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Probabilistic analysis and design at the ultimate limit state of obliquely
loaded strip footings

A.-H. SOUBRA� and D. S . YOUSSEF ABDEL MASSIH†

This paper presents a probabilistic approach for the
analysis and design of a strip footing subjected to an
inclined load. Both the punching and sliding modes of
failure were considered. The deterministic model of the
soil punching mode was based on the kinematic approach
of limit analysis using a non-symmetrical translational
multiblock failure mechanism. The vertical and horizon-
tal components of the footing load were considered as
random variables. The soil shear strength parameters
were first modelled as random variables and then as
random fields to take into account the soil spatial varia-
bility. Spatial averaging was used to transform the ran-
dom field problem to a simple problem of correlated
random variables. The reliability index of each failure
mode and the system failure probability were calculated.
When the soil shear strength parameters were modelled
as random variables, it was shown that the coefficient of
variation of the angle of internal friction and that of the
horizontal footing load have a non-negligible effect on the
system failure probability. On the other hand, when the
shear strength parameters were modelled as random
fields, it was found that the case of (a) a finite (i.e. non-
infinite) autocorrelation distance and/or (b) an anisotro-
pic soil regarding the autocorrelation distance, leads to a
greater reliability of the foundation with respect to the
reference case of isotropic and infinite autocorrelation
distances (i.e. the case of random variables). For both
cases of random variables or random fields, it was shown
that the negative correlation between the shear strength
parameters gives a greater reliability of the foundation in
comparison to the uncorrelated shear strength para-
meters. Finally, for design, an iterative procedure was
performed to determine the breadth of the footing for a
target system failure probability.

KEYWORDS: anisotropy; bearing capacity; failure; footings/
foundations; limit state design/analysis; statistical analysis

Cet article présente une approche probabiliste pour
l’analyse et le dimensionnement d’une fondation filante
soumise à un chargement incliné. Deux modes de rupture
concernant d’une part le poinçonnement du sol et d’autre
part le glissement de la fondation sont considérés. Le
modèle déterministe utilisé pour le mode de poinçonne-
ment est basé sur la méthode cinématique de l’analyse
limite. Un mécanisme de ruine translationnel asymétrique
de type multibloc est utilisé. Les composantes verticale et
horizontale de la charge de fondation sont modélisées par
des variables aléatoires. La cohésion et l’angle de frotte-
ment interne du sol sont modélisés dans un premier
temps par des variables aléatoires puis par des champs
aléatoires afin de prendre en compte l’effet de la variabi-
lité spatiale des propriétés du sol. La méthode de moyen-
nage local est utilisée pour transformer les champs
aléatoires en une série de variables aléatoires corrélées
entre elles. L’indice de fiabilité correspondant à chaque
mode de rupture et la probabilité de ruine du système
poinçonnement-glissement sont déterminés. Pour le cas
où les caractéristiques de cisaillement du sol sont mod-
élisées par des variables aléatoires, il a été montré que
les coefficients de variation de l’angle de frottement
interne du sol et de la composante horizontale du charge-
ment ont un effet non négligeable sur la probabilité de
ruine du système. D’autre part, quand les paramètres de
cisaillement du sol sont modélisés par des champs aléa-
toires, il a été montré que les hypothèses (a) d’une
distance d’autocorrélation finie, et/ou (b) d’un sol aniso-
trope en ce qui concerne la distance d’autocorrélation,
aboutissent à une meilleure fiabilité de la fondation par
rapport à celles d’un sol isotrope et ayant une distance
d’autocorrélation infinie (i.e. cas des variables aléatoires).
Pour les deux cas de variables et de champs aléatoires, il
a été montré que la corrélation négative entre les para-
mètres de résistance au cisaillement aboutit à une plus
grande valeur de la fiabilité de la fondation par rapport
au cas de paramètres de cisaillement non corrélés. Enfin,
cet article présente une procédure de dimensionnement
permettant de déterminer la largeur de la fondation pour
une valeur cible de la probabilité de ruine du système.

INTRODUCTION
It is well recognised that geotechnical structures such as
shallow or deep foundations exhibit large variability and
uncertainty in the soil parameters and sometimes in the
loads (e.g. foundations of structures in harsh environments).
Traditional deterministic models are based on simplified
approaches in which the uncertainty and variability are taken
into account through the use of a global safety factor. The

selection of this factor is based on engineering judgement.
Nowadays, owing to improvement of our knowledge on the
statistical properties of soil (Degroot & Baecher, 1993;
Popescu, 1995; Lacasse & Nadim, 1996; Fenton, 1999;
Phoon & Kulhawy, 1999; Przewlocki, 2000 among others),
more rational approaches based on the theory of reliability
may be used. In these approaches, partial safety factors
allow one to take into account the inherent uncertainty of
the different random parameters in a more rigorous manner
based on their statistical distributions. Recent engineering
codes of practice (e.g. Eurocode 7) make use of this philoso-
phy by introducing partial safety factors on loads and
material parameters or resistances to achieve a target relia-
bility index. The aim of this paper is not to determine these
partial safety factors, but to assess the effects of load and
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material statistical parameters (e.g. coefficient of variation
(COV) of the different uncertain parameters, correlation
between these parameters and spatial variation of some soil
properties) on the ultimate capacity (soil bearing capacity
and footing sliding) and consequently on the reliability of an
obliquely loaded strip foundation.

Several authors have investigated the reliability-based
analysis of vertically loaded foundations against bearing
capacity failure. Some (Low & Phoon, 2002) have modelled
the uncertain soil parameters as random variables (RV) and
have used empirical formulae for the bearing capacity
factors. These approaches have the advantage of being
simple; however, they present some shortcomings because
they are based on approximate deterministic models. Others
(Cherubini, 2000) have considered the effect of the soil
spatial variability by using a simplified approach. This is
because no failure mechanism was used by the author. The
estimation of the standard deviation reduction was based on
the assumption of a priori distances for the dimensions of
the potential failure mechanism. Subsequently, several
authors (Griffiths et al., 2002; Fenton & Griffiths, 2003;
Popescu et al., 2005 among others) have modelled the
spatially varying soil parameters more rigorously and have
examined the effect of the soil spatial variability on the
ultimate bearing capacity using a finite element model.
However, these studies require high computation time owing
to the use of Monte Carlo simulations (about 2 days for
each calculation as mentioned by Fenton & Griffiths, 2003).
Also, to the authors’ knowledge, there are no investigations
on the reliability analysis or design of foundations subjected
to an inclined load except the paper by Low & Phoon
(2002). Their analysis considers the soil shear strength
parameters as random variables. It makes use of empirical
formulas for the correction factors owing to load inclination.
Some of these correction factors (iq and ic) were shown by
Soubra et al. (2003) not to give conservative solutions.
Furthermore, the method by Low & Phoon (2002) does not
allow one to take into account the spatial variation of the
soil properties, the ultimate bearing capacity being only a
function of the cohesion and angle of internal friction and it
does not make use of a failure mechanism.

In this paper, a reliability-based analysis and design of a
strip foundation of breadth B resting on a cohesive and
frictional soil and subjected to an inclined load is presented.
Both the punching and sliding modes of failure are analysed.
The vertical and horizontal components of the footing load
were modelled as random variables. The uncertain soil shear
strength parameters were first modelled by a simplified ap-
proach as random variables (i.e. each uncertain soil para-
meter was considered constant everywhere in the soil, the
randomness of a soil parameter being taken into account
from one simulation to another during the minimisation of
the reliability index with respect to the soil uncertain para-
meters) and then by a more realistic approach as random
fields (RF) to take into account the spatial variation of the
soil properties. Unlike the most common approaches (random
finite element methods), which make use of the deterministic
finite element method to take into account the spatial varia-
bility of the soil properties (e.g. Griffiths et al., 2002; Fenton
& Griffiths, 2003), a deterministic limit analysis model based
on a non-symmetrical multiblock failure mechanism is used
here for simulation of the soil punching failure mode. This
model has the advantage of being less time-consuming than
the commonly used random finite element approach which
requires much more computation time. It is based on the
spatial averaging over one-dimensional domains (i.e. along
the slip lines of the failure mechanism) of the random field.
Thus, the random field problem was transformed to a simple
problem of correlated random variables.

Unlike the random finite element method (e.g. Griffiths et
al., 2002; Fenton & Griffiths, 2003) which makes use of
Monte Carlo simulations to search for the probability dis-
tribution of the system response, the present approach by the
kinematic limit analysis method does not consider realisa-
tions based on Monte Carlo simulations and thus, cannot be
considered as a true random field approach. However, it can
be considered as a more realistic approach than a simple
random variables method since it allows one to take into
account the effect of spatial variation of a random field on
the reliability index. Thus, it introduces the effect of the
autocorrelation distances of a random field on the reliability
index. Hence, the present random field approach is more
rigorous than that considered in Cherubini (2000) in which a
simplified approach was considered for the spatial averaging
process of the random field. However, it is less efficient than
the true random field approach in which not only the spatial
averaging is considered in the analysis but also the Monte
Carlo simulations which allow one to obtain the probability
distribution of the system response.

After a brief description of the basic concepts of spatial
averaging of random fields, reliability index and failure
probability, the probabilistic models for both the bearing and
sliding modes of failure and the corresponding numerical
results are presented and discussed.

BASIC RELIABILITY CONCEPTS
Spatial averaging of a random field

The aim of this section is to introduce some concepts
about random fields and their spatial averaging.

A two-dimensional (2D) continuous random field Z(x, y)
is defined by its mean value Z(x, y) and its covariance
function defined as follows

COV Z x1, y1ð Þ, Z x2, y2ð Þ
� �
¼ � x1, y1ð Þ:� x2, y2ð Þ:r x1 � x2ð Þ, y1 � y2ð Þ

� � (1)

where � is the standard deviation of the random field and r
is its autocorrelation function. For an isotropic field, the
covariance function is a function only of the distance be-
tween any two points of the soil domain regardless of their
locations. For an anisotropic field, it also depends on the
relative location of the two points.

The average value of the random field over a domain A is
given by Vanmarcke (1983)

Z A ¼ 1

A

ð
A

Z Xð ÞdX (2)

If the random field is averaged over a one-dimensional (1D)
domain as for the slip lines of the failure mechanism used
in this paper (see Fig. 1), the domain A will correspond to
the distance L of the segment along which a local average
of the random field is defined. By averaging the random
field over two arbitrary situated segments Li and Lj, two
variables representing two local averages are found and a
correlation may exist between these variables. This correla-
tion is calculated by averaging the correlation between
random variables at all points on both segments. It is given
by

r Li, Ljð Þ ¼
1

Li Lj

ð Li

0

ð L j

0

r uð Þdsdl (3)

where u is the distance that separates any two points of the
two segments Li and Lj. Analytical integration of equation
(3) is simple only if both segments lie on one straight line
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or if all values of (xi � xj) and (yi � yj) are positive (Knabe
et al., 1998). If the random field is assumed to be homo-
genous, both its expected value Z(x, y) and its standard
deviation � (x, y) are constant for the whole field indepen-
dently of the location (x, y).

Reliability index and failure probability
Two different measures are commonly used in literature to

describe the reliability of a structure: the reliability index
and the failure probability. The widely used reliability index
is the one defined by Hasofer & Lind (1974). Its matrix
formulation is given by

�HL ¼ min
G xð Þ<0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � �
�

� �T

R½ ��1 x � �
�

� �s
(4)

in which x is the vector representing the random variables,
� and � are the vectors of their mean and standard deviation
values and R is their correlation matrix. The minimisation
of equation (4) is performed subject to the constraint
G(x) < 0 where the limit state surface G(x) ¼ 0, separates
the n-dimensional domain of random variables into two
regions: a failure region F represented by G(x) < 0 and a
safe region given by G(x) . 0.

The classical approach for computing �HL by equation (4)
is based on the transformation of the limit state surface into
the space of standard normal uncorrelated variates. The
shortest distance from the transformed limit state surface to
the origin of the reduced variates is the reliability index
�HL. An intuitive interpretation of the reliability index was
suggested in Low & Tang (1997) where the concept of an
expanding ellipsoid led to a simple method of computing
the Hasofer–Lind reliability index in the original space of
the random variables for both normal and non-normal vari-
ables with or without correlation. The method of computa-
tion of the reliability index using the concept of an
expanding ellipse suggested by Low & Tang (1997) is used
in this paper. From the Hasofer–Lind reliability index �HL,
one can approximate the failure probability by using the
first-order reliability method FORM as follows

Pf � � ��HLð Þ (5)

where �(�) is the cumulative distribution function (CDF) of
a standard normal variable. In this method, the limit state
function is approximated by a hyperplane tangent to the
limit state surface at the design point.

RELIABILITY ANALYSIS OF STRIP FOUNDATIONS
For the modelling of the stochastic character of the differ-

ent uncertain parameters, two cases were studied. The first
case, referred to as RV, considers the cohesion c, the angle
of internal friction j and the vertical and horizontal compo-
nents of the applied footing load (i.e. V and H) as random
variables. The second case, referred to as RF, takes into
account the soil spatial variability by modelling the soil
shear strength parameters (i.e. c and j) as random fields.
Both isotropic and anisotropic fields were considered in this
paper. As for the RV case, the footing applied loads were
taken here as random variables. The anisotropic autocorrela-
tion function used in this paper for both the cohesion and
the angle of internal friction is given by an exponential first-
order function as follows (Vanmarcke, 1983)

r �x, �yð Þ ¼ e
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x
Dh

� �2

þ � y

Dv

� �2
r

(6)

where (Dh, Dv) are the autocorrelation distances and
(�x, �y) the lag distances, in the horizontal x and vertical y
directions. A constant cross-correlation rc,j between the two
random fields of c and j was used here. The other cross-
correlations rc,V, rj,V , rc, H , rj, H and rV , H were set equal
to zero.

For the probability distribution of the random variables or
random fields (for which the stochastic inputs were trans-
formed into a vector of random variables as will be seen
later), two cases were studied. In the first case referred to as
normal variables, c, j, V and H were considered as normal
variables. In the second case referred to as non-normal,
variables, c, V and H were assumed to be log-normally
distributed while j was assumed to be bounded and a beta
distribution was used (Fenton & Griffiths, 2003). The para-
meters of the beta distribution were determined from
the mean value and standard deviation of j (Haldar &
Mahadevan, 2000). For both cases, correlated and uncorre-
lated shear strength parameters were considered.

Two modes of failure may occur. These are the soil
punching and the sliding of the footing along the soil–
footing interface. The theoretical formulations of the prob-
abilistic models for both modes of failure are presented in
the next sections only in the RF case. The equations of the
RV case are straightforward, the cohesion and the angle of
internal friction being constant everywhere in the soil mass
in that case.

Punching mode
The deterministic model used for the punching failure

mode is based on the upper-bound method of limit analysis.
A translational non-symmetrical multiblock failure mechan-
ism is used here for the calculation of the ultimate bearing
capacity (Fig. 1). This mechanism is similar in shape to that
presented by Soubra (1999) for the computation of the
seismic bearing capacity of strip foundations by a pseudo-
static approach. It should be mentioned that this non-
symmetrical mechanism is also appropriate for the computa-
tion of the bearing capacity owing to a vertical footing load
(Soubra, 1999). The present failure mechanism is composed
of a sequence of n triangular rigid wedges. It is de-
scribed by 2n angular parameters [Æi(i ¼ 1, . . ., n),
�i(i ¼ 1, . . ., n)].

The present upper-bound approach is simple and self-
consistent and it obtains strict upper-bound solutions in the
framework of limit analysis theory. Although the results
given by this approach are upper-bound solutions and hence
unconservative, they are the smallest upper-bounds against
the available ones. In some cases, they are the exact

V

H

A �1 α1
1

Vi
�01

C

αn
n

�n

αi

�i

Vi

�0i

di

c0i

li

cri

�ri Vi i, 1�

B

i

Fig. 1. Non-symmetrical translational multiblock failure me-
chanism – case of random fields for the soil shear strength
parameters
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solutions since they are equal to the results given by the
lower-bound method (Soubra, 1999).

The random field has to be averaged along the different
slip line segments leading to local random averages using
equation (2). Thus, the stochastic inputs of a random field
were transformed into a vector of random variables. In this
paper, the means of the different local averages are equal to
the mean of the random field, the random field being assumed
homogeneous. The covariance matrix will depend on the
lengths and directions of segments and on the type of random
field used for the description of the stochastic character of the
soil properties. Consequently, the stochastic character of the
soil properties expressed by the covariance matrix may de-
pend significantly on the potential failure mechanism. The
vector of random variables x in equation (4) thus involves the
local average values of the soil shear strength random fields
and the random variables V and H. Consequently, the relia-
bility index depends on 4n random variables
(cri, jri, co j, jo j, V , H) where subscript o refers to slip
planes on the outer boundary of the mechanism, subscript r
refers to radial slip planes and finally i ¼ 1, . . ., n � 1 and
j ¼ 1, . . ., n (Fig. 1). The 4n number for the random vari-
ables may be explained by the fact that the failure mechanism
includes n basal lines di and n � 1 radial lines li over which
the local averages of the cohesion and the angle of internal
friction are computed. The correlation matrix [R] is a square
matrix of dimensions (4n) 3 (4n) (Fig. 2) in which the
following components can be identified.

(a) (2n � 1)2 components were determined by equation (3)
using numerical integration. Each component represents

the local average correlation between two average
values of the cohesion random field along two different
lines of the failure mechanism; another (2n � 1)2

components which represent the local average correla-
tions of the angle of internal friction random field were
set equal to those of the cohesion since the same
correlation function was used for both c and j.

(b) Another 2 3 (2n � 1)2 components correspond to the
value of the cross-correlation of the two random fields.

(c) 4 3 [2 3 (2n � 1)] components are the values of the
cross-correlation between each of c and j with each of
V and H (i.e. rc,V ; rc, H ; rj,V ; rj, H ).

(d ) The last four components of the matrix [R] represent the
cross-correlation rV , H and the autocorrelations (i.e.
rV ,V ¼ 1; rH , H ¼ 1) of the two random variables V
and H.

The numerical integration of the 2 3 (2n � 1)2 components
was performed using the Gauss–Legendre quadrature meth-
od. A maximal difference of 1% was found between the
[R]-components determined using eight Gauss-points and
those obtained by using 16 Gauss-points. Consequently, eight
Gauss-points were used in all subsequent calculations.

The failure mechanism shown in Fig. 1 is kinematically
admissible: Vi and Vi,iþ1 are respectively the velocity of
block i and the inter-block velocity between blocks i and
i þ 1 where i ¼ 1, . . ., n. The first wedge ABC is translat-
ing as a rigid body with a downward velocity V1 inclined at
an angle jo1 to the discontinuity line AC. Note that the
foundation is assumed to move with the same velocity as

4n

(2 1)n � 2
(2 1)n �

(2
1)

n
�

(2
1)

n
�

4n

2

Local average

correlation of c

�c ,c1 1
�c ,c1 2

�c ,c2 1
�c ,c2 2

�c ,c2 1n� 2 1n�

Cross-correlation

between andc �

�c,�

�c,�

�V c,

�H c,

�c,�

�V c,

�H c,

�c,�

Cross-correlation

between andc �

Local average

correlation of �

�c,�

�c,� �c,�

�c,� �V c, �H c,

�V c, �H c,

�V c, �H c,

�V,� �H,�

�V,�

�
�1

,
1�

�
�1

,
2�

�
�2

,
1�

�
�2

,
2�

�
�2n 1�

,
2n 1�

�

�H,�

�V,�

�H,�

�V,�

�H,�

1

1

�V,H

�V H,

Fig. 2. Correlation matrix [R]
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that of the first block (i.e. V1). The wedge i is translating
with a velocity Vi inclined at joi to line di where joi is the
average value of the angle of internal friction along segment
di. The inter-block velocity Vi,iþ1 is inclined at jri to line li

where jri is the average value of the angle of internal
friction along segment li. As for the angle of internal
friction, the random field of the cohesion is averaged along
each segment of the mechanism; coi is the average value
along di and cri is the average value along li.

The calculation of the ultimate bearing capacity of the
footing was performed by equating the total rate of work
done by the foundation load and the soil weight in motion
to the total rate of energy dissipation along the lines of
velocity discontinuities of the failure mechanism. It was
found that an upper-bound on the bearing capacity of the
spatially varying soil is given as follows

Ru ¼ 1

2
ªB2 � f 1= f0ð Þ þ �c B f2 þ f3ð Þ= f0 (7)

in which �c is the mean value of the cohesion random field
and f t are non-dimensional functions where t ¼ 0, . . . 3.
These functions are expressed in terms of the geometrical
parameters of the failure mechanism and the local average
values of the soil shear strength random fields along the
different lines of the mechanism [i.e. f t ¼
f t(Æi, �i, cri=�c, co j=�c, jri, jo j) where i ¼ 1, . . ., n � 1
and j ¼ 1, . . ., n]. The expressions of f t are given in the
Appendix.

The performance function of the punching mode was
defined with respect to the bearing capacity failure of the
soil. It is given by

G1 ¼ Ru

V
� 1 ¼ FP � 1 (8)

where Ru is the vertical component of the ultimate founda-
tion resistance and V is the vertical applied footing load.

Sliding mode
For the sliding failure mode, the ultimate sliding resis-

tance leading to the sliding of the footing can be simply
calculated as

Su ¼ V tan �þ aB (9)

where � is the angle of friction at the soil–footing interface
and a is the adhesion stress. The values of a and � depend
on the type of the soil–footing interface. The adhesion stress
a was assumed to be given by the following empirical
formula: a ¼ cB tan �= tanjB which expresses the fact that
the adhesion stress is equal to zero for a perfectly smooth
(� ¼ 08) interface and becomes equal to cB for a perfectly
rough (� ¼ jB) interface. The illustrative value of � was
taken equal to � ¼ 2jB=3. Notice that cB and jB are the
values of the soil shear strength at the soil–footing interface.
For the RF case, cB and jB are respectively equal to the
values of the cohesion and angle of internal friction of the
soil averaged along the soil–footing interface.

The performance function of the sliding mode of failure is
given by

G2 ¼ Su

H
� 1 ¼ FS � 1 (10)

where Su was defined above (equation (9)) and H is the
horizontal applied footing load.

For the sliding failure mode, the vector of random vari-
ables x in equation (4) involves the four random variables
(c, j, V , H). The 4 3 4 correlation matrix which describes
the correlation structure contains the cross and autocorrela-
tion coefficients of the different random variables. For the

RV case, the diagonal components of [R] are equal to 1 and
the other components correspond to the values of the
correlation between the random variables cB ¼ c, jB ¼ j, V
and H. However, for the RF case, the matrix [R] differs
from that of the RV case by its two diagonal components.
These components were determined with the aid of equation
(3) as follows

rc B,c B
¼ rjB,jB

¼ 1

B2

ðB

0

ðB

0

e
�2

xi�x j

Dh

� �
dxidxj (11)

These coefficients represent the local average autocorrela-
tions of both c and j along the soil–footing interface. It
should be mentioned that only the horizontal autocorrelation
distance was used in equation (11). This is because the
segment along which the sliding at the soil–footing interface
occurs is in the horizontal direction.

NUMERICAL RESULTS
The Hasofer–Lind reliability index given by equation (4)

was used for the computation of the reliability of the
foundation for both the punching and sliding failure modes.
The minimisation of the quadratic form of this equation was
performed using the constrained minimisation command
‘fmincon’ built in the optimization tool of Matlab 7.0 soft-
ware.

The numerical results presented in this paper consider the
case of a strip foundation with breadth B ¼ 2 m. The soil
has a unit weight of 18 kN/m3. Different values of the
coefficients of variation of the angle of internal friction and
cohesion were presented in literature. For most soils, the
mean value of the effective angle of internal friction is
typically between 208 and 408. Within this range, the corre-
sponding coefficient of variation as proposed by Phoon &
Kulhawy (1999) is essentially between 5% and 15%. For the
effective cohesion, the coefficient of variation varies between
10% and 70% (Cherubini, 2000). For the coefficient of
correlation, Harr (1987) has shown that a correlation exists
between the effective cohesion c and the effective angle of
internal friction j. The results of Wolff (1985)
(rc,j ¼ �0:47), Yuceman et al. (1973) (�0:49 <
rc,j < �0:24), Lumb (1970) (�0:7 < rc,j < �0:37) and
Cherubini (2000) (rc,j ¼ �0:61) are among the ones cited
in literature. In this paper, the illustrative values used for the
statistical moments of the soil shear strength parameters and
their cross-correlation rc,j are given as follows:
�c ¼ 20 kPa, �j ¼ 308, COVc ¼ 20 % , COVj ¼ 10 % and
rc,j ¼ �0:5. For the statistical moments of the vertical and
horizontal footing applied loads, the mean values were
chosen smaller than the ones corresponding to the determi-
nistic failure loads given by the interaction diagram (see Fig.
3). Notice that the interaction diagram is determined for the
mean values of the shear strength parameters. For the
vertical load, a small coefficient of variation of 10% was
considered. In contrast, the horizontal load exhibits high
uncertainties (wind, earthquake, etc.). Consequently, an arbi-
trary large coefficient of variation of 40% was taken. The
numerical results are first presented for the RV case and then
for the RF case.

Results of the RV case
Probabilistic failure surface. A common approach to deter-
mine the reliability of a stressed soil mass is based on the
calculation of the reliability index corresponding to the most
critical deterministic surface obtained from the determination
of the minimal safety factor or the ultimate load (e.g.
Christian et al., 1994). In this paper, a more rigorous
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approach was used. It consists in the determination of the
reliability index of the punching mode by searching for the
critical probabilistic surface which corresponds to minimising
the quadratic form of equation (4) not only with respect to
the random variables but also with respect to the geometrical
parameters of the failure mechanism (Æi, �i) where
(i ¼ 1, . . ., n). The computation was performed in Fig. 4 in
the case of non-normal and uncorrelated variables and for
�H ¼ 50 kN/m and �V ¼ 500 kN/m (i.e. point A in Fig. 3). n
was taken equal to 12 in the present case since for a greater
number of blocks, the improvement of the solution was not
significant. This corresponds to 24 angular parameters Æi and
�i. Therefore, the minimisation was performed with respect
to 28 parameters (24 parameters for the angular parameters
of the failure mechanism and 4 parameters for the random
variables c, j, V and H). The obtained surface corresponding
to the minimum reliability index is referred to here as the
critical probabilistic surface. The reliability index obtained
using this surface was smaller (i.e. more critical) than the one
calculated by using the critical deterministic surface (Fig. 4).
Also, the two failure surfaces were found to be significantly
different. The present approach of minimising the reliability
index not only with respect to the random variables but also
with respect to the geometrical parameters of the failure
mechanism was used by Bhattacharya et al. (2003) and Low
et al. (1998) among others.

Reliability indexes, design points and system failure prob-
ability. As mentioned before, two modes of failure may
occur. Consequently, two values of the Hasofer–Lind
reliability index corresponding to the two modes of failure
were calculated. Table 1 presents the reliability results [i.e.
reliability index of the two failure modes, the corresponding
design points (c�, j�, V�, H�) and the system failure
probability Pfsys] for different values of the mean vertical
applied load �V and for a given prescribed value of the mean
horizontal applied load �H¼50 kN/m. This corresponds to
segment BC in Fig. 3. Non-normal and uncorrelated variables
were considered. The system failure probability under the
two failure modes involving sliding and punching is given by

Pfsys ¼ Pf P [ Sð Þ ¼ Pf Pð Þ þ Pf Sð Þ � Pf P \ Sð Þ (12)

where Pf (P) and Pf (S) are the failure probabilities under the
punching and sliding failure modes respectively and
Pf (P \ S) is the failure probability under the punching and
sliding failure modes. The failure probability of the intersec-
tion is given as follows (Lemaire, 2005)

max P Að Þ , P Bð Þ
� 	

< Pf P \ Sð Þ < P Að Þ þ P Bð Þ (13)

where

P Að Þ ¼ � ��Pð Þ� � �S � rPS�Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

PS

q
0
@

1
A (14)

P Bð Þ ¼ � ��Sð Þ� � �P � rPS�Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

PS

q
0
@

1
A (15)

rPS ¼ ÆPh i ÆSf g (16)

�P and �S are the reliability indexes corresponding to the
punching and sliding failure modes respectively and rPS is
the correlation between the two failure modes where ÆP and
ÆS for both modes can be computed as follows

Æi ¼ �@�

@ui






u�f g

¼ � ui
�
�

(17)

In equation (17), � is the reliability index and ui
� is the

standard uncorrelated normal variable at the design point.
The system reliability index can be approximated using

the FORM approximation as follows

�sys ¼ ���1 Pf sysð Þ (18)

For a prescribed value of the horizontal load and for small
values of the vertical footing load, the sliding mode is most
likely to occur and no punching mode is expected. In these
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Table 1. Reliability results for different values of the mean vertical applied load

�V : kN/m Punching mode reliability Sliding mode reliability System reliability

c�: kPa j�: 8 H�:
kN/m

V�: kN/m �HL c�: kPa j�: 8 H�:
kN/m

V�: kN/m �HL Pf sys: % �sys

200 17.6 27.9 131.2 191.2 2.87 18.7 28.9 91.0 192.5 1.83 3.36 1.83
300 16.8 26.7 151.6 288.4 3.37 18.7 28.2 120.4 283.6 2.61 0.46 2.61
400 15.9 25.1 148.4 393.0 3.58 18.7 27.7 148.3 372.8 3.19 0.08 3.17
500 14.7 22.5 98.2 522.2 3.51 18.7 27.3 175.1 460.7 3.65 0.03 3.39
600 14.9 22.4 67.7 641.9 3.15 18.7 26.9 201.0 547.5 4.04 0.09 3.14
700 15.5 23.0 59.2 746.8 2.77 18.8 26.5 226.1 633.5 4.38 0.28 2.77
1300 18.0 27.0 48.5 1333.1 1.14 18.9 25.1 365.8 1136.7 5.75 12.75 1.14
1700 19.0 28.8 47.0 1710.6 0.43 19.0 24.4 451.8 1464.2 6.36 33.26 0.43
2010 19.6 30.0 46.4 2089.6 0.00 19.0 23.8 533.7 1787.4 6.84 50.00 0.00
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cases, the punching reliability index increases with increase
of �V since an increase of �V increases the stability of the
footing against punching. This is because, for small values
of the vertical applied load, the increase in the vertical load
component counterbalances the punching effect of the ap-
plied loads. In contrast, for higher values of the vertical
footing load, the punching mode becomes the most critical
mode of failure. A �V -increase decreases the punching
reliability index. These observations explain why the punch-
ing reliability index first increases and then decreases with
the vertical footing load �V for a prescribed value of the
horizontal load. Concerning the sliding reliability index, it
continuously increases with �V since the resisting force in
the sliding performance function continuously increases with
�V .

The value of the system reliability index is very close to
the minimum value of the two modes (see last column in
Table 1). Hence, only a single mode of failure is predomi-
nant in the computation of the failure probability of the
system. For small values of the footing vertical load, the
sliding mode is dominant. When this vertical component
increases, the punching mode becomes more critical. The
value of H� increases in the sliding mode with the increase
of �V . This is because when the vertical applied load
increases a higher H is needed to reach sliding failure. For
the punching mode, when the sliding mode is predominant
(i.e. for small values of �V ), H� behaves in the same way
as for the sliding mode (i.e. increases). However, it de-
creases when the punching mode dominates.

Figure 5 presents the variation of the system failure
probability with the dimensionless vertical applied load
�V=(ªB2) when �H ¼ 100 kN/m. This corresponds to seg-
ment DE in Fig. 3. Non-normal and uncorrelated variables
were considered. It can be seen from Fig. 5 that the failure
probability decreases with increase of the mean vertical
applied load when �V is small compared to �H and in-
creases for higher values of �V . As mentioned before, two
regions were detected: a zone where sliding dominates and
another one where punching is the most critical.

Effect of correlation on the reliability index. Figures 6 and 7
show the variation of the reliability index with the safety
factor for the punching and sliding modes. For the punching
failure mode (Fig. 6), a constant horizontal force of 50 kN/m
was applied to the footing and the vertical load was varied
from point C to point B as shown in Fig. 3. However, for the
sliding failure mode (Fig. 7), a constant vertical load of
500 kN/m was applied and the horizontal load was varied
from point F to point G (Fig. 3). The cases of normal and

non-normal variables with or without correlation between the
shear strength parameters were considered. As shown in Figs
6 and 7, the reliability index corresponding to uncorrelated
shear strength parameters is smaller than the one of
negatively correlated variables for both normal and non-
normal probability distributions (Mostyn & Li, 1993). The
difference is most significant for the punching mode. From
Fig. 6, it can be seen that for large �P-values (�P . 3) for
which sliding is not predominant; each �P corresponds to two
different values of the punching safety factor Fp. This may be
explained with the aid of the interaction diagram (Fp ¼ 1)
and the similarity in shape of curves corresponding to
different values of (Fp) since all these curves give two values
of the vertical load (V1 and V2) for a prescribed value of the
horizontal load (Fig. 3).

Effect of the variability of each random variable on the CDF
of the punching and sliding safety factors. The probability
distribution of the safety factors of the footing is influenced
by the variability of the soil shear strength parameters used in
the probabilistic analysis. Since correlated variables are used
in this paper, the sensitivity factors Æi defined with respect to
the transformed standard uncorrelated variables u as
Æi ¼ ��=�u have no physical meaning (Melchers, 1999,
p.101).

Figures 8 and 9 show the effect of the coefficient of
variation of each random variable on the CDFs of the punch-
ing and sliding safety factors. Five cases were considered.
The first case, referred to as ‘reference case’, considers the
statistical moments given in the introduction of the section
named ‘Numerical results’ with �V ¼ 500 kN/m and
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�H ¼ 50 (i.e. point A in Fig. 3). The other cases correspond
to an increase by 10% of the coefficient of variation of each
variable. Non-normal and correlated variables were consid-
ered. It can be seen that a small variation of the coefficient of
variation of j significantly affects the CDF curve of the
punching safety factor. One can also notice that the CDF
curve is slightly sensitive to a variation of the other variables’
uncertainty. This may be explained as follows: For �j ¼ 308,
a variation by 10% in COVj will result in a variation of j
between 278 and 338 which will greatly affect the value of the
ultimate capacity and consequently results in a high variation
in the failure probability. Concerning the CDF curve of the
sliding safety factor, it is significantly affected by a small
variation of COVH since a small variation in H greatly affects
the footing sliding stability.

As a conclusion, the system failure probability is highly
influenced by the coefficients of variation of j and H . Thus,
the accurate determination of the uncertainties of the angle
of internal friction j and the horizontal footing load H is
very important in obtaining reliable probabilistic results. In
contrast, the coefficients of variation of c and V do not
significantly affect the failure probability.

Probabilistic design. The conventional deterministic ap-
proach used in the design of a shallow foundation consists
in prescribing target safety factors (generally Fp ¼ 3 for the
punching mode and Fs ¼ 1:5 for the sliding mode) and
determining the corresponding breadth of the footing B. In
this section, a probabilistic design is presented. It consists in
the calculation of B for a system target reliability index of
3.8. Note that this value is that suggested in the head
Eurocode (EN 1990:2002 – Eurocode: Basis of Design) upon
which Eurocode 7 and the other Eurocodes are based (Orr &

Breysse, 2008). This value of 3.8 is that of the ultimate limit
state and corresponds to the 50-year minimum target
reliability index. The mean values of the applied loads were
taken equal to �V¼500 kN/m and �H¼50 kN/m (i.e. point A
in Fig. 3). Fig. 10 presents the probabilistic foundation
breadth for different values of the coefficients of variation of
the random variables and for different values of the
coefficient of correlation of the shear strength parameters.
The case of non-normal variables is considered. This figure
also presents the deterministic breadth corresponding to a
punching safety factor of 3 for which the sliding safety factor
was checked to be higher than 1.5. Since it was shown in
the previous section that the accurate determination of the
uncertainties of the angle of internal friction j and the
footing horizontal load is very important in obtaining reliable
probabilistic results, only the effect of the coefficients of
variation of these variables on the probabilistic breadth was
presented. From Fig. 10, one can notice that the probabilistic
foundation breadth decreases with the increase of the
negative correlation between the shear strength parameters
and the decrease of the coefficients of variation of the
random variables. It can become smaller than the determi-
nistic breadth for small values of the coefficient of variation
of the horizontal load and for the common values of the soil
variability (i.e. COVj ¼ 5–10 %, COVc ¼ 20 %, �0:7 <
rc,j < �0:3). For large values of the coefficients of variation
and small correlation coefficient, the probabilistic breadth is
greater than the deterministic one. As a conclusion, the
deterministic footing breadth is greater or smaller than the
probabilistic one according to the values of the uncertainties.
Contrary to Eurocode 7 which prescribes constant values for
the material or resistance and load factors, the present
reliability-based design (RBD) has the advantage of providing
different values of these factors depending on the soil
variability. These factors are the optimal ones and are
determined by a maximisation of the failure probability for a
given soil variability.

Results of the RF case
Probabilistic failure surface. When the soil shear strength
parameters were considered as random fields, the determina-
tion of the critical probabilistic surface was obtained by
minimising the quadratic form of equation (4) with respect to
the values of the local averages of the shear strength
parameters, the footing load components and the geometrical
parameters of the failure mechanism. Thus, the minimisation
was performed with respect to 6n parameters [(a) 4n � 2
random variables which are the local averages values of the
cohesion and the angle of internal friction, (b) two random
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variables which are the footing load components and, (c) the
2n geometrical parameters of the failure mechanism], i.e. 60
parameters in the present case where n ¼ 10. Note that
n ¼ 10 was found sufficient to give accurate results for the
punching reliability index. A greater number of blocks does
not improve �HL by more than 0.2%. Note that the
correlation matrix [R] of dimensions 40340 should be
calculated for each function evaluation during the minimisa-
tion process. This is because of the change in the potential
failure mechanism. Each function evaluation requires
(2n � 1)2 ¼ 19 3 19 ¼ 361 numerical integrations. Thus, this
approach leads to a much higher computation time than
calculating the reliability index using the deterministic
surface. The calculation time required to perform the
minimisation process by searching for the critical probabil-
istic surface was about 3 to 4 hours for 10 blocks on a
Centrino 2.0 GHz computer. Note that the random finite
element method requires about 2 days for each calculation
(see Fenton & Griffiths, 2003).

Effect of the autocorrelation distances on the reliability
index. The values of the autocorrelation distances Dh and Dv

in the horizontal and vertical directions are in the range of 2
to 100 m for Dh and 0.1 to 5 m for Dv (Mostyn & Li, 1993).

Figures 11 and 12 show the variation of the reliability
index with the safety factor for the punching and sliding
modes for different values of the autocorrelation distances.
For the punching failure mode (Fig. 11), a constant horizon-
tal force of 50 kN/m was applied to the footing and the
vertical load was varied from point C to point B as shown

in Fig. 3. However, for the sliding failure mode (Fig. 12), a
constant vertical load of 500 kN/m was applied and the
horizontal load was varied from point F to point G (see Fig.
3). The case of non-normal shear strength random fields and
non-normal horizontal and vertical applied loads, without
cross-correlation between all random parameters, was con-
sidered.

For the punching mode, it can be seen from Fig. 11 that
for large �P-values (�P . 3) for which sliding is not pre-
dominant; each �P corresponds to two different values of
the punching safety factor Fp. This result is similar to the
one found in the RV case. It can also be observed that, for a
given safety factor, the punching reliability index decreases
with the increase of the autocorrelation distances and it
tends, for large values of Dv ¼ Dh, to the result obtained in
the RV case. For a highly varying soil property correspond-
ing to small values of Dv and Dh, one obtains a higher
reliability index with respect to the one corresponding to
very great values of Dv and Dh (i.e. the case of random
variable with infinite autocorrelation distances). This is in
conformity with the results of Fenton & Griffiths (2003).
With respect to the conventional safety factor commonly
used in practice (i.e. Fp ¼ 3), a lower value of 1.6 could be
acceptable for Dv ¼ 0:1 m and Dh¼3 m since one obtains in
these cases a reliability index value equal to the practical
prescribed value of 3.8 required by Eurocode for the ulti-
mate states (Fig. 11).

For the sliding mode, it can be observed from Fig. 12 that
the horizontal autocorrelation distance (which is the only
distance that may affect the sliding mode) has a minor effect
on the value of the sliding reliability index.

Influence of the anisotropy of the soil shear strength random
fields. Figure 13 shows the variation of the system reliability
index with the ratio Dv=Dh for different values of Dh varying
between 1 and 100 m when �V ¼ 700 kN/m and �H ¼
50 kN/m (i.e. point H in Fig. 3). Non-normal uncorrelated
uncertain parameters were considered. One can conclude
from this figure that for the practical case Dv=Dh , 1 for
which the autocorrelation distance in the vertical direction is
lower than that in the horizontal direction, the reliability
index is underestimated if the calculation is performed using
the assumption of isotropic fields (i.e. Dv=Dh ¼ 1). This
conclusion is in conformity with the results found in
literature (Sivakumar Babu & Mukesh, 2004). When both
autocorrelation distances increase greatly, the reliability index
tends to the value corresponding to the assumption of random
variables. A value of 2.81 for the system reliability index was
found when Dv ¼ Dh ¼ 100 m which is close to the value of
2.77 obtained for the RV case (Table 1 for �V ¼ 700 kN/m).
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CONCLUSION
This paper presents a reliability-based approach for the

analysis and design of a shallow strip footing subjected to
an inclined load. Both the punching and sliding modes of
failure were considered. The vertical and horizontal compo-
nents of the applied footing load were modelled as random
variables. The soil shear strength parameters were first
modelled as random variables and then as random fields.
The main conclusions of this paper can be summarised as
follows.

For the case where the soil properties were modelled as
random variables, the following conclusions can be made.

(a) The reliability index of the punching mode determined
using the critical probabilistic surface is smaller (i.e.
more critical) than the one based on the critical
deterministic surface.

(b) Only a single mode of failure is predominant in the
computation of the failure probability of the system.
For small values of the vertical footing load, the sliding
mode is dominant. When this vertical component
increases, the punching mode becomes more critical.

(c) The reliability index corresponding to uncorrelated shear
strength parameters was found to be smaller than the one
corresponding to negatively correlated variables for both
normal and non-normal probability distributions.

(d ) For large �P-values (�P . 3) for which sliding is not
predominant, each �P corresponds to two different
values of the punching safety factor Fp. This was
explained with the aid of the interaction diagram
(corresponding to Fp ¼ 1) and the similarity in shape
of curves corresponding to different values of Fp.

(e) The system failure probability was highly influenced by
the coefficients of variation of j and H . Thus, the
accurate determination of the uncertainties of the angle

of internal friction j and the horizontal footing load H
is very important in obtaining reliable probabilistic
results.

( f ) The probabilistic foundation breadth decreases with
increase of the negative correlation between the shear
strength parameters and decrease of the coefficients of
variation of the random variables. It can become
smaller than the deterministic breadth for small values
of the coefficient of variation of the horizontal load and
for typical values of soil variability.

(g) Contrary to Eurocode 7 which prescribes constant
values for the material or resistance and load factors,
the present RBD has the advantage of providing
different values of these factors depending on the soil
and footing load variabilities. These factors are the
optimal ones and were determined by a maximisation
of the failure probability for given soil and footing load
variabilities.

For the case where the soil properties were modelled as
random fields, the following conclusions can be made.

(a) For a given safety factor, the punching reliability index
decreases with increase of the autocorrelation distances
and tends, for large values of the autocorrelation
distances, to the value obtained in the RV case. For
the sliding mode, the horizontal autocorrelation distance
has a minor effect on the value of the sliding reliability
index.

(b) For the practical anisotropic case (i.e. Dv=Dh , 1) for
which the autocorrelation distance in the vertical
direction is smaller than that in the horizontal direction,
the reliability index is underestimated if calculation is
performed using the assumption of isotropic fields (i.e.
Dv=Dh ¼ 1).

APPENDIX
The distances li and di of block i in the failure mechanism shown in Fig. 1 are given by

li ¼ B �
Yi

j¼1

sin � j

sin Æ j þ � j

� 	 (19)

di ¼ B � sinÆi

sin �i

�
Yi

j¼1

sin � j

sin Æ j þ � j

� 	 (20)

The non-dimensional functions f t (t ¼ 0, 1, 2, 3) used in equation (7) of the ultimate bearing capacity are given as follows

f 0 ¼ sin �1 � jo1ð Þ þ H=V cos �1 � jo1ð Þ (21)

f 1 ¼
Xn

i¼1

sinÆi � sin �i

sin Æi þ �ið Þ � sin �i � joi �
Xi�1

j¼1

Æ j

0
@

1
A �

Yi�1

j¼1

sin2 � j

sin2 Æ j þ � j

� 	 � sin Æ j þ � j � jrj � joj

� 	
sin � jþ1 � jrj � jo( jþ1)

� 	
2
4

3
5 (22)

f 2 ¼ 1

�c

Xn

i¼1

coi cosjoi �
sinÆi

sin Æi þ �ið Þ �
Yi�1

j¼1

sin � j

sin Æ j þ � j

� 	 � sin Æ j þ � j � jr j � jo j

� 	
sin � jþ1 � jr j � jo jþ1ð Þ

� 	
2
4

3
5 (23)

f 3 ¼ 1

�c

Xn�1

i¼1

cri cosjri �
sin �i

sin Æi þ �ið Þ :
sin �i � �iþ1 þ Æi � joi þ jo iþ1ð Þ

� 	
sin �iþ1 � jri þ jo iþ1ð Þ

� 	 Yi�1

j¼1

sin � j

sin Æ j þ � j

� 	 � sin Æ j þ � j � jr j � jo j

� 	
sin � jþ1 � jr j � jo jþ1ð Þ

� 	
2
4

3
5 (24)

NOTATION
a adhesion stress
A domain under which averaging is performed
B breadth of the footing
c cohesion of the soil

(c�, j�, V�, H�) design point
cB, jB soil shear strength at the soil-footing interface
Dh, Dv horizontal and vertical autocorrelation distances
ds, dl elementary segments along Li and Lj

respectively
f0, f1, f2, f3 non-dimensional functions

FP, FS punching and sliding safety factors
G(x) performance function
iq, ic correction factors in bearing capacity formula

for surcharge and cohesion respectively
L distance along which averaging is performed

li, di radial and basal lines of block i
Li, Lj two arbitrary situated segments

n number of triangular rigid wedges in the failure
mechanism

Pf failure probability
Pf (P), Pf (S) failure probabilities under the punching and

sliding failure modes respectively
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Pf ðP \ SÞ failure probability under the punching and
sliding failure modes

Pfsys system failure probability
R correlation matrix
Ru vertical component of the ultimate foundation

load
Su ultimate sliding resistance of the footing
u distance that separates any two points of the two

segments Li and Lj

u�i standard normal uncorrelated variable at the
design point

V, H footing vertical and horizontal load components
Vi velocity of block i

Vi , iþ1 interblock velocity between blocks i and i+1
x random vector

Z(x, y) two dimensional random field
Z(x, y) mean of the random field

�ð�Þ cumulative distribution function (CDF) of a
standard normal variable

Æi, � I geometrical parameters of the failure
mechanism

ÆP, ÆS sensitivity factors of the punching and sliding
modes

�HL Hasofer–Lind reliability index
�P, �S reliability indexes of the punching and sliding

failure modes
�sys system failure probability
� angle of friction at the soil-footing interface

�x, �y horizontal and vertical lag distances
ª soil unit weight
j angle of internal friction of the soil

joi, coi average values along segment di of the angle of
internal friction and the cohesion respectively

jr i, cri average values along segment li of the angle of
internal friction and the cohesion respectively

� mean value vector
�c, �j average values of the cohesion and angle of

internal friction
�H, �V mean values of the horizontal and vertical load

components
r correlation coefficient

r(Li, Lj) average correlation between lines Li and Lj

rPS correlation between the sliding and punching
failure modes

r(u) autocorrelation function
� standard deviation vector
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