated representation into the model weak form and then by solving the resulting nonlinear
problem associated with the construction of the separated representation. As it can be noticed in the
expression of the separated representation, the complexity scales linearly with the dimension of the
space in which the model is defined, instead of the exponential growing characteristic of mesh-based
discretization strategies. In general, for many models, the number of terms N in the finite sum is
quite reduced (a few tens).

We would like to recall that, using these approaches, we have reduced the computing time related
to the solution of problems belonging to the first family of models (defined earlier) in several
orders of magnitude, and on the other hand, we solved successfully highly multidimensional models
because they were considered suffering of the irremediable curse of dimensionality [10, 11].

Because of the novelty and the youth of the PGD method, many aspects have not yet been
addressed. The aim of this work is to push back the limits of these methods. Definitively, these
developments could lead to a real change of paradigm in computational mechanics. Imagine the pos-
sibility of solving efficiently and with a controlled accuracy any parametric (including parameterized
geometries) multiscale and multiphysics model. Inverse identification and optimization would be a
simple post-treatment.

In some of our recent works, we focused on multiphysics models involving different character-
istic times and behaviors (local and global). This problem was addressed in particular in [12]. In
the present work, we focus in a slightly different issue, the one related to models involving non-
separable time scales that should be solved by assuming the finest time step concerned by the model
solution.

Time multiscale problems involve similar difficulties than those models that are multiscale in
space but add some extra issues that must be solved with caution. This is partly caused by the
inherent sequential nature of time, which is not present in standard multiscale models. Many works
have been devoted in the last years to the topic of establishing efficient time multiscale numerical
methods. These approaches are also very different in nature.

For instance, in [13], a method is developed that applies the same principles of spatial homoge-
nization to time multiscale problems. To that end, a neat separation of time scales is mandatory, as
in traditional homogenization approaches.

Particularly noteworthy is the topic of establishing parallel approaches in time, needed for com-
putational efficiency, or simply when different physics with different intrinsic time scales are
considered. Here, again the sequential nature of time plays an important role and poses important
difficulties. [14] and [15] are two particular instances of the application of the so-called time-parallel
approaches to time-multiscale problems. In [16], however, the principles of the variational multi-
scale method are applied to time multiscale integration. In [17,18], on the contrary, a method based
on the LATIN approach is developed that couples different physical problems with different intrin-
sic time scales in a space–time framework that can be considered as the origin of the approach
presented herein.

We consider, however, an alternative approach that lies in separating the time axis (one-
dimensional in nature) in a multidimensional time space. Then, for circumventing the resulting
curse of dimensionality, the PGD is applied allowing for a fast solution with significant computing
time savings with respect to a standard incremental integration.

In the next section, we revisit the main ideas of the PGD whose implementation is illustrated
through the solution of an academic problem. Then, a tensor formulation of the PGD is presented
in Section 3. Section 4 concerns the introduction of constraints in the solution process from the use
of penalty or Lagrange multiplier techniques. Section 5 makes use of this procedure for decom-
posing the time axis into a two-dimensional (2D) time domain procedure that is applied in a quite
simple transient ODE for illustrating the capabilities of the proposed technique. In that section, we
consider also the solution of a transient parabolic PDE in which the time coordinate is transformed
into a 2D time space. In the last case, the resulting model includes a space coordinate and two time
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coordinates. Finally, Section 6 presents an alternative formulation for enforcing the solution con-
tinuity in time without using either penalty or Lagrange multipliers. The continuity is enforced
a posteriori.

2. THE PROPER GENERALIZED DECOMPOSITION REVISITED

In what follows, the construction of the PGD is illustrated by considering the parametric heat transfer
equation:

@u

@t
� k�u� f D 0 (3)

where .x, t , k/ 2 � � I � = and, for the sake of simplicity, the source term is assumed constant,
that is, f D cst . Because the conductivity is considered unknown, it is assumed as a new coor-
dinate defined in the interval =. Thus, instead of solving the thermal model for different values of
the conductivity parameter, we prefer introducing it as a new coordinate. The price to pay is the
increase of the model dimensionality; however, as the complexity of PGD scales linearly with the
space dimension, the consideration of the conductivity as a new coordinate remains compatible with
fast and cheap solutions.

The solution of Equation (3) is sought under the form:

u .x, t , k/�
iDNX
iD1

Xi .x/ � Ti .t/ �Ki .k/ (4)

In what follows, we are assuming that the approximation at iteration n is already achieved:

un .x, t , k/D
iDnX
iD1

Xi .x/ � Ti .t/ �Ki .k/ (5)

and that, at current iteration, we look for the next functional product XnC1 .x/ � TnC1 .t/ �KnC1 .k/
that, for alleviating the notation, will be denoted by R .x/ � S .t/ �W .k/. Prior to solving the result-
ing nonlinear model related to the calculation of these three functions, a model linearization is
compulsory. The simplest choice consists in using an alternating directions fixed point algorithm. It
proceeds by assuming S .t/ and W .k/ given at the previous iteration of the nonlinear solver and
then computingR .x/. From the just updatedR .x/ andW .k/, we can update S .t/, and finally from
the just computed R .x/ and S .t/, we computeW .k/. The procedure continues until reaching con-
vergence. The converged functions R .x/, S .t/, and W .k/ allow defining the searched functions:
XnC1 .x/DR .x/, TnC1 .t/D S .t/ andKnC1 .k/DW .k/. We are illustrating each one of the just
referred steps.

Computing R .x/ from S .t/ and W .k/:

We consider the global weak form of Equation (3):Z
��I�=

u�
�
@u

@t
� k�u� f

�
dx dt dk D 0 (6)

where the trial and test functions write, respectively:

u .x, t , k/D
iDnX
iD1

Xi .x/ � Ti .t/ �Ki .k/CR .x/ � S .t/ �W .k/ (7)

and

u� .x, t , k/DR� .x/ � S .t/ �W .k/ (8)
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Introducing Equations (7) and (8) into Equation (6), it results inZ
��I�=

R� � S �W �

�
R �

@S

@t
�W � k ��R � S �W

�
dx dt dk D

D�

Z
��I�=

R� � S �W �Rn dx dt dk
(9)

where Rn defines the residual at iteration n that reads:

Rn D

iDnX
iD1

Xi �
@Ti

@t
�Ki �

iDnX
iD1

k ��Xi � Ti �Ki .� f (10)

Now, knowing all the functions involving the time and the parametric coordinate, we can inte-
grate Equation (9) in its respective domains I �=. Integrating in I �= and taking into account the
following notations2

66666666664

w1 D
R
=

W 2dk s1 D
R
I

S2dt r1 D
R
�

R2dx

w2 D
R
=

kW 2dk s2 D
R
I

S � dS
dt
dt r2 D

R
�

R ��R dx

w3 D
R
=

W dk s3 D
R
I

S dt r3 D
R
�

R dx

wi4 D
R
=

W �Ki dk si4 D
R
I

S � dTi
dt
dt r i4 D

R
�

R ��Xi dx

wi5 D
R
=

kW �Ki dk si5 D
R
I

S � Ti dt r i5 D
R
�

R �Xi dx

3
77777777775

(11)

Equation (9) reduces to:Z
�

R�� .w1 � s2 �R�w2 � s1 ��R/ dxD

D�

Z
�

R��

iDnX
iD1

wi4 � s
i
4 �Xi �

iDnX
iD1

wi5 � s
i
5 ��Xi �w3 � s3 � f

!
dx

(12)

Equation (12) defines an elliptic steady state boundary value problem that can be solved by using
any discretization technique operating on the model weak form (finite elements, finite volumes, . . . ).
Another possibility consists in coming back to the strong form of Equation (12):

w1 � s2 �R�w2 � s1 ��RD

D�

iDnX
iD1

wi4 � s
i
4 �Xi �

iDnX
iD1

wi5 � s
i
5 ��Xi �w3 � s3 � f

!
(13)

that could be solved by using any collocation technique (finite differences, SPH . . . ).

Computing S .t/ from R .x/ and W .k/:

In the present case, the test function writes:

u� .x, t , k/D S� .t/ �R .x/ �W .k/ (14)

Now, the weak form readsZ
��I�=

S� �R �W �

�
R �

@S

@t
�W � k ��R � S �W

�
dx dt dk D

D�

Z
��I�=

S� �R �W �Rn dx dt dk
(15)
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that integrating in the space ��= and taking into account the notation (11) results in:Z
I

S��

�
w1 � r1 �

dS

dt
�w2 � r2 � S

�
dt D

D�

Z
I

S��

iDnX
iD1

wi4 � r
i
5 �
dTi

dt
�

iDnX
iD1

wi5 � r
i
4 � Ti �w3 � r3 � f

!
dt

(16)

Equation (16) represents the weak form of the ODE defining the time evolution of the field S that
can be solved by using any stabilized discretization technique (SU, Discontinuous Galerkin, . . . ).
The strong form of Equation (16) reads:

w1 � r1 �
dS

dt
�w2 � r2 � S D

D�

iDnX
iD1

wi4 � r
i
5 �
dTi

dt
�

iDnX
iD1

wi5 � r
i
4 � Ti �w3 � r3 � f

!
(17)

than can be solved by using backward finite differences, or higher order Runge–Kutta schemes,
among many other possibilities.

Computing W .k/ from R .x/ and S .t/:

In the present case, the test function writes:

u� .x, t , k/DW � .k/ �R .x/ � S .t/ (18)

Now, the weak form readsZ
��I�=

W � �R � S �

�
R �

@S

@t
�W � k ��R � S �W

�
dx dt dk D

D�

Z
��I�=

W � �R � S �Rn dx dt dk
(19)

that integrating in the space �� I and taking into account the notation (11) results in:Z
=

W �� .r1 � s2 �W � r2 � s1 � k �W / dk D

D�

Z
=

W ��

iDnX
iD1

r i5 � s
i
4 �Ki �

iDnX
iD1

r i4 � s
i
5 � k �Ki � r3 � s3 � f

!
dk

(20)

Equation (20) does not involve any differential operator. The strong form of Equation (20) reads:

.r1 � s2 � r2 � s1 � k/ �W D�

iDnX
iD1

�
r i5 � s

i
4 � r

i
4 � s

i
5 � k

�
�Ki � r3 � s3 � f

!
(21)

that represents an algebraic equation. Thus, the introduction of parameters such as additional model
coordinates has no noticeable effect in the computational cost, because the original equation does
not contain derivatives with respect to those parameters.

Finally, note that other minimization strategies have been proposed, leading to more robust and
faster convergence for building up the PGD [10]. The issues related to nonlinear behaviors, as for
example, a thermal conductivity depending on the temperature field, was deeply considered in [5]
and [19]. On the other hand, the issue related to the enforcement of nonhomogeneous boundary
conditions was treated in [20].
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Remark 1
The construction of each term in the sum (4) needs a certain number of iterations because of the
nonlinearity of the problem related with the approximation (5). We denote by mi the number of
iterations that were needed for computing the i -sum in Equation (4). LetmD

PiDN
iD1 mi be the total

number of iterations involved in the construction of the separated approximation (4). It is easy to
note that the solution procedure needs the solution of m 3D problems related to the construction
of the space functions Xi .x/, i D 1, � � � ,N , m 1D ODEs related to the construction of functions
Ti .t/ andm linear systems related to the definition of functionsKi .k/. In general,mi rarely exceeds
ten. On the other hand, the number of terms in the sum N needed to approximate the solution of
a given problem depends on the solution regularity itself, but all the experiments carried out until
now reveal that this number ranges from a few tens to a few hundreds. Thus, we can conclude that
the complexity of the solution procedure is of some hundreds of 3D solutions (the cost related to
the 1D problems being negligible with respect to the one related to the 3D problems). Now, if we
assume a classical approach, one should solve a 3D problem at each time step and for each value of
the parameter k. In usual applications, the complexity reaches millions of 3D solutions. In [12], we
proved that the CPU time savings, by applying the PGD, can be of several orders of magnitude.

Remark 2
We noticed that, depending on the initial choice of functions R.x/, S.t/, and W.k/, the nonlinear
iteration algorithm converges to different functions, but when they were normalized by dividing
all of them by their respective norms, the resulting functions where the same independently of the
initial choice.

3. PROPER GENERALIZED DECOMPOSITION TENSOR FORM

The procedure described in Section 2 can be generalized by using a tensor notation. We assume that
the discrete problem that we write formally as U�TAU D U�TB, can be expressed in a separated
form:

AD
nAX
iD1

Ai1˝A
i
2˝ � � � ˝A

i
D

B D
nBX
iD1

Bi1˝B
i
2˝ � � � ˝B

i
D

U �
NX
iD1

ui1˝ u
i
2˝ � � � ˝ u

i
D

(22)

where Ai , Bi , and ui involve only the coordinate xi .
For an efficient application of the PGD, the differential operators must be separated. A separated

representation can be used even if the operators are not separable, but in that case, the integration of
the week form becomes cumbersome.

The separated representation of A and B comes directly from the differential operators involved
in the PDE weak form.

At iteration n, vectors uij , 8i � n, and 8j �D are assumed known. Now, we are looking for an
enrichment:

U D
nX
iD1

ui1˝ � � � ˝ u
i
D CR1˝ � � � ˝RD (23)

where Ri , i D 1, � � � ,D, are the unknown enrichment vectors. We assume the following form of
the test field:

U� DR�1 ˝R2˝ � � � ˝RD C : : :CR1˝ � � � ˝RD�1˝R�D (24)
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Introducing the enriched approximation into the weak form, the following discrete form results:
nAX
iD1

nX
jD1

.R�1/
TAi1u

j
1 � � � � � .RD/

TAiDu
j
D C � � �C

C

nAX
iD1

nX
jD1

.R1/
TAi1u

j
1 � � � � � .R

�
D/
TAiDu

j
D C

C

nAX
iD1

.R�1/
TAi1R1 � � � � � .RD/

TAiDRD C � � �C

C

nAX
iD1

.R1/
TAi1R1 � � � � � .R

�
D/
TAiDRD D

D

nBX
iD1

�
.R�1/

TBi1 � � � � � .RD/
TBiD C � � � C .R1/

TBi1 � � � � � .R
�
D/
TBiD

�
(25)

For alleviating the notation, we define:
nCX
iD1

C i1˝ � � � ˝C
i
D D

nBX
iD1

Bi1˝ � � � ˝B
i
D �

nAX
iD1

nX
jD1

Ai1u
j
1 ˝ � � � ˝A

i
Du

j
D (26)

where nC D nB C nA � n. This sum only contains known fields. Thus, Equation (25) can be
written as:

nAX
iD1

.R�1/
TAi1R1 � � � � � .RD/

TAiDRD C � � �C

C

nAX
iD1

.R1/
TAi1R1 � � � � � .R

�
D/
TAiDRD D

D

nCX
iD1

�
.R�1/

TC i1 � � � � � .RD/
TC iD C � � � C .R1/

TC i1 � � � � � .R
�
D/
TC iD

�
(27)

This problem is strongly nonlinear. To solve it, a method of alternated directions can be applied.
The idea is, starting with the trial vectors R.0/i , i D 1, � � � ,D or assuming known these vectors

at iteration r � 1, R.r�1/i , i D 1, � � � ,D, update them using an appropriate strategy. The simplest
alternatives consist of:

� Update vectors R.r/i , 8i , from R
.r�1/
1 , � � � ,R.r�1/i�1 ,R.r�1/iC1 , � � � ,R.r�1/D .

� Update vectors R.r/i , 8i , from R
.r/
1 , � � � ,R.r/i�1,R.r�1/iC1 , � � � ,R.r�1/D .

The last strategy converges faster, but the advantage of the first one is the possibility of updating
each vector simultaneously making use of a parallel computing platform. The fixed point of this
iteration algorithm allows defining the enrichment vectors unC1i DRi , i D 1, � � � ,D.

When we look for vector Rk , assuming known all the others Ri , i ¤ k, the test field reduces to:

U�T DR1˝ � � � ˝Rk�1˝R�k ˝RkC1 � � � ˝RD (28)

The resulting discrete weak form writes:
nAX
iD1

�
RT1A

i
1R1 � � � � �R

�T
k AikRk � � � � �R

T
DA

i
DRD

�
D

D

nCX
iD1

RT1 C
i
1 � � � � �R

�T
k C ik � � � � �R

T
DC

i
D (29)
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Making use of the arbitrariness of R�K , the following linear system can be easily obtained:0
@ nAX
iD1

0
@ DY
jD1,j¤k

RTj A
i
jRj

1
AAik

1
ARk D nCX

iD1

0
@ DY
jD1,j¤k

RTj C
i
j

1
AC ik (30)

which can be easily solved.

4. INTRODUCING SOLUTION CONSTRAINTS

In numerical homogenization techniques, a classical procedure consists of considering different time
scales as different dimensions of the problem. In principle, this seems to be specially well suited for
a PGD treatment, especially if the number of scales is high. But the question is, now if the PGD can
effectively treat the same problem, is there no neat separation of scales? Converting the time axis in
a multidimensional space forces us to enforce the continuity on the resulting domain boundary. This
section develops the PGD formulation in the presence of constraints and their tensor form, which
are particularly convenient for code implementation.

Using the previous notation, we assume that the problem to be solved writes:

AU D B (31)

with

AD
nAX
jD1

A
j
1 ˝A

j
2 ˝ : : :˝A

j
D (32)

B D
nBX
jD1

B
j
1 ˝B

j
2 ˝ : : :˝B

j
D (33)

being the solution tensor form:

U �
nuX
jD1

u
j
1 ˝ u

j
2 ˝ : : :˝ u

j
D (34)

The sizes of the different vectors are r1, r2, .., rD , respectively, whereas the size of matrix Aji is
ri � ri , i D 1, � � � ,D.

We assume in this section that the solution is searched under the constraints given by:

HU D J (35)

with

HD
nHX
jD1

H
j
1 ˝H

j
2 ˝ : : :˝H

j
D (36)

J D
nJX
jD1

J
j
1 ˝ J

j
2 ˝ : : :˝ J

j
D (37)

whose particular form will be illustrated later. In the last expression, the sizes of vectors J ji are

assumed to be identical, s, being the sizes of matricesH j
i are s � ri with i D 1, � � � ,D.
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4.1. Penalty formulation

We introduce the functional to be minimized as

E D kAU � Bk2C ˛ kHU � J k2 (38)

with ˛ being the penalty parameter.
The previous equation can be rewritten as:

E D .AU � B/T � .AU � B/C ˛ .HU � J /T � .HU � J / (39)

whose minimization with respect to the unknown field leads to:

dE

dU D 0)
�
ATAU � ATB

�
C ˛

�
HTHU � HTJ

�
D 0 (40)

Finally, the system to be solved writes:�
ATA C ˛HTH

�
U DATBC ˛HTJ . (41)

Remark 3
This strategy deserves the following comments:

� The number of operators involved by
�
ATA C ˛HTH

�
results in n2AC n

2
H .

� All the terms have dimensions .r1, r1/˝ : : :˝ .rD , rD/.
� The best choice of the penalty parameter is far to be simple.
� The resulting system is symmetric, making possible the use of solution strategies like the one

described in Section 2.

4.2. Lagrange multipliers

By introducing the Lagrange multiplier � the system to be solved writes:�
A HT

H 0

�
„ ƒ‚ …

K

�
U
�

�
D

�
B
J

�
„ ƒ‚ …

F

(42)

where the size of K is .r1C s, r1C s/˝ � � � ˝ .rD C s, rD C s/ that can be written as:

KD
nAX
jD1

�
A
j
1 0.r1,s/

0.s,r1/ 0.s,s/

�
˝ � � � ˝

�
A
j
D 0.rD ,s/

0.s,rD/ 0.s,s/

�
C

nHX
jD1

�
0.r1,r1/ H

jT
1

0.s,r1/ 0.s,s/

�
˝ � � � ˝

�
0.rD ,rD/ H

jT
D

0.s,rD/ 0.s,s/

�
C

nHX
jD1

�
0.r1,r1/ 0.rD ,s/

H
j
1 0.s,s/

�
˝ � � � ˝

�
0.rD ,rD/ 0.rD ,s/

H
j
D 0.s,s/

�
(43)

expression that involves nAC 2nH terms.
Concerning the right hand member, we have

F D
nBX
jD1

�
B
j
1

0.s,1/

�
˝ � � � ˝

�
B
j
D

0.s,1/

�
C

nJX
jD1

�
0.r1,1/

J
j
1

�
˝ � � � ˝

�
0.rD ,1/

J
j
D

�
. (44)

The searched solution writes in the present case:

U D
�

U
�

�
D

nFX
jD1

F
j
1 ˝F

j
2 ˝ � � � ˝F

j
D (45)
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which involves a tensor product of vectors of size .r1C s, 1/˝� � �˝ .rDC s, 1/ from which we can
easily extract the problem solution U from

U D
nuX
jD1

u
j
1 ˝ � � � ˝ u

j
D (46)

where vector ui contains the first ri entries of vector F i . Representation (46) defines a non-optimal
decomposition that could be reduced by applying a multidimensional singular value decomposition
[10].

Remark 4
This strategy deserves the following comments:

� The main drawback of this approach lies in the fact that the resulting system is nonsymmetric.
It could be symmetrized by minimizing the L2 norm of the residual:

E D
��KU � F

��
2

(47)

whose minimization leads to:

dE

dU
D 0 (48)

that is equivalent to:

KTKU DKTF (49)

� The number of terms involved in KTK is .nAC 2nH /
2.

� The main advantage of this approach is the absence of any adjustable parameter.

4.3. Illustrating the prescription of constraints through a simple example

In this section, we are defining the constraints tensor form related to a quite simple example that
will be used later for separating the time axis.

The generic tensor form related to the solution constraints writes, using the notation just
introduced, as

HU D J (50)

where vectors J ji have the same size s and matricesH j
i are of size s � ri with i D 1, � � � ,D.

We assume the situation depicted in Figure 1 that represents a 2D model defined in a square
domain whose axes x1 and x2 were discretized by using three and four nodes, respectively, that
is, r1 D 3 and r2 D 4.

We would like to prescribe the following constraints in the discrete model:

� Prescribe the value ud at the node symbolized by a square in Figure 1.
� Prescribe the same value of the solution at nodes symbolized in Figure 1 by a triangle.
� Prescribe the same value of the solution at nodes symbolized in Figure 1 by a star.

These three conditions write:®�
1 0 0

�
˝
�
1 0 0 0

�¯
U D ud ˝ 1 (51)

®�
1 0 0

�
˝
�
0 0 0 1

�
C
�
0 1 0

�
˝
�
�1 0 0 0

�¯
U D 0˝ 0 (52)

®�
0 1 0

�
˝
�
0 0 0 1

�
C
�
0 0 1

�
˝
�
�1 0 0 0

�¯
U D 0˝ 0 (53)

11
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Figure 1. 2D problem with constraints.

whose matrix form reads as:

HD

0
@ 1 0 0

0 0 0

0 0 0

1
A˝

0
@ 1 0 0 0

0 0 0 0

0 0 0 0

1
AC

0
@ 0 0 0

1 0 0

0 0 0

1
A˝

0
@ 0 0 0 0

0 0 0 1

0 0 0 0

1
AC

0
@ 0 0 0

0 1 0

0 0 0

1
A˝

0
@ 0 0 0 0

�1 0 0 0

0 0 0 0

1
AC

0
@ 0 0 0

0 0 0

0 1 0

1
A˝

0
@ 0 0 0 0

0 0 0 0

0 0 0 1

1
AC

0
@ 0 0 0

0 0 0

0 0 1

1
A˝

0
@ 0 0 0 0

0 0 0 0

�1 0 0 0

1
A

(54)

The right-hand member results in:

J D

0
@ ud
0

0

1
A˝

0
@ 1

0

0

1
A (55)

5. TIME-MULTISCALE PGD FORMULATION WITHOUT SEPARATION OF SCALES

In this section, we are applying the procedure described in the previous section for separating the
time axis, firstly, from 1D in nature into a 2D domain, and then to more complex scenarios.

5.1. Solving an ordinary differential equation by increasing the temporal dimensionality

For this purpose, we should define the structure of the discrete problem expressed by:

AU D B (56)

related to the transient ODE:

du

dt
D f .t/ (57)

that we would integrate in the whole time interval using r1 � .r2 � 1/ time steps. When the num-
ber of time steps is excessive, we could divide the whole time interval Œ0, tmax� into r1 intervalsh
0, tmax

r1

i
� � �
h
tmax.r1�1/

r1
, tmax

i
. It is important to note that the end of each one of these intervals

corresponds to the beginning of the next one. Thus, we define two dimensions, the first one discrete

x1 D 0, 1, � � � , .r1 � 1/ (58)
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and the second one continuous

x2 D

	
0,
tmax

r1



. (59)

Now, the transient equation can be rewritten in the 2D time space as:

@

@x2
u.x1, x2/D f .x1, x2/ (60)

The discrete model writes:

AD

0
BBB@
1 0 � � � 0

0 1 � � � 0
...

...
. . .

...
0 0 : : : 1

1
CCCA
.r1,r1/

˝
1

�t

0
BBB@

1

�1 1
. . .

. . .
�1 1

1
CCCA
.r2,r2/

(61)

with

�t D
tmax

r1 � .r2 � 1/
(62)

and

B D svd .f .x1, x2// (63)

were the singular value decomposition is applied after discretizing the continuous coordinate x2.
Obviously, the separation of f .x1, x2/ is a delicate point. There are different scenarios: (1) proceed
to a continuous “singular value decomposition” separation when it is possible as described in [21];
(2) use the coarsest discrete description and then project on the finest mesh; and (3) in some cases,
the source term comes from the solution of other equation (in coupled models), and in that case, it
has the appropriate separated form.

In what follows, we consider the source term of the transient model given by

f .t/D 2t cos2.!t/� 2t2! cos.!t/ sin.!t/ (64)

with ! D 10 and tmax D 5. The solution is performed by assuming r1 D 10 (that constitutes the
first, coarse, time coordinate that will be designated by t ) intervals, each one involving r2 D 41 time
steps (that constitute the second time coordinate, the finest one, designated by � ).

The solution is then searched in the separated form:

u.t , �/�
iDNX
iD1

F i1 .t/ �F
i
2 .�/ (65)

by enforcing both the verification of the equation as well as the continuity between the end of one
interval and the beginning of the next one. This enforcement, either by penalization or by Lagrange
multipliers, was deeply addressed in the previous section.

Note that, in the present approach, no neat separation of scales is assumed, in deep contrast with
the time homogenization approach in [13]. In that work that assumes an additive (instead of multi-
plicative) enrichment of the macro time scale, the response fields are assumed to be periodic with
respect to the fine scale, which is not the case here. Note also that in [17] a POD-like approach
is employed, in which an averaged fine-scale time evolution is employed, leading to discontinuous
time evolutions. This makes it necessary to employ discontinuous Galerkin approaches in time. In
the approach here presented, the continuity between time scales is imposed explicitly, as commented
before.

Figure 2 depicts the different functions F i1 .t/ and F i2 .�/ involved in the solution computed by
applying the penalty enforcement of the continuity conditions. Figure 3 shows the computed solution
u.t , �/. Similar results were obtained when applying the Lagrange multiplier strategy.
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Figure 2. Functions involved in the separated representation using a penalty technique for enforcing the
continuity constraints: F i

1
.t/ (left) and F i

2
.�/ (right).
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Figure 3. Separated representation solution u.t , �/ computed using a penalty technique for enforcing the
continuity constraints.

Finally, both 2D solutions (the one computed by applying the penalty strategy and the one
obtained by using Lagrange multipliers) can be pushed down for defining the associated 1D
solutions.

When the continuity is enforced by using a penalty technique, the computed solution for different
number of terms in the finite sum (65) is depicted in Figure 4. Figure 5 depicts similar results when
the continuity is enforced by using lagrange multipliers. We can notice in these figures that by using
10 terms in the sum (65), the separated representation solutions agree in minute to the reference
ones computed by using a standard fully incremental integration.

Figure 6 compares the convergence obtained by using both the Lagrange multipliers and the
penalty strategies. We can notice that, as expected, the convergence is better when applying
Lagrange multipliers. On the other hand Figure 7 compare the computing time needed for con-
structing both separated representations, and proves that Lagrange multipliers is more expensive
from the computational time viewpoint.

We can compare the complexities related to a fully incremental integration and the one related to
the construction of separated representation. In the fully incremental integration, we should compute
the solution at each one of the r1 � .r2 � 1/ time steps that quantify the solution complexity. When a
separated representation is built, one should computeN �mODE integrations (m being the iterations
involved in the nonlinear solver used for computing each functional product in Equation (65)) in the
intervals involving r2 � 1 time steps. Thus, the complexity results N �m � .r2 � 1/. By comparing
both complexities, we can conclude that ifN �m< r1 the time axis separation could be an appealing
solution for speeding up the integration of transient models. In general, N is of the order of few
tens and m is lower than 10. This implies that r1 should be greater than 100 to induce CPU time
savings. However, in this paper, we are more interested in analyzing the possible multidimensional
description of the time axis than in proving its numerical advantages.
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Figure 4. Comparison of the separated solution and the fully incremental one computed for different number
of terms N in the separated representation: (top-left) N D 1, (top-right) N D 2, (bottom-left) N D 3, and
(bottom-right) N D 10, when a penalty strategy was applied. The green curve represents the approximated

solution, whereas the blue one is the reference, exact, solution.
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Figure 5. Comparison of the separated solution and the fully incremental one computed for different num-
ber of terms N in the separated representation: (top-left) N D 1, (top-right) N D 2, (bottom-left) N D 3,
and (bottom-right) N D 10, when a Lagrange multiplier was introduced. The green curve represents the

approximated solution, whereas the blue one is the reference, exact, solution.
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Figure 6. Error versus the number of iterations (number of terms in the finite sums decomposition) when
using Lagrange multipliers (left) and penalty (right) strategies for enforcing the solution continuity.
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Figure 7. CPU time versus the number of iterations (number of terms in the finite sums decomposition)
when using Lagrange multipliers (left) and penalty (right) strategies for enforcing the solution continuity.

5.2. Solving time-multiscale PDE by increasing the temporal dimensionality

Until now, our attention focused in the solution of time-multiscale ODE. In the present section, we
are considering models involving time and space coordinates (PDEs) and exploring the applicability
of a decomposition of the time axis in a higher dimensional time space.

For this purpose, we consider the transient PDE equation

@u

@t
D
@2u

@x2
C f .x, t /, .x, t / 2 .0,�/� .0, tmax� (66)

where

f .x, t /D
�
2t cos2.!t/� 2t2! cos.!t/ sin.!t/C t2 cos2.!t/

�
� sin.x/ (67)

with u.x D 0, t /D u.x D � , t /D 0, and u.x, t D 0/D 0.
The exact solution of Equation (66) writes:

uex.x, t /D t2 cos2.!t/ sin.x/. (68)

For its numerical solution, we make a partition of the whole time interval Œ0, tmax� into r1 intervalsh
0, tmax

r1

i
� � �
h
tmax.r1�1/

r1
, tmax

i
. In what follows, we consider tmax D 5, r1 D 10, and ! D 10.

Thus, we define two time dimensions, the first one discrete

x1 D 0, 1, � � � , .r1 � 1/ (69)

and the second one continuous

x2 D

	
0,
tmax

r1



. (70)
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Moreover, the space dimension x3, in the present case and without loss of generality, 1D, is
discretized by using r3 nodes.

Now, the transient equation can be rewritten in the resulting 3D space as:

@u.x1, x2, x3/

@x2
D
@2u.x1, x2, x3/

@x23
C f .x1, x2, x3/ (71)

For the solution, we consider the Lagrange multiplier strategy for enforcing the continuity with
respect to the time coordinate that considers a Lagrange multiplier for each node of the spatial
discretization.

Figures 8 and 9 depict the time and space functions respectively involved in the separated repre-
sentation. Figure 10 shows the reconstructed space–time solution post-treated from the 3D separated
representation, where the two time coordinates were pushed down for defining a single 1D time axis.
This solution is compared with the exact solution, and, as expected, they are in perfect agreement.
In order to appreciate the solution features, Figure 11 depicts another view of the computed solution
in order to emphasize the presence of fast oscillations.

6. AN ALTERNATIVE FORMULATION

When the number of dimensions increases, so does the complexity associated with the imposition
of time continuity, as discussed in Section 4.3. In this section, an alternative method is developed
that has rendered excellent results when applied to ODEs and PDEs.
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Figure 8. Functions of time involved in the separated representation using Lagrange multipliers for
enforcing the continuity constraints: F i
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.x1/ (left) and F i

2
.x2/ (right).
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Figure 9. Functions of space F i
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.x3/ involved in the separated representation using Lagrange multipliers
for enforcing the continuity constraints.
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Figure 10. Space–time reconstructed solution u.x, t / computed from the separated representation whose
involved functions were depicted in Figures 8 and 9 (left) and exact solution (right).

Figure 11. Another view of the space–time reconstructed solution u.x, t / depicted in Figure 10 (left).

6.1. Application to ODEs

To illustrate the method, we consider firstly the ODE already considered in Section 5.1

@u

@t
D f .t/D 2t cos2.!t/� 2t2! cos.!t/ sin.!t/ (72)

with u.t D 0/D 0.
Because of the linearity of Equation (72), an alternative method to find a numerical solution to

this problem consists in writing

u.t/D ugen, hom.t/C upart, compl.t/ (73)

that is, express the solution of Equation (72) as the sum of the general solution of the homoge-
neous equation plus a particular solution of the complete equation. By performing the time-axis
decomposition, it results in

u.t , �/D ugen, hom.t , �/C upart, compl.t , �/. (74)

Concerning the particular solution, it is sought in the separated form:

upart, compl.t , �/�
QX
jD1

F
j
t .t/ �F

j
� .�/ (75)

Because we are looking for a particular solution, we could enforce it to vanish on the boundary
� D 0, that is, upart, compl.t , � D 0/D 0. This condition can be obtained by enforcing F j� .� D 0/D 0,
j D 1, : : : ,Q.
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The second part of the solution derives from the homogeneous equation whose separated form
reads:

uhom.t , �/�
Q0X
jD1

H
j
t .t/ �H

j
� .�/ (76)

that is integrated by enforcing the boundary condition uhom.t , � D 0/ D 1. For this purpose, we
prescribe H 1

t .t/D 1 and H 1
� .� D 0/D 1 and H j

� .� D 0/D 0, j D 2, � � � ,Q0.
Thus, the general solution of the homogeneous equation reads:

ugen, hom.ti , �/D ˛i � uhom.ti , �/ (77)

The coefficients ˛i are determined by enforcing the solution time-continuity, by solving sequen-
tially ²

˛1 D u.t D 0/D 0
upart, compl.ti ,��/C ˛i � uhom.ti ,��/D ˛iC1, i D 1, : : : , r1 � 1

(78)

where �� D tmax=r1.
By using this strategy, the solution of the problem is obtained in only one iteration. The result

agrees in minute with the reference one as shown in Figure 12.
Because of the simplicity of the operators involved in this description, with respect to the

Lagrange multiplier strategy discussed previously, the computing time savings in the example just
treated is of two orders of magnitude.

Figure 13 compares the evolution of the error with the number of terms considered in the sep-
arated representation of the general solution of the homogenous equation Q0 and the particular
solution of the complete equation Q.

For a given accuracy, the number of terms is much lower than that of the one needed when apply-
ing the strategies described in Section 5. That is, for the same number of functions in the separated
representation of the solution, the one related to the technique described in this section is better than
that of the ones computed by using the strategies described in Section 5.

This strategy is generalizable to transient PDEs.

6.2. Application to PDEs

For illustrating the application to discretize PDE, we consider the model

@u

@t
��uD f .x, t / (79)

with, for the sake of simplicity, homogeneous initial and boundary conditions. We consider the
model defined in a 2D space domain �, xD .x,y/ 2�, with t 2 .0, tmax�.
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Figure 12. Result for the ODE obtained with the technique explained in Section 6.1.
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Figure 13. Error versus the number of iterations (number of terms in the separated representation) in the
particular solution of the complete equationQ (left) and in the general solution of the homogeneous equation

Q0 (right).

We compute the particular solution of the complete equation in the separated form

upart, compl.x, t , �/�
QX
jD1

F jx .x/ �F
j
t .t/ �F

j
� .�/ (80)

with upart, compl.x, t , � D 0/D 0.
The general solution of the homogeneous equation needs solving

@u

@t
��uD 0 (81)

for any initial condition.
If we are considering a mesh composed of M nodes for approximating the field u in the space

domain �, we could solve the following M homogeneous problems

@uihom
@t
��uihom D 0

uihom.x, t , � D 0/DNi .x/

μ
i D 1, : : : ,M (82)

with Ni .x/ the elements of a discrete space approximation basis. In the context of finite element
techniques, Ni .x/ represent the standard shape functions verifying the Kronecker’s delta property,
that is, Ni .xk/D ıik .

The preceding solutions are sought in the separated form:

uihom.x, t , �/�
Q0X
jD1

F
j
x,i .x/ �F

j
t ,i .t/ �F

j
� ,i .�/, i D 1, : : : ,M (83)

With all these solutions uihom.x, t , �/, i D 1, � � � ,M , known, the general solution of the
homogeneous equation reads:

ugen,hom.x, ti , �/D
jDMX
jD1

˛ij � u
j
hom.x, ti , �/ (84)
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where the coefficients ˛ij are computed by enforcing the solution time-continuity. Considering a
simple nodal collocation for enforcing the time continuity, we can write, for i D 1, � � � , r1 � 1:

upart, compl.xk , ti , � D��/C
jDMX
jD1

˛ij � u
j
hom.xk , ti , � D��/D

D

jDMX
jD1

˛iC1j �Nj .xk/D ˛
iC1
k

, k D 1, � � � ,M (85)

where the fact that Nj .xk/D ıjk has been used.
Coefficients ˛1

k
are computed from the initial condition u.x, t D 0/D ug.x/:

ug.xk/D upart, compl.xk , t1, � D 0/C
jDMX
jD1

˛1j � u
j
hom.xk , t1, � D 0/D

D

jDMX
jD1

˛1j � Nj .xk/D ˛
1
k , k D 1, � � � ,M (86)

This technique could be applied in the nonlinear case by performing a linearization prior to pro-
ceeding to the solution. However, the main drawback of such an approach lies in the necessity of
solving M homogeneous equations. In some applications, M can be extremely high. Obviously,
if M is of the same order of magnitude than that of r1, the solution procedure has the same com-
plexity than that of a standard incremental solution. For circumventing this difficulty, we propose
considering an adaptive reduced basis in order to enforce the initial condition as well as the solution
continuity in time.

Thus, we consider two different space meshes: one, fine enough, for approximating the space
functions involved in the separated representation F jx,i .x/, and F jx .x/; and the second one, Ni .x/,
coarser, for enforcing the time-continuity. Because both associated approximation spaces are differ-
ent by enforcing the time-continuity at the M nodes related to the coarsest mesh, we do not ensure
the perfect continuity. The resulting gap could be used to define a criterion for refining the coarsest
mesh, the one used to enforce the continuity. However, if one considers standard polynomial approx-
imation bases, as soon as a refinement is performed, the whole solution process must be repeated
again. For alleviating the solution process, one could consider a hierarchical basis (very well known
in the finite element framework) because in that case, the addition of a new approximation function
allows to keep all the work already done. Thus, if we consider the hierarchical basis Hi .x/ instead
of the classical one Ni .x/, with i D 1, : : : ,M , if we enrich the discrete approximation space, con-
sisting now inM 0 approximation functionsH 0i .x/,M

0 >M , theM first approximation functions in
the refined basis remains unchanged, that is, H 0i .x/ D Hi .x/, i D 1, : : :M . For standard finite ele-
ment bases, as soon as we change the space dimension, the approximation functions change. Thus,
when we proceed to refine a hierarchical approximation basis, the work already done is reused.

When using a hierarchical approximation basis, the solution procedure is slightly modified. If
we are considering a discrete hierarchical basis of size M , we should solve the following M
homogeneous problems:

@uihom
@t
��uihom D 0

uihom.x, t , � D 0/DHi .x/

μ
i D 1, : : : ,M (87)

The preceding solutions are sought in the separated form:

uihom.x, t , �/�
Q0X
jD1

F
j
x,i .x/ �F

j
t ,i .t/ �F

j
� ,i .�/ (88)

where functions F jx,i are approximated using a fine enough approximation basis.
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With all these solutions uihom.x, t , �/, i D 1, � � � ,M , known, the general solution of the
homogeneous equation reads:

ugen,hom.x, ti , �/D
jDMX
jD1

˛ij � u
j
hom.x, ti , �/ (89)

where the coefficients ˛ij are computed by enforcing the solution continuity in time. Considering
a simple nodal collocation at M locations xk for enforcing the time-continuity, we can write, for
i D 1, � � � , r1 � 1:

upart, compl.xk , ti , � D��/C
jDMX
jD1

˛ij � u
j
hom.xk , ti , � D��/D

D

jDMX
jD1

˛iC1j �Hj .xk/, k D 1, � � � ,M (90)

Coefficients ˛1
k

are computed from the initial condition u.x, t D 0/D ug.x/:

ug.xk/D upart, compl.xk , t1, � D 0/C
jDMX
jD1

˛1j � u
j
hom.xk , t1, � D 0/D

jDMX
jD1

˛1j � Hj .xk/ (91)

for k D 1, : : : ,M .
Obviously, by enforcing the solution continuity in time at positions xk , k D 1, � � � ,M , we do

not ensure the continuity in time everywhere. Thus, the resulting gap can be used as a criterion
for enriching the coarse approximation space whose size becomes M 0 > M . However, because its
hierarchical nature of the approximation functions, all the already computed solutions uihom.x, t , �/,
i D 1, : : : ,M , remain unchanged, and then, we only need to compute theM 0�M new homogeneous
problems

@uihom
@t
��uihom D 0

uihom.x, t , � D 0/DHi .x/

μ
i DM C 1, : : : ,M 0 (92)

For illustrating the procedure, we are considering the linear parabolic PDE

@u

@t
��uD .x2 � y2/ � sin.! � t / (93)

with homogeneous initial and boundary conditions. We consider x 2 � with � depicted in
Figure 14, t 2 .0, 1�, and ! D 45.

The hierarchical approximation basis consists of the Szabo and Cernevali basis involving vertex,
edge, and face shape functions [22]. The hierarchical basis is associated to the coarse mesh depicted
in Figure 15. Figure 16 superpose the fine mesh used for solving the different equations, and the
corse mesh used for defining the hierarchical basis employed for enforcing the continuity in time.

The zero level of the hierarchical basis consists on the standard vertex linear finite element shape
functions. The first level consists of edge functions. In Figure 17, we depict the ones related to one
of the triangles of the mesh shown in Figure 15.

The second level consists of other edge shape function as well as a face function defined on each
triangle. Figure 18 depicts those functions for one of the triangles involved in the hierarchical mesh.

Because of the mesh used in our calculations (Figure 15) and the assumed homogeneous bound-
ary conditions, we are not considering the vertex shape functions because all of them are located on
the domain boundary @� in which the solution vanishes. By the same reasons, we are not consider-
ing all the edge shape functions of any level related to edges located on the domain boundary @�.
Thus, we are only retaining the edge shape functions associated with internal edges as well as all
the face shape functions.
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Figure 14. Geometry of the domain considered for the solution of transient problem (93).

Figure 15. Mesh associated to the Szabo and Cernevali hierarchical basis.
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Figure 16. Fine mesh used for solving the equations superposed and coarse mesh employed for defining the
hierarchical basis.
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Figure 17. Edge shape functions related to one of the triangles depicted in Figure 15.

Figure 18. Second level edge shape functions and face shape functions related to one of the triangles
depicted in Figure 15.

Figure 19. Active approximation functions at the first level of the hierarchical approximation related to the
mesh depicted in Figure 15.

At the first level, we have f ive edge shape functions related to the five internal mesh edges, all
of them depicted in Figure 19.

At the second level, we should consider the next five edge shape functions (related to the five
internal mesh edges) as well as the six face shape functions, all of them depicted in Figure 20.

Figure 21 depicts the separated representation of the solution u1hom of the homogeneous problem:

´
@u1hom
@t
��u1hom D 0

u1hom.x, t , � D 0/DH1.x/
(94)

where H1.x/ is the first level edge shape function depicted in Figure 19 at the top and left. 
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Figure 20. Active approximation functions at the second level of the hierarchical approximation related to
the mesh depicted in Figure 15: (top) the five second level edge shape functions, and (down) the six first face

shape functions.

The separated representation, for the desired precision, involves 15 functional products, that is,

u1hom.x, t , �/�
15X
iD1

F ix,1.x/ �F
i
t ,1.t/ �F

i
� ,1.�/ (95)

whose four most significative functions are depicted in Figure 21. We depict, in this figure, the first
four space functions F ix,1.x/, i D 1, � � � , 4, and the first time functions F it ,1.t/ and F i� ,1, i D 1, � � � , 4.

The reconstructed solution u.x, t D 1/ is depicted in Figure 22 when a hierarchical approximation
basis consisting of the first two levels (involving 16 approximation functions: f ive first-level edge
shape functions, f ive second-level edge shape functions, and finally six second-level face shape
functions) was applied.

Obviously, the difference between the computed solution and the reference one obtained by using
a standard incremental strategy in the whole time interval, decreases as the size of the hierarchical
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Figure 21. Main functions involved in the separated representation of u1hom.x, t , �/: (top) the first four space
functions F ix,1.x/, i D 1, � � � , 4; (down) the first time functions F i

t ,1.t/ (left) and F i
� ,1 (right), i D 1, � � � , 4.

Figure 22. Reconstructed solution u.x, t D 1/ obtained from u.x, t , �/.

basis increases. Thus, when we use for enforcing the time-continuity only the first-level approxima-
tion functions (f ive shape functions) the error is 0.1 (10%) whereas by using the shape functions
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of the two first levels (16 shape functions), the error reduced to 0.03 (3%). These errors are defined
from the L2 norm of the difference between the computed solution and the reference one (the
one computed by using a standard incremental strategy) divided by the L2 norm of the reference
solution.

7. CONCLUSION

In this paper, we proved that models involving different non-separable time scales can be refor-
mulated by introducing different time coordinates allowing to express the time dependence of
the solution from a multidimensional time approximation. Event if, at present, it is too early for
concluding on the computing time and the procedure performances, the possibility of perform-
ing such decomposition is, in our opinion, quite interesting, and it could be at the origin of many
developments for reducing the computing time of complex multiscale thermomechanical models.
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