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1. Introduction

Traditionally, stability analysis and design of shallow foundations
resting on soils or rocks is based on deterministic approaches [1–4].
In this paper, the behavior of shallow foundations resting on a rock
mass is studied using a probabilistic approach. The probabilistic
approaches allow one to consider the propagation of the uncertain-
ties from the input parameters to the system responses. Most
probabilistic analyses existing in literature consider the ultimate
limit state of foundations resting on a soil mass [5–12]. To the best
of the authors’ knowledge, there are no probabilistic studies on the
ultimate limit state of shallow foundations resting on rock masses.
The present paper fills this gap; it aims at determining the ultimate
bearing capacity of a shallow strip footing resting on a rock mass
using a probabilistic approach. The footing rests on a rock mass that
follows the modified Hoek–Brown failure criterion. In this criterion,
only intact rocks or heavily jointed rocks masses (i.e. with suffi-
ciently dense and randomly distributed joints) can be considered.
A central (vertical or inclined) footing load is considered in the
analysis. The deterministic models are based on the kinematic
: þ33 240 905 109.
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approach of limit analysis theory using translational multiblock
failure mechanisms. Four uncertain parameters related to the mod-
ified Hoek–Brown failure criterion are modeled as random variables.
These are the geological strength index (GSI), the uniaxial compres-
sive strength of the intact rock (sc), the intact rock material constant
(mi) and the disturbance coefficient (D). Notice that the system
response considered in this paper is the ultimate bearing capacity of
the footing. This response is related to the failure of the footing by
rock punching.

As for the probabilistic studies, the classical Monte Carlo simu-
lation (MCS) methodology is generally used to compute either
the probability density function (PDF) of the system response or
the failure probability Pf. In spite of being a rigorous and a robust
methodology, MCS requires a great number of calls to the determi-
nistic model (about 1,000,000 samples for a failure probability of
10�5). This is not convenient in case where the computation of the
system response is not given by a simple analytical formula. In the
present paper, a more efficient method based on the polynomial
chaos expansion (PCE) is used [13–16]. The PCE methodology aims at
replacing the deterministic model (for which the uncertain input
parameters are modeled by random variables) by an approximate
simple analytical equation called meta-model. Thus, one can easily
calculate the system response when performing Monte Carlo simula-
tions. In this paper, the meta-model is used to perform both



Table 1
Usual probability density functions and their cor-

responding families of orthogonal polynomials.

Probability density functions Polynomials

Gaussian Hermite

Gamma Laguerre

Beta Jacobi

Uniform Legendre
probabilistic and reliability-based analyses. It is also used to perform
a reliability-based design.

In the probabilistic analysis, a parametric study was performed.
The PDF of the system response (ultimate bearing capacity) was
determined for normal and non-normal random variables and for
different values of the statistical parameters of the random variables
(i.e. coefficient of variation and correlation between random vari-
ables). Also, a global sensitivity analysis based on Sobol indices was
performed. These indices give the contribution of each random
variable or combination of random variables in the variability of
the system response. This is important because it helps engineers in
detecting the uncertain parameters that have a significant influence
in the variability of the system response. Concerning the reliability-
based analysis, the meta-model determined by the probabilistic
analysis was used to compute the Hasofer–Lind reliability index
and the corresponding failure probability for different values of the
applied footing load. In addition to the reliability-based analysis, a
reliability-based design (RBD) was performed to determine (for given
values of the statistical parameters of the input random variables)
the footing breadth corresponding to a target failure probability.

The paper is organized as follows: The next section aims at
presenting the basic idea of the polynomial chaos expansion (PCE)
methodology. It is followed by a presentation of the deterministic
model used for the computation of the ultimate bearing capacity of
a centrally loaded strip footing (vertical or inclined load) resting on a
rock mass. Finally, the probabilistic and reliability-based results are
presented and discussed for both cases of vertical and inclined
loadings. The paper ends with a conclusion.
2. Polynomial chaos expansion (PCE) methodology

The polynomial chaos expansion methodology allows one to
represent by an analytical equation (meta-model) the response of
a mechanical system whose input uncertain parameters are
modeled by random variables. The main advantage of a PCE
methodology is that the PDF of the system response can be easily
obtained by applying MCS on the meta-model. Another important
advantage of the meta-model is that it can be used to perform a
global sensitivity analysis based on Sobol indices. These indices
give the contribution of each random variable or combination of
random variables in the variability of the system response. It
should be noticed that the meta-model aims at presenting the
random model response by a set of coefficients in a suitable (so-
called polynomial chaos) basis. These coefficients may be effi-
ciently computed using a non-intrusive technique where the
deterministic model does not need to be modified; it is treated
as a black box. Two non-intrusive approaches have been proposed
in literature: the projection and the regression approach. In this
paper, the regression approach [13–16] is used. Once the
unknown coefficients of the PCE are determined, this PCE will
be called ‘‘meta-model’’ and it will be used for further post-
treatment in the probabilistic analysis. Thus, the PDF of the
response can be derived with no cost since one makes use of
the simple analytical formula. In this section, the main idea of the
PCE methodology is first described. It is followed by a presenta-
tion of (i) the regression method used to determine the unknown
PCE coefficients, (ii) the statistical analyses (determination of the
PDF of the system response and the Sobol indices) by using the
meta-model and (iii) the numerical implementation of the PCE
methodology.

2.1. System output

Consider a deterministic model with M input uncertain para-
meters gathered in a vector X ¼ fX1,. . .,XMg. The different elements
2

of this vector can have different types of the probability density
function. In order to represent our mechanical system response by a
PCE, all the uncertain parameters should be represented by a unique
chosen PDF. Table 1 presents the usual probability density functions
and their corresponding families of orthogonal polynomials. In this
paper, the independent standard normal space is used. Thus, the
suitable corresponding basis is the multidimensional Hermite poly-
nomials. The expressions of the multi-dimensional Hermite poly-
nomials are given in [16] among others.

Based on the Gaussian PDF chosen in this paper, Xiu and
Karniadakis [17] have shown that the system response can be
expanded onto an orthogonal polynomial basis as follows:

GPCEðxÞ ¼
X1
b ¼ 0

abCbðxÞffi
XP�1

b ¼ 0

abCbðxÞ ð1Þ

where x is the vector resulting from the transformation of the
random vector X into an independent standard normal space, ab are
the unknown coefficients to be computed and Cb are the multi-
dimensional Hermite polynomials. The PCE representation should
be truncated by retaining only the multivariate polynomials of
degree less than or equal to the PCE order p. This truncation scheme
leads to a number P of unknown coefficients given by

P¼
ðMþpÞ!

M!p!
ð2Þ

For the determination of the PCE unknown coefficients, it is
required to evaluate the system response at a set of collocation
points (i.e. sampling points). As suggested by several authors
[13–16], the roots of the one-dimensional Hermite polynomial (of
one degree higher than the PCE order p) are used for each random
variable. The collocation points are the result of all possible
combinations of these roots. Thus, the number N of the available
collocation points depends on the number M of the random
variables and the PCE order p as follows:

N¼ ðpþ1ÞM ð3Þ

As proposed in [13–16], this number of collocation points should
be increased by one when using a PCE of an odd order since in this
case the number of collocation points does not include the origin.
The origin should be included since it represents the point with the
highest failure probability.

It should be mentioned here that in order to perform the
deterministic calculations, one should transform the independent
standard normal random variables of a given collocation point to the
physical correlated non-normal space (if the physical variables are
correlated and non-normal). This is done by first correlating the
independent standard normal random variables of a given colloca-
tion point, by multiplying these independent standard variables by
the Cholesky transform CH of the standard covariance matrix (i.e.
correlation matrix) as follows:

xc
¼ CHUx ð4Þ

where xc is the correlated standard normal random vector and
x is the independent standard normal random vector. The
standard correlated normal vector has now to be transformed



into the non-normal space using the following equation:

X ¼ F�1
½Fðxc

Þ� ð5Þ

where X is the physical random vector, F(.) is the cumulative
density function (CDF) in the non-normal space and F(.) is the
normal CDF. The next section is devoted to the presentation of the
regression approach used to calculate the coefficients ab of
the PCE.
2.2. Regression approach

As may be seen from Eq. (3), the number of the available
collocation points dramatically increases as p or M increases. This
number is always higher than the number P of the unknown
coefficients (given by Eq. (2)) when MZ2. This leads to a linear
system of equations whose number of equations N is greater than
the number of unknowns P. Based on the regression approach, the
vector of the unknown coefficients can be obtained by solving the
following equation:

ab ¼ ðO
TOÞ�1OT Y ð6Þ

where Y ¼ fY1,. . .,YN
g is the vector of the model response values

(computed via the deterministic model for the N collocation
points) and O is the matrix of dimensions N� P. It is given by:

O¼

c1
0ðxÞ c1

1ðxÞ � � � c1
P�1ðxÞ

c2
0ðxÞ c2

1ðxÞ � � � c2
P�1ðxÞ

^ ^ & ^

cN
0 ðxÞ cN

1 ðxÞ � � � cN
P�1ðxÞ

2
666664

3
777775 ð7Þ

Several attempts have been made in literature to select the
most efficient collocation points among the N available ones to
reduce the number of calls of the deterministic model. Webster
et al. [18] selected a number K of collocation points among the N

available points based on the empirical equation K¼(Pþ1).
Isukapalli et al. [13] proposed another empirical equation K¼2P.
In both approaches, the collocation points are chosen to be the
nearest ones to the origin of the standard space of random
variables. More recently, Sudret [19] proposed a more rational
methodology for the determination of the necessary number of
collocation points. This method is used in this paper. It is based on
the invertibility of the information matrix A¼OTO. It can be
described by the following steps: (a) the N available collocation
points are ordered in a list according to increasing norm, (b) the
information matrix A is first constructed using the first P colloca-
tion points of the ordered list, i.e. the P collocation points that are
the closest ones to the origin of the standard space of the random
variables and finally (c) this matrix is successively increased by
adding each time another collocation point from the ordered list
until the matrix becomes invertible. This leads to a number K of
collocation points smaller than the number N of the available
collocation points.

It should be noticed here that the quality of the output
approximation via a PCE closely depends on the PCE order p. Let
us consider K realizations fxð1Þ ¼ ðxð1Þ1 ,. . .,xð1ÞM Þ,. . .,x

ðKÞ
¼ ðxðKÞ1 ,. . .,

xðKÞM Þg of the standard normal random vector x, and note
G¼ fGðxð1ÞÞ,. . .,GðxðKÞÞg the corresponding values of the model
response determined by deterministic calculations. To ensure a
good fit between the meta-model and the true deterministic model
(i.e. to obtain the optimal PCE order), the simplest error estimate is
the well-known coefficient of determination R2 given by:

R2
¼ 1�

DPCE

VarðGÞ
ð8Þ
3

where DPCE is the empirical error given by:

DPCE ¼
1

K

XK

i ¼ 1

½GðxðiÞÞ�GPCEðx
ðiÞ
Þ� ð9Þ

and

VarðGÞ ¼
1

K�1

XK

i ¼ 1

½GðxðiÞÞ�G�2 ð10Þ

G¼
1

K

XK

i ¼ 1

GðxðiÞÞ ð11Þ

The value R2
¼ 1 indicates a perfect fit of the true model response

G, whereas R2
¼ 0 indicates a nonlinear relationship between the

true model G and the PCE model GPCE. This coefficient may be a
biased estimate since it does not take into account the robustness of
the meta-model (i.e. its capability of correctly predicting the model
response at any point which does not belong to the experimental
design). As a consequence, one makes use of a more reliable and
rigorous error estimate, namely the leave-one-out error estimate
[20]. This error estimate consists in sequentially removing a point
from the K collocation points. Let Gx\i be the meta-model that has
been built from the K collocation points after removing the ith
observation from these collocation points and let Di

¼GðxðiÞÞ�Gx\i

ðxðiÞÞ be the predicted residual between the model evaluation at
point xðiÞand its prediction based on Gx\i. The empirical error is thus
given as follows:

Dn

PCE ¼
1

K

XK

i ¼ 1

ðDi
Þ
2

ð12Þ

The corresponding coefficient of determination of the empiri-
cal error given by Eq. (12) is often denoted by Q2:

Q2
¼ 1�

Dn

PCE

Var½G�
ð13Þ

2.3. Statistical analysis

Once the output approximation via a PCE is obtained, this PCE
will be called meta-model and will be employed for the prob-
abilistic and the reliability-based analyses. The PDF of the system
response and the corresponding statistical moments (i.e. mean m,
standard deviation s, skewness d and kurtosis k) can be easily
estimated. This can be done by simulating a large number of
realizations of the standard normal variables on the meta-model
using Monte Carlo technique. Another important advantage of the
meta-model is that it can be used to perform a global sensitivity
analysis (GSA). The GSA is generally based on the decomposition
of the response variance as a sum of contributions of the different
random variables or combinations of random variables (the sum
of all Sobol indices is equal to 1). In this framework, Sobol indices
give the contribution of each random variable or combination of
random variables to the variability of the system response [19].
This is important because it helps engineers in detecting the
uncertain input parameters which have a significant influence in
the variability of the system response.

2.4. Numerical implementation of the PCE methodology

For the implementation of the PCE methodology, a computer
program was developed in the commercial software Matlab 7.6.
For each input random variable, the code first computes the roots
of the one-dimensional Hermite polynomial (of one degree higher
than the prescribed PCE order p) and then it provides the collocation
points in the standard space of normal random variables. In a second



Fig. 1. Failure envelope of the Mohr–Coulomb and the Hoek–Brown failure

criterion in the (s, t) plan.
step, the program uses isoprobabilistic transformation and Cholesky
transformation of the standard covariance matrix to transform the
collocation points to the corresponding physical space (in case of
non-normal and correlated variables) in order to calculate the
corresponding system response(s) using the deterministic model.
Finally, the program computes the unknown coefficients of the PCE
using the regression approach presented above. A probabilistic
analysis can thus be performed using this code. The PDF of the
system response and the corresponding statistical moments can be
obtained by simulating a large number of standard normal random
variables on the meta-model using the Monte Carlo technique. The
Sobol indices for each random variable or a combination of random
variables can also be determined using the coefficients of the PCE.
On the other hand, the program can also be employed to perform a
reliability analysis on the meta-model. This can be done easily since
the obtained PCE is given in the standard space of the normal
uncorrelated random variables. Thus, one can determine the relia-
bility index and the corresponding design point for different values
of the applied footing load. A reliability-based design based on the
meta-model can also be performed to obtain the footing breadth for
a target reliability index.
Fig. 2. Failure mechanisms for the computation of the ultimate bearing capacity of

(a) vertically loaded foundation (M1 mechanism) and (b) obliquely loaded

foundation (M2 mechanism).
3. Deterministic bearing capacity of a centrally loaded strip
footing

In this section, one first presents a brief description of the
modified Hoek–Brown failure criterion. This is followed by a
presentation of the two deterministic models used to compute
the ultimate bearing capacity of a centrally loaded shallow strip
footing (i.e. a footing subjected to a vertical or an inclined load).

3.1. Modified Hoek–Brown failure criterion

The modified Hoek–Brown failure criterion only deals with intact
rocks or heavily jointed rock masses. A heavily jointed rock mass
involves sufficiently dense and randomly distributed joints so that in
the scale of the problem, it can be regarded as an isotropic assembly
of interlocking particles. Consequently, rocks with few discontinu-
ities cannot be considered in this framework [21–23]. The modified
Hoek–Brown failure criterion can be described by the following
equation [24]:

s1�s3 ¼ sc m
s3

sc
þs

� �n

ð14Þ

where s1 and s3 are, respectively, the major and minor principal
stresses at failure and sc is the uniaxial compressive strength of the
intact rock material. The parameters m, s and n are given by the
following equations:

m¼mi exp
GSI�100

28�14D

� �
ð15Þ

s¼ exp
GSI�100

9�3D

� �
ð16Þ

n¼
1

2
þ

1

6
exp �

GSI

15

� �
�exp �

20

3

� �� �
ð17Þ

In these equations, the geological strength index (GSI) char-
acterizes the quality of the rock mass and depends on its structure
and its joints surface conditions [25]. On the other hand, the
parameter mi is the value of parameter m for intact rock and can
be obtained from experimental tests. The parameter mi varies
from 4 for very fine weak rock like claystone to 33 for coarse
igneous light-colored rock like granite. Finally, D is the distur-
bance coefficient. It varies from 0.0 for undisturbed in situ rock
masses to 1.0 for very disturbed rock masses. Fig. 1 presents the
4

nonlinear modified Hoek–Brown failure criterion in the (t, s)
plane.

3.2. Limit analysis models

Two kinematically admissible failure mechanisms M1 and M2
based on the upper-bound theorem of limit analysis are used
herein. These mechanisms were firstly presented by Soubra [1]
for the computation of the ultimate bearing capacity of a strip
footing resting on a soil mass. Later on, the M1 mechanism was
used by Yang and Yin [3] and Saada et al. [4] for the case of a strip
footing resting on a rock mass obeying Hoek–Brown failure
criterion.

M1 is a translational symmetrical multiblock failure mechan-
ism (Fig. 2a) and is used for the computation of the ultimate
bearing capacity of a vertically loaded strip footing. It is composed
of 2kþ1 triangular rigid blocks (a central symmetrical block
under the footing and 2k symmetrical rigid blocks at both sides
of the footing). This mechanism can be completely described by
2k angular parameters which are ai (i¼1, y, k�1), bi (i¼1, y, k)
and y. On the other hand, M2 is a translational non-symmetrical
multiblock failure mechanism (Fig. 2b) and is suitable for the
calculation of the ultimate bearing capacity of an obliquely loaded
strip foundation. This mechanism is composed of k triangular
rigid blocks. It can be completely described by 2k�1 angular



Fig. 3. Velocity field of M1 mechanism as given by (a) Yang and Yin [3]; (b) Saada

et al. [4]; (c) present approach.
parameters which are ai (i¼1, y, k�1) and bi (i¼1, y, k).
The computation of the ultimate bearing capacity is performed by
equating the total rate of work of the external forces _W to the total
rate of energy dissipation _D along the lines of velocity disconti-
nuities. For more details on these mechanisms, the reader can refer
to [1].

The above mechanisms were used by Soubra [1] in the case of a
Mohr–Coulomb material (i.e. a soil mass) where the failure envelope
is linear. For a rock mass obeying the modified Hoek–Brown failure
criterion, the failure envelope is nonlinear (see Fig. 1). Yang and Yin
[3] replaced the nonlinear modified Hoek–Brown failure criterion by
a linear Mohr–Coulomb failure criterion represented by a tangential
line (see Fig. 1) where P is the tangent point. This criterion is
given by

t¼ ctþsntan jt ð18Þ

where jt is the tangential friction angle and ct is the intercept of
the tangential line with the t-axis in the (t, s) plan. This
technique has also been used in [26] among others. For the
tangent point P, the cohesion ct can be expressed in terms of
(i) the tangential friction angle jt and (ii) the parameters m, s, n of
the Hoek–Brown failure criterion as follows:

ct

sc
¼

cos jt

2

mn 1�sin jt

� �
2 sin jt

� �ð1=ð1�nÞÞ

�
tan jt

m
1þ

sin jt

n

� �
mnð1�sin jtÞ

2 sin jt

� �ð1=ð1�nÞÞ

þ
s

m
tan jt

ð19Þ

Notice that the location of the tangent point P is obtained by
optimization as will be shown later. By using the tangential line
method, the rate of energy dissipation per unit area along a given
velocity discontinuity surface remains essentially the same as
that of the linear Mohr–Coulomb criterion but with ct and jt

instead of c and j as follows:

_D ¼ ctv:cos jt ð20Þ

where n is the velocity along a given velocity discontinuity
surface. Notice that in this approach, all the block velocities ni

and all the inter-block velocities vi,iþ1 are assumed to be inclined
at a constant angle jt (the tangential friction angle) with respect to
their corresponding velocity discontinuity surfaces as shown in
Fig. 3a for the case of a symmetrical mechanism. Since the strength
given by the tangential line (for a given value of the normal stress) is
either equal or exceeds that of the nonlinear failure criterion (see
Fig. 1), the solution obtained using the tangential line method is
certainly greater than that of a nonlinear failure criterion and thus, it
remains a strict upper-bound to the exact solution.

Recently, a more rigorous and efficient approach, which pre-
serves the original nonlinear form of the modified Hoek–Brown
failure criterion, was proposed by Saada et al. [4]. Contrary to the
tangential line method where a single tangential friction angle jt

was used; in the method by Sadaa et al. [4], each wedge i (i¼1, y, k)
is assumed to move with a velocity ni (i¼1, y, k) inclined at angle
ji with respect to line di. As for the relative velocity vi,iþ1, it was
arbitrarily considered to be inclined at the same angle as that of
line diþ1 (i.e. ji,iþ1¼jiþ1) (Fig. 3b). Although the approach by
Saada et al. [4] constitutes a significant improvement with respect
to the method by Yang and Yin [3] (since these authors make use
of several tangential friction angles and not only of a single
tangential friction angle everywhere in the rock mass), their
assumption concerning the inclination of the relative velocity
vi,iþ1 is a shortcoming. This shortcoming will be removed in the
present paper. Thus, the velocity vi,iþ1 will be assumed herein as
being inclined at an angle ji,iþ1 to line liþ1 where ji,iþ1 will be
different along the different lines liþ1 (Fig. 3c). By using this
5

approach, a higher number of degree of freedom will be added to
the failure mechanism.

Notice that the numerical results have shown that the increase in
the number of blocks decreases (i.e. improves) the ultimate bearing
capacity. However, the increase from seven blocks to eight blocks
decreases (i.e. improves) the solution by a small percentage (o0.8%).
Thus only seven blocks will be used hereafter. Notice also that the
improvement induced by the present approach with respect to that
by Saada et al. [4] (where ji,iþ1¼jiþ1) was found equal to 0.9% for
seven blocks. Although, this improvement is very small, the present
approach will be used hereafter with seven rigid blocks, the increase
in the computation time with the present approach being not
significant (only few seconds). It should be emphasized here that
by using several tangential friction angles (as is the case in the
approach of [4] and by the present approach), the modified Hoek–
Brown failure criterion will be implicitly represented by a series of
tangential lines to the nonlinear failure criterion. The rate of energy
dissipation _D used in this case is given as follows [4]:

_D ¼
ssc

m
vðnÞ þsc nðn=ðn�1ÞÞ�nð1=ðn�1ÞÞ

� 	
mðn=ðn�1ÞÞ 1

vðnÞ
v�vðnÞ

2

� �1=n
 !ðn=ðn�1ÞÞ

ð21Þ

where n(n) is the normal component of a velocity n along a given
velocity discontinuity surface.

For both M1 and M2 mechanisms, it was found, after some
simplifications, that an upper-bound of the ultimate bearing capacity
is given by

qu ¼
1

2
gB0NgþqNqþscNsc ð22Þ



where Ng, Nq and Nsc are non-dimensional parameters. They can be
expressed in terms of (i) the mechanism geometrical parameters and
(ii) the different tangential friction angles jiþ1 and ji,iþ1. These non-
dimensional parameters are given in Appendices A and B for both the
M1 and M2 failure mechanisms, respectively. For each failure
mechanism, the ultimate bearing capacity is obtained by minimiza-
tion with respect to the angular parameters of the failure mechanism
and with respect to the different tangential friction angles jiþ1 and
ji,iþ1 of that failure mechanism.
Table 3
Coefficients of determination R2 and Q2 of the different PCE orders.

Order of PCE Coefficients of determination

R2 Q2

2 0.9990050287 0.9956879877

3 0.9999903833 0.9996685645

4 0.9999996619 0.9999977432

5 0.9999999945 0.9999999791

100

10-1

10-2

10-3

10-4

10-5
0.00 1.00 2.00 3.00 4.00

qu (MPa)

C
D

F

PCE Order 2
PCE Order 3

PCE Order 4

PCE Order 5
PCE Order 6

Fig. 4. Influence of the PCE order on the CDF of the ultimate bearing capacity.
4. Probabilistic and reliability-based numerical results

A strip footing of width B0¼1 m placed on a weightless (g¼0)
rock mass, with no surcharge loading on the ground surface (q¼0) is
considered in the analysis. As mentioned before, the four parameters
(GSI, sc, mi, D) related to the modified Hoek–Brown failure criterion
are considered as random variables. In order to incorporate the
possible dependence between the parameters GSI and sc, a correla-
tion coefficient was considered herein. In this paper, the illustrative
values used for the coefficient of correlation and for the statistical
moments of the different random variables are given in Table 2.
However, other values of these parameters were considered in the
framework of the parametric study. It should be mentioned here
that the values of the statistical parameters of GSI, mi and sc were
proposed in [27]. As for the disturbance coefficient D, the practical
values used in rock engineering problems are within a range of
0–0.6 [3,4,24]. Since there is no information about the coefficient
of variation of the disturbance coefficient D and the correlation
coefficient, the illustrative values presented in Table 2 were adopted
in this study. The deterministic models are based on the two failure
mechanisms M1 and M2. The results are presented first for the case
of a vertically loaded footing and then for the case of an obliquely
loaded footing.

4.1. Case of a vertically loaded footing

4.1.1. Optimal PCE order and Sobol indices

This section aims at determining the optimal PCE order p and the
Sobol indices. To determine the optimal PCE order p, two alternative
methods are used herein. The first one aims at determining the two
coefficients of determination R2 and Q2 given respectively by Eqs.
(8) and (13) although the computation of only Q2 is sufficient since it
is more restrictive than R2. As mentioned before, a value of R2 and Q2

close to one indicates a good fit between the meta-model and the
true model. The coefficients of determination R2 and Q2 were
calculated for the different PCE orders (i.e. PCEs of order 2, 3,
4 and 5). Table 3 shows that R2 and Q2 of order 4 and order 5 are
close to 1 (higher than 0.99999). Consequently, a PCE of order p¼4
provides a good fit between the meta-model and the true model.
The second method consists in verifying the two following condi-
tions: (i) the absolute difference between the coefficients corre-
sponding to the same terms in two PCEs of successive orders (p and
pþ1) becomes smaller than a prescribed tolerance (er10�3 for
example) and (ii) the coefficients of the new terms of the PCE of
order pþ1 tend to be negligible. The numerical results (results not
Table 2
Input random variables and their statistical characteristics.

Variables Mean m Coefficient of

variation COV (%)

GSI [–] 25 10

mi [–] 8 12.5

sc [MPa] 10 25

D [–] 0.3 10

6

provided herein) have shown that the absolute differences between
the coefficients of the common terms of the PCEs of order 4 and
5 are less than 10�3. These results have also shown that the
coefficients of the new terms in the PCE of order 5 are all less than
10�3. These two observations confirm the adequacy of the choice
done (i.e. p¼4) with the method based on the coefficients of
determination. Thus, a PCE of order p¼4 will be used for all
probabilistic calculations performed in this paper.

It should be mentioned here that the above two methods allow
one to check the adequacy of the PCE order for the accurate
computation of the statistical moments of the system response. To
check the adequacy of the PCE order at the tail distribution (for the
computation of the failure probability), Fig. 4 presents the CDF of the
ultimate bearing capacity provided by the PCEs of orders 2, 3, 4,
5 and 6. From this figure, one can see that the PCEs of orders 4, 5 and
6 can be considered as adequate since there is no difference between
the CDFs of these PCEs in the zone of small failure probability.
Notice that the distance from the origin of the standard space that is
covered by the sampling zone is equal to 3.1623, 3.4917 and 3.9241
for the PCEs of orders 4, 5 and 6, respectively. Since the reliability
Type of the probability

density function

Coefficient of

correlation r

Log-normal �0.75rr(GSI, sc) rþ0.75

Log-normal

Log-normal

Log-normal



index used in the (RBD) is equal to 3.8 (as will be shown later), a PCE
of order 6 is thus necessary because the corresponding sampling
zone covers a distance larger than 3.8. Thus, the reliability analysis
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Fig. 5. Influence of the coefficients of variation of the input random variables on the
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Table 4
Sobol’ indices for a fourth order PCE.

SU(GSI) 0.3141

SU(mi) 0.0866

SU(sc) 0.5378

SU(D) 0.0308

SU(GSI, mi) 2.62�10�3

SU(GSI, sc) 0.0196

SU(GSI, D) 5.91�10�4

SU(mi, sc) 5.41�10�3

SU(mi, D) 3.23�10�4

SU(sc, D) 1.92�10�3

SU(GSI, mi, sc) 1.56�10�3

SU(GSI, mi, D) 4.71�10�6

SU(GSI, sc, D) 3.57�10�5

SU(mi, sc, D) 1.97�10�5

SU(GSI, mi, sc, D) 2.70�10�7

Summation 1.0000
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will be performed using a PCE of order 6 while all the probabilistic
analyses will be performed using a PCE of order 4.

Table 4 presents the Sobol indices (denoted by SU) of the
different random variables or combinations of random variables
obtained using a fourth order PCE. As mentioned previously, the
Sobol indices provide the contribution of each random variable or a
combination of random variables to the response variability. From
Table 4, one can observe that the Sobol index of the parameter sc is
higher than that of all the other parameters. Consequently, sc has
the most important contribution in the variability of the system
response (i.e. the ultimate bearing capacity). Another influencing
parameter is GSI which has a Sobol index of 0.3141. As for the two
remaining parameters (i.e. mi and D), their contribution is less
important due to the small values of their Sobol indices. Also, the
Sobol indices of all combinations of random variables are negligible.
This study is important because it helps engineers in detecting
the uncertain parameters which have a significant weight in the
variability of the system response. For a given rock mass, a thorough
experimental investigation on the variability of the input para-
meters will thus be required by the engineer for only the influential
parameters [i.e. the geological strength index (GSI) and the uniaxial
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Table 5
Effect of the coefficients of variation of the input random variables on the statistical moments of the ultimate bearing capacity.

Coefficient

of variation

%

m s COV% d k Deterministic

value of qu

COV(GSI)

5 1.5037 0.4395 29.4 0.9017 1.4701

1.4889

10 1.5056 0.5129 34.1 1.0624 2.0664

15 1.5054 0.6258 41.0 1.3388 3.3512

COV(mi)

6.25 1.5059 0.4948 32.9 1.0264 1.9290

12.5 1.5056 0.5129 34.1 1.0624 2.0664

18.75 1.5050 0.5426 36.1 1.1310 2.3422

COV(sc)

12.5 1.5052 0.3895 25.9 0.7980 1.1747

25 1.5056 0.5129 34.1 1.0624 2.0664

37.5 1.5051 0.6700 44.5 1.4223 3.7569

COV(D)

5 1.5042 0.5062 33.7 1.0553 2.0389

10 1.5056 0.5129 34.1 1.0624 2.0664

15 1.5070 0.5239 34.8 1.0677 2.0846
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compressive strength of the intact rock (sc)] to obtain reliable
results of the system response.

4.1.2. Parametric study

The aim of this section is to study the effect of the statistical
characteristics of the random variables (the coefficient of
Table 6
Influence of the probability density function type of the input random v

two sets of the coefficients of variation.

m

Standard COVs and non-normal variables 1.5055

Standard COVs and normal variables 1.5056

High COVs and non-normal variables 1.5212

High COVs and normal variables 1.5203
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Fig. 8. Influence of the type of the probability density function of the input

random variables on the PDF of the ultimate bearing capacity for two different sets

of COVs.
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variation, the type of the probability density function and the
correlation coefficient) on the statistical moments (i.e. mean m,
standard deviation s, skewness d and kurtosis k) of the ultimate
bearing capacity.

4.1.2.1. Effect of the coefficients of variation of the random

variables. The effect of the coefficients of variation (COV) of the
random variables is studied and presented in Fig. 5 and Table 5.
Figs. 5a and c show that the increase in the COV of the parameters
GSI or sc has a significant effect on the variability of the ultimate
bearing capacity. On the other hand, one can see from Figs. 5b
and d that the increase in the COV of the parameters mi or D has
practically no effect on the variability of the system response.
Table 5 confirms these observations. It also shows that COV has
practically no effect on the mean value of the ultimate bearing
capacity. This mean value is shown to be slightly greater than the
deterministic value of the ultimate bearing capacity (calculated
using the mean values of the uncertain parameters). Concerning
the third and fourth statistical moments, an increase in the COV of
a given random variable increases the skewness and the kurtosis
of the system response. Finally, the effect of COV of the random
variables on the Sobol indices is shown in Fig. 6. This figure shows
that the increase in COV of a certain variable increases its Sobol
index (i.e. it increases the weight of this variable in the variability
of the system response) and decreases the Sobol indices of the
other variables.

4.1.2.2. Effect of the correlation coefficient and the type of the

probability density function of the random variables. Fig. 7 presents
the PDF of the ultimate bearing capacity for different values of the
correlation coefficient r(GSI, sc). This figure shows that the PDF is
less spread out in the case of a negative correlation between the
random variables GSI and sc. Contrarily to the case of a positive
correlation (where both parameters increase or decrease together)
which leads to an important variation (i.e. variability) in the
ultimate bearing capacity, a negative correlation decreases the
variability of the response. This is because the increase of one
parameter value implies a decrease in the other parameter.

Concerning the type of the probability density function of the
input random variables, two cases of normal and non-normal
(log-normal) random variables combined with two configurations
of COVs were considered. The ‘‘standard COVs’’ corresponds to the
reference case presented in Table 2 [i.e. COV(GSI)¼10%, COV

(mi)¼12.5%, COV(sc)¼25% and COV(D)¼10%] while the ‘‘high
COVs’’ corresponds to these values increased by 20% [i.e. COV

(GSI)¼12%, COV(mi)¼15%, COV(sc)¼30% and COV(D)¼12%]. The
non-normality of the input random variables has a significant
influence on the shape of the PDF of the ultimate bearing capacity
as can be seen from Fig. 8 for both cases of ‘standard COVs’ and
‘high COVs’. This is confirmed by the values of the skewness
and kurtosis given in Table 6. It should be emphasized, however,
that the non-normality of the random variables has practically
no influence on the mean and the standard deviation (and
consequently on the coefficient of variation COV) of the system
response.
ariables on the statistical moments of ultimate bearing capacity for

s COV% d k

0.5129 34.1 1.0624 2.0664

0.5107 33.9 0.6292 0.7132

0.7380 48.5 1.5652 4.5731

0.7307 48.1 0.8755 1.4004
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Table 7
Reliability index, design point and failure probability for different values of the applied footing load.

Ps (MN/m) F bHL GSIn mi
n sc

n (MPa) Dn Pf (FORM) Pf (MCS) COV (%) (MCS)

0.40 3.75 3.86 20.10 6.87 4.79 0.32 5.77�10�5 5.94�10�5 5.80

0.43 3.50 3.65 20.32 6.92 4.98 0.32 1.32�10�4 1.35�10�4 3.85

0.46 3.25 3.42 20.56 6.98 5.19 0.32 3.08�10�4 3.06�10�4 2.55

0.50 3.00 3.18 20.83 7.04 5.43 0.32 7.27�10�4 7.73�10�4 1.61

0.54 2.75 2.92 21.14 7.11 5.68 0.32 1.74�10�3 1.76�10�3 1.06

0.60 2.50 2.63 21.47 7.19 5.99 0.32 4.21�10�3 4.25�10�3 0.68

0.66 2.25 2.32 21.85 7.27 6.35 0.31 1.02�10�2 1.03�10�2 0.44

0.74 2.00 1.96 22.28 7.37 6.77 0.31 2.48�10�2 2.51�10�2 0.28

0.85 1.75 1.56 22.79 7.49 7.29 0.31 5.94�10�2 5.98�10�2 0.18

0.99 1.50 1.09 23.39 7.62 7.94 0.30 1.37�10�1 1.38�10�1 0.11

1.19 1.25 0.54 24.12 7.78 8.78 0.30 2.93�10�1 2.95�10�1 6.92�10�2

1.49 1.00 �0.13 25.06 7.98 9.93 0.30 5.52�10�1 5.53�10�1 4.02�10�2

1.99 0.75 �1.00 26.33 8.24 11.65 0.29 8.41�10�1 8.42�10�1 1.94�10�2

2.98 0.50 �2.22 28.26 8.62 14.57 0.29 9.87�10�1 9.87�10�1 5.13�10�3

4.96 0.30 �3.76 30.98 9.12 19.26 0.28 1.00 1.00 4.25�10�4
4.1.3. Reliability analysis

This section aims at performing a reliability analysis using the
meta-model of the ultimate bearing capacity deduced from a PCE
of order 6. Table 7 presents the Hasofer–Lind reliability index bHL,
the corresponding design point (GSIn, mi

n, sc
n and Dn) and the

probability of failure Pf computed by FORM for different values of
the applied footing load Ps. This table also presents the probability
of failure Pf computed by Monte Carlo Simulation (MCS) on the
meta-model and the corresponding coefficient of variation for a
number of simulations NMCS¼5,000,000 samples. All these results
are presented for the case of uncorrelated and lognormal random
variables. Notice that the performance function used in this section
is G¼Pu�Ps, where Pu and Ps are, respectively, the ultimate footing
load (Pu¼quB) and the applied footing load.

From Table 7, one can notice that the reliability index bHL

decreases and consequently, the probability of failure Pf increases,
when the value of the applied footing load increases (i.e. when the
safety factor F¼Pu/Ps decreases). When the applied footing load Ps

is equal to the ultimate footing load (i.e. F¼1), the values of the
random variables at the design point are very close (not exactly
equal because the input random variables are non-normal) to
their mean values, and the corresponding probability of failure is
nearly equal to 50%. In fact, the value of the design point is exactly
equal to the equivalent normal mean point. Concerning the failure
probability Pf computed by FORM and MCS, Table 7 shows that as
long as the failure probability is small, the corresponding coeffi-
cient of variation is important which indicates the inaccuracy of
the estimated Pf (i.e. a greater number of samples is required).
However, concerning the high failure probabilities corresponding
to great values of the applied footing load, they seem to be well
estimated by the current MCS with a very small coefficient of
variation. For the practical case F¼3, the failure probability is
equal to 7.73�10�4 and the corresponding COV is 1.61% which is
smaller than the commonly adopted value used in the literature
(i.e. 10%). Finally, notice that the failure probability computed via

FORM approximation is found to have a good agreement with the
one obtained from MCS for different values of the applied footing
load Ps. This explains that the limit state surface in this case is
almost linear around the design point, which allows one to obtain
a good approximation by using FORM.
V (MN/m)

Fig. 10. Interaction diagram (H, V) for the case of an inclined loading.
4.1.4. Reliability-based design

The conventional deterministic approach used in the design of a
vertically loaded foundation consists in prescribing a target safety
factor (generally F¼3) regardless of the uncertainties involved in the
input parameters. Recently, a reliability-based design (RBD) approach
10
has been used by several authors [28 among others]. This approach
was used in this section since it allows one to take into account the
inherent uncertainties of the input parameters in a rational way.



The ‘‘probabilistic foundation breadth’’ B0 in this case is computed
according to a target reliability index of 3.8. Note that this value is
that suggested in the head Eurocode (EN 1990:2002 – Eurocode:
Basis of Design) upon which Eurocode 7 and the other Eurocodes are
based [29] for the ultimate limit states. The performance function
used in this section is G¼qu�A where A is equal to one-third of the
ultimate bearing capacity computed using the mean values of the
random variables. The meta-model of the ultimate bearing capacity
deduced from the PCE of order 6 is used and the Hasofer–Lind
reliability index bHL is employed to compute the reliability of the
foundation. For a given set of the statistical parameters of the
random variables, the Hasofer–Lind reliability index is computed
for different values of footing breadth by minimization with respect
to the different random variables. The breadth of the footing
Fig. 12. Failure mechanisms for different

Table 8
Statistical moments of the ultimate bearing capacity for different cases

Load inclination

a (1)

5 10 15

m 1.3032 1.1004 0.9090

s 0.4443 0.3758 0.3104

COV% 34.1 34.2 34.2

k 1.0627 1.0672 1.0693

d 2.0710 2.0928 2.1113
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Fig. 11. PDF of the ultimate bearing capacity for different values of the footing

load inclination.
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corresponding to a target reliability index of 3.8 is the probabilistic
footing breadth.

Fig. 9 presents the probabilistic foundation breadth versus the
correlation coefficient r(GSI, sc) for three sets of COVs of the input
random variables and for the case of non-normal variables. The
‘‘standard COVs’’ correspond to those presented in Table 2. The ‘‘Low
COVs’’ and ‘‘High COVs’’ correspond to the values of ‘‘standard COVs’’
decreased or increased by 40%, respectively. This figure also presents
the deterministic breadth corresponding to a safety factor of 3. The
probabilistic foundation breadth increases with the increase of r(GSI,
sc) and the increase in the coefficients of variation of the random
variables. These results allow one to observe that the deterministic
footing breadth may be higher or lower than the reliability-based
footing width, depending on the uncertainties of the random vari-
ables and the value of the correlation coefficient.

4.2. Case of an obliquely loaded footing

Fig. 10 presents the (H, V) interaction diagram using the mean
values of the Hoek–Brown parameters presented in Table 2. From
Fig. 10, one can observe that a maximum value of H (Hmax¼

0.267 MN/m) is obtained for a load inclination a¼231.
Fig. 11 shows the PDF of the ultimate bearing capacity for

different values of the footing load inclination a. One can see that
the variability of the ultimate bearing capacity is significant in the
case of a small load inclination a and it decreases when a
increases. This may be explained by the fact that the response
involved in the analysis is the ultimate bearing capacity. Thus, it
would be logical to have the most significant variability when the
punching is most predominant. Another explanation may be
provided by observing the failure mechanisms shown in Fig. 12.
It can be observed that the size of the failure mechanism is small
in the case of high values of the load inclination a where the
sliding is predominant. However, its size increases with the
decrease in load inclination a where the punching is predomi-
nant. The size of the failure mechanism is maximal in the vertical
load case. As expected, the ultimate bearing capacity increases
with the size of the failure mechanism. Therefore, when the
values of the footing load inclination.

of load inclination a.

23 30 35 40

0.6367 0.4405 0.3260 0.2325

0.2178 0.1509 0.1119 0.0800

34.2 34.3 34.3 34.4

1.0698 1.0709 1.0712 1.0742

2.0969 2.1051 2.095 2.1153



failure mechanism is small (i.e. the sliding is predominant), the
variation in the modified Hoek–Brown parameters (GSI, mi, sc and
D) does not have a significant effect on the ultimate bearing
capacity. However, when this mechanism is large (i.e. the punch-
ing is predominant) a small variation in the modified Hoek–
Brown parameters (GSI, mi, sc and D) results in a significant effect
on the ultimate bearing capacity. Finally, it has to be noted that
since the coefficient of variation and the correlation coefficient of
the input random variables have not been changed for the
different cases of the footing load inclination a, the COVs of the
corresponding model response (i.e. ultimate bearing capacity) are
not changed either (except for its mean and standard deviation, of
course). This can be easily observed from Table 8.
5. Conclusion

A probabilistic analysis of a centrally loaded strip footing
resting on a rock mass has been performed. The case where the
strength of the rock material can be described by the modified
Hoek–Brown failure criterion was considered in the analysis. The
deterministic models were based on the kinematical approach of
the limit analysis theory. The polynomial chaos expansion (PCE)
methodology was used for the probabilistic and reliability-based
analysis. The uncertain parameters involved in the analysis were
the geological strength index (GSI), the uniaxial compressive
strength of the intact rock (sc), the intact rock material constant
(mi) and the disturbance coefficient (D). For the vertically loaded
footing, it was shown that:
(a)
 The variability of the ultimate bearing capacity increases with
the increase in the coefficients of variation of the random
variables; GSI and sc being of greater effect.
(b)
 The assumption of negatively correlated variables was found
to give less spread out PDF of the ultimate bearing capacity
with respect to the case of uncorrelated variables.
(c)
 The non-normality of the input random variables has a
significant impact on the shape of the PDF of the ultimate
bearing capacity. There is an almost no effect on the mean and
standard deviation of the system response and consequently,
no effect on the coefficient of variation of this response.
(d)
 The increase in the COV of a certain variable increases its
Sobol index (i.e. it increases its weight in the variability of the
system response) and decreases the Sobol indices of the other
variables.
(e)
 The failure probability computed by FORM approximation for
different values of the punching safety factor has shown a
good agreement with the one obtained from Monte Carlo
simulation. This observation may indicate that the limit state
surface is almost linear around the design point.
(f)
 The probabilistic footing breadth based on a reliability-based
design (RBD) may be greater or smaller than the deterministic
breadth depending on the values of the input statistical
parameters.
(g)
 Finally, in the inclined load case, it was found that the variability
of the ultimate bearing capacity decreases with the increase of
the footing load inclination. However, the coefficient of variation
12
of this ultimate bearing capacity is constant regardless of the
footing load inclination.
Appendix A. M1 Mechanism

For a triangular block i, the lengths li and di, and the surface Si

are given as follows:

li ¼
B0

2 cosðyÞ

Yi�1

j ¼ 1

sin bj

sinðajþbjÞ
ðA:1Þ
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Yi�1

j ¼ 1

sin bj

sinðajþbjÞ
ðA:2Þ

Si ¼
B2

0

2

sin ai sin bj

4 cos2 y sinðaiþbiÞ
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j ¼ 1

sin2bj

sin2
ðajþbjÞ

ðA:3Þ

The expressions of Ng, Nq and Nsc in Eq. (22) are given as
follows:

Ng ¼
tanðyÞ

2
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Appendix B. M2 Mechanism

For a triangular block i, the lengths li and di, and the surface Si

are given as follows:
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sin b1
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The expressions of Ng, Nq and Nsc in Eq. (22) are given as
follows:
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