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We use a polarization-maintaining low-coherence interferometer to characterize birefringent optical fibers. We show how it is possible to determine the phase and group birefringence, the orientation of the two eigenaxes and the difference of chromatic dispersions along the eigenaxes, performing three measurements only.

Introduction

Since their first industrial availability in the late 1970s, optical fibers have experienced a very important development. The emergence of microstructured fibers (also called photonic crystal fibers) is one of the very recent remarkable advances in the field of optical fibers. These fibers are made of periodic arrangements of air holes in a silica matrix [START_REF] Knight | All-silica single-mode optical fiber with photonic crystal cladding[END_REF] which give them new properties, suitable for many applications such as very high power guiding [START_REF] Wadsworth | High power air-clad photonic crystal fibre laser[END_REF], supercontinuum [START_REF] Coen | White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber[END_REF][START_REF] Esposito | Measurement of white-light supercontinuum beam properties from a photonic crystal fibre using a laser scanning confocal microscope[END_REF] or soliton links [START_REF] Kurokawa | Penalty-free dispersion-managed soliton transmission over a 100-km low-loss PCF[END_REF].

These fibers may also present some more or less detrimental characteristics in applications for which they are intended, such as birefringence [START_REF] Bjarklev | Polarization properties of honeycomb-structured photonic bandgap fibres[END_REF] or chromatic dispersion [START_REF] Labonté | Experimental and numerical analysis of the chromatic dispersion dependence upon the actual profile of small core microstructured fibres[END_REF][START_REF] Ademgil | Highly birefringent photonic crystal fibers with ultralow chromatic dispersion and low confinement losses[END_REF]. Several methods have been developed to accurately measure these two characteristics, but in general not simultaneously. For the phase and group birefringence, a variety of methods have been proposed, which require measurement of spectral beat length. One can cite the method proposed by Takada et al [START_REF] Takada | Precision measurement of modal birefringence of highly birefringent fibers by periodic lateral force[END_REF], in which a modulated lateral force is applied to the fiber. This method was used to demonstrate the strong wavelength dependence of phase and group modal birefringence in photonic crystal fibers [START_REF] Antkowiak | Phase and group modal birefringence of triple-defect photonic crystal fibres[END_REF]. Other methods are based on an interferometric device: optical frequency domain reflectometer, to obtain the distribution of birefringence along a fiber [START_REF] Froggatt | Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry[END_REF], cross polarizer low-coherence interferometer [START_REF] Ortigosa-Blanch | Highly birefringent photonic crystal fibers[END_REF][START_REF] Michie | Temperature independent highly birefringent photonic crystal fibre[END_REF][START_REF] Labonté | Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres[END_REF] or Michelson interferometer [START_REF] Hlubina | Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry[END_REF].

Regarding the measurement of chromatic dispersion, there are three main methods: the time-of-flight method, the phase-shift method and interferometric methods. The latter are the most accurate for short-length samples. They were used to characterize standard fibers [START_REF] Rao | Review Article. Recent progress in fibre optic low-coherence interferometry[END_REF], special fibers like erbium doped fibers [START_REF] Gaillard | Local and spectral characterization of optical fibers and fiber Bragg gratings with low coherence interferometry[END_REF] or fiber Bragg gratings for index profile reconstruction [START_REF] Giaccari | Local coupling coefficient characterization of fiber Bragg gratings[END_REF][START_REF] Leduc | Experimental synthesis of fiber Bragg gratings index profiles: comparison of two inverse scattering algorithms[END_REF]. The case of birefringent fibers is not so straightforward. Since two modes propagate along such fibers with velocities that are slightly different, the interferograms are made of two peaks, often overlapping, and beats appear in the spectrum which hinder the measurement of the chromatic dispersion. In order to make this characterization possible, one may insert a polarizer and adjust its orientation until it matches the direction of one eigenaxis of the fiber. This procedure gives good results [START_REF] Labonté | Experimental and numerical analysis of the chromatic dispersion dependence upon the actual profile of small core microstructured fibres[END_REF][START_REF] Palavicini | Phase-sensitive optical low-coherence reflectometry technique applied to the characterization of photonic crystal fiber properties[END_REF][START_REF] Gaillard | Optical characterization of photonic crystal fibers by optical low coherence reflectometry and scanning near field optical microscopy[END_REF], but is time consuming.

We propose below to use polarized low-coherence interferometry (PLCI) to characterize the birefringence, the chromatic dispersion and the orientation of the eigenaxes of a birefringent fiber. Numerical tests have been done in order to validate our method and some of these tests are presented. Finally, some results obtained on polarizationmaintaining (PM) fiber and photonic crystal fiber samples are given, showing the effectiveness of the method. 

Theory

The low-coherence interferometer (cf figure 1) is a Michelson interferometer, realized with PM fibers [START_REF] Noda | Polarizationmaintaining fibers and their applications[END_REF]. All the fibers have the same orientation. Let e p be the direction of one eigenaxis of the fibers. The light, emitted by an amplified spontaneous emission light source, passes through a linear polarizer, whose direction is e p , before being coupled to the PM fiber. It is then guided by the fiber, without change in polarization, to a PM splitter. The first output is coupled to the 'test' arm connected to the sample under test. The other output is coupled to the 'reference' arm, ending in the moving mirror. The translation of the moving reflector is monitored by a second Michelson interferometer illuminated by a highly coherent source (HeNe, frequency stabilized laser). This interferometer is used as a fringe counter and provides a regular sampling of the interferograms recorded by the broadband source interferometer. We limit our study to linearly birefringent components: we call e x and e y the directions of the eigenaxes of the sample under test (figure 2) and assume that they remain constant along the sample. We then have to determine r x (σ ) e iφ x (σ ) and r y (σ )e iφ y (σ ) , the eigen complex reflection coefficients, and α = ( e x , e p ). There are then five unknown parameters. However, the birefringence of most fibers does not exceed 10 -2 and is often lower than 10 -3 . This implies that the difference between the reflection coefficients r x (σ ) and r y (σ ), which are given by the Fresnel laws, is also lower than 10 -2 . This value is smaller than the experimental uncertainty due to noise. We may therefore assume that r x (σ ) = r y (σ ) = r(σ ). Moreover, for reasons that will be explained later, we will consider φ(σ ) = φ y (σ )φ x (σ ) rather than φ x (σ ) and φ y (σ ). This reduces the five unknown parameters down to three, and then three measurements with different polarization states are required.

In order to obtain these different states, a polarizer and a wave plate (half-wave plate or quarter-wave plate) are placed at the output of the coupler, in the reference arm (cf figure 1). The orientation of the polarizer is e p and the direction of one eigenaxis of the plate is e . The angle between e and e p is θ. The light propagates in the air between the plate and the sample. The polarization of the light coupled to the sample is then controlled.

The electrical field at the detector level is the sum of the fields coming from both reference and test arms of the interferometer. The field from the reference arm is

E r (t) = e p +∞ -∞ r r (σ )ρ(σ ) e iφ r (σ ) e 2iπctσ dσ ( 1 
)
where σ is the wavenumber, ρ(σ ) the source spectral amplitude density and r r (σ ) exp[iφ r (σ )] is the reflection coefficient of the reference arm. These functions are analytic, such that f (-σ ) = f * (σ ). According to figure 1, φ r (σ ) can be written as

φ r (σ ) = 4πσ [n f (σ ) 2 + n a a ] (2) 
with

n f (σ ) = n 0f + β f (σ ).
The field from the test arm can be derived using the Jones formalism. The propagation of the light throughout the test arm is described by the matrix M(σ ) which can be written in the standard basis ( e p , e p⊥ ) as

M(σ ) = M P R(θ)M ψ R(α -θ) × M s R(-α + θ)M ψ R(-θ)M P (3)
where M P is the polarizer characteristic matrix, M ψ is the wave plate characteristic matrix

M ψ = e i ψ 2 0 0 e -i ψ 2 ( 4 
)
with ψ = π for the half-wave plate and ψ = π/2 for the quarter-wave plate, and M s is the characteristic matrix of the sample under test:

M s = r(σ ) e i4πσ n x (σ ) s 0 0 r(σ ) e i4πσ n y (σ ) s (5) with n x (σ ) = n 0s + β x (σ ) n y (σ ) = n 0s + B + β y (σ ). ( 6 
)
The matrix of each component is defined in the standard basis of the component's eigenvectors. We move from one basis to another with the rotation matrices R(θ) and R(αθ). Due to the presence of the polarizers with orientation e p , the only component of M(σ ) different from zero is

m 11 (σ ) = r t (σ ) e iϕ(σ ) [f x e i4πσ n x (σ ) s + f y e i4πσ n y (σ ) s ] (7)
where

fx y = 1 2 [1 ± cos 2(α -θ) cos(2θ) ∓ sin 2(α -θ) sin(2θ) cos ψ] ( 8 
)
and ϕ(σ ) describes the phase due to the propagation outside the polarizing set and outside the sample. The term r t (σ ) is equal to τ (σ )r(σ ), where τ (σ ) is a transmission coefficient which takes into account all the losses in the test arm that do not depend on the intrinsic properties of the measured fiber (injection, angle of the cleaved end face, couplers, etc). Finally, the field from the test arm can be expressed as

E t (t) = e p +∞ -∞ m 11 (σ )ρ(σ ) e 2iπctσ dσ. (9) 
The signal recorded at the interferometer output by the photoreceiver is given by

| E r (t)+ E t (t)| 2
t , where the brackets denote the temporal average. It is the superposition of a stationary signal corresponding to the intensities reflected by each arm and an oscillating one due to the interferences. The photoreceiver is designed to remove the stationary component; the intensity is then [START_REF] Leduc | Experimental synthesis of fiber Bragg gratings index profiles: comparison of two inverse scattering algorithms[END_REF] 

I α,θ,ψ (z) = 2 +∞ -∞ J α,θ,ψ (σ ) e +8iπn a σ z dσ (10) 
where

J α,θ,ψ (σ ) = 2S(σ ) e iϕ(σ ) [f x e iφ x (σ ) + f y e iφ y (σ ) ] (11) 
with

S(σ ) = r r (σ )r t (σ )|ρ(σ )| 2 and φ x (σ ) = 4πσ [β x (σ ) s -β a (σ ) a + β f (σ )( 1 -2 )] φ y (σ ) = 4πσ [β y (σ ) s + B s -β a (σ ) a + β f (σ )( 1 -2 )]. ( 12 
)
The variable z stands for the displacement of the moving reflector from the equilibrium position 0a defined as

n 0x s + n 0f 1 = n 0a 0a + n 0f 2 .
According to [START_REF] Antkowiak | Phase and group modal birefringence of triple-defect photonic crystal fibres[END_REF], the Fourier transform of the recorded interferogram I α,θ,ψ (z) is the function J α,θ,ψ (σ ). It is better to consider the squared modulus P α,θ,ψ (σ ) of the functions J α,θ,ψ (σ ) which are independent of the origin of the interferograms:

P α,θ,ψ (σ ) = | J α,θ,ψ (σ )| 2 = |S(σ )| 2 2 {[1 + cos φ(σ )] + [1 -cos φ(σ )][u(α, θ, ψ)] 2 } (13) with u(α, θ, ψ) = cos 2(α -θ) cos 2θ -sin 2(α - θ) sin 2θ cos ψ.
After some algebraic manipulations, the following solutions are obtained:

cos 4α = P ↑ -P P ↑ + P -2P • (14) 
and cos φ(σ ) = 3P • -P ↑ -P P ↑ + P -P • [START_REF] Hlubina | Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry[END_REF] where P ↑ = P α,0,π (σ ), P = P α, π 8 ,π (σ ) and P • = P α, π 4 , π 2 (σ ). The functions P ↑ and P correspond to the linear polarizations obtained using the half-wave plate. P • corresponds to the circular polarization obtained with the quarter-wave plate.

There remains a third unknown: the reflection coefficient. The status of this parameter is slightly different, and it is not necessary to calculate it, for two reasons. First, this coefficient does not provide more information than φ(σ ) since it also essentially depends on the refractive index of the fiber. Then, it is a very difficult parameter to measure in absolute terms. We can, of course, insert the values of α and φ(σ ) obtained using equations ( 14) and ( 15) into equation ( 13) to determine S(σ ). But to retrieve the reflection coefficient from S(σ ), we must know the parameters τ (σ ) and r r (σ ). However, there are several sources of uncertainty in the interferometer, which prevents precise knowledge of these quantities. First, each passage from free space to an optical fiber induces a strong imprecision in the amount of light injected. Then, the coupling coefficients of couplers are known with an accuracy of a few percent, corresponding to the repeatability of connections. Finally, the angle between the end face of the tested fiber and the optical axis is also a source of inaccuracy, because a small deviation from the orthogonality induces an exponential decay of the reflected intensity. For all these reasons, it is preferable to consider only relative measurements as is done in classical low-coherence interferometry.

The measurement method is based on relations ( 14) and [START_REF] Hlubina | Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry[END_REF]. First of all, we may underline that the functions P ↑ , P and P • depend on σ , and that α does not. The ratio in relation ( 14) is indeed independent of σ in theory, but not in practice. Some fluctuations can be observed around an average value. We will then define α as α = 1 4 arccos P ↑ -P P ↑ + P -2P • σ [START_REF] Rao | Review Article. Recent progress in fibre optic low-coherence interferometry[END_REF] where the brackets denote the average over σ . Moreover, the relation contains the cosine function which causes an ambiguity in relation ( 14): if α ∈ 0; π 4 is a solution, then π 2α is also a solution. This means that it is necessary to make a new measurement turning the half-wave plate of α/2 to determine the orientation of the eigenaxis of the sample. If the spectrum we obtained is smooth, the angle between e x and e p is actually α. If the spectrum presents high beats, the real angle is π 2α . In order to extract the birefringence B and the chromatic dispersion difference D = D y -D x from relation [START_REF] Hlubina | Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry[END_REF], we have to unwrap the phase which is initially folded in [0; 2π]. Relying on the fact that the sample is transparent, it is possible to make a Taylor expansion of the refractive index truncating at the first order: so that

n x (σ ) = n 0s + a x (σ -σ 0 ) n y (σ ) = n 0s + B + a y (σ -σ 0 ) (17) 
φ = 4π [B -σ 0 (a y -a x )] s σ + 4π(a y -a x ) s σ 2 . (18)
We then need to fit the unwrapped phase with a secondorder polynomial: a fit 0 + a fit 1 σ + a fit 2 σ 2 , in order to get a fit 1 = 4π [Bσ 0 (a ya x )] s and a fit 2 = 4π(a ya x ) s . The phase birefringence is then given by

B = a fit 1 + a fit 2 σ 0 4π s . ( 19 
)
And, referring to the definition of the chromatic dispersion D, it can be expressed as

D = a fit 2 4πc s σ 2 . ( 20 
)
Finally, the knowledge of α allows us to determine the chromatic dispersion of the sample along its eigenaxes.

Numerical tests

In order to test the robustness of our method, we carried out some numerical simulations with noise.

The spectrum of the light was Gaussian, centered on λ 0 = 1/σ 0 = 1550 nm with a spectral width of λ = 40 nm. The angle between one eigenaxis of a sample and the direction of the polarizer was called α th . The refractive indices along the eigenaxis were n xth (σ ) = n 0th + a x (σσ 0 ) and n yth (σ ) = n 0th + B th + a y (σσ 0 ). We proceeded to a random exploration of the parameter space, rather than performing a systematic exploration. To define a sample, we then chose randomly α th in the range 0; π 4 , B th in [1 × 10 -4 ; 3 × 10 -2 ] and a x in [-0,108 μm; 0,108 μm]. The range for α th was chosen in this way because all the values in the range π 4 ; π 2 would be folded in 0; π 4 . The B th range corresponded to what is commonly encountered. Finally, the a x range corresponded to a chromatic dispersion D x ∈ [-150 ps (nm km) -1 ; 150 ps (nm km) -1 ], values also commonly encountered in reality. a y was the only parameter that was not randomly chosen. Referring to another method and related observations [START_REF] Gaillard | Optical characterization of photonic crystal fibers by optical low coherence reflectometry and scanning near field optical microscopy[END_REF], we fixed a y = (1 ± 0.1) a x . The sample and the source being defined, we used equation [START_REF] Antkowiak | Phase and group modal birefringence of triple-defect photonic crystal fibres[END_REF] to simulate the three interferograms I α th ,0,π (z), I α th , π 8 ,π (z) and

I α th , π 4 , π 2 (z).
In our experimental protocol, we systematically proceed to ten measurements on the same sample and in the same polarization state. In order to reproduce numerically this experimental procedure, we applied different noises ten times on each theoretical interferogram, adding to each point a random quantity chosen in the range [-b max ; b max ]. We then calculated the Fourier transforms for the ten interferograms affected by noise and determined the mean Fourier transform for each polarization. From these mean values, we calculated P ↑ , P and P • and deduced α meas and φ meas . After unwrapping φ meas , we obtained B meas and D meas , and determined the errors on the different parameters:

⎧ ⎨ ⎩ δ α = α th -α meas δ B = B th -B meas δ D = D th -D meas . ( 21 
)
We reproduced the procedure previously described a hundred times to obtain a statistical estimate of the errors. We then obtained a hundred values of δ α , δ B and δ D for one given sample. We considered the distributions of the errors and focused on the mean value denoted δ and the standard deviation denoted σ δ . In figure 3 we show, as an example, the error distributions for a sample characterized by α = 31.3 • , B = 2.2 × 10 -2 , D x = -27.9 ps (nm km) -1 and D y = -25.3 ps (nm km) -1 and a noise of 10%.

Statistics have been performed by the R software. It appears that the distributions follow a normal law, as shown by the q-q plots in figures 3 (d), (e) and (f ). δ B and δ D distributions are centered on 0 ( δ B σ δ B , δ D σ δ D ), 2 σ δ B and 2 σ δ D may then be considered as the estimates of the uncertainty in B and D. We can also observe that the mean value δ α of the error in the angle is greater than the deviation. Therefore, we use the mean value to quantify the uncertainty in the angle. We performed simulations for 50 different samples. We observed no significant influence of the different parameters on the errors. The effect of noise on the different parameters is shown in the graphs of figure 4. Each cross on the graphs corresponds to a sample. As we can see, for a noise below 5% of the signal amplitude, a value commonly encountered in practice, the error in the birefringence does not exceed 0.001 (3% in relative value) and the error in the dispersion does not exceed 1 ps (nm km) -1 (5% in relative value). The error in the angle can reach 3 • , but this remains acceptable, knowing that the pigtailed PM components tolerance of alignment is guaranteed to be nearly 2 • .

Experimental results

The experimental device is sketched in figure 1. Along the test arm, the light propagates in a PM fiber, is collimated by a microscope objective and propagates through a polarizer and the wave plates. It is then coupled through a second objective into the fiber under test and reflected by this fiber end face. It then propagates backward along the reverse path. The propagation in free space is a delicate point of the method since it requires multiple injections into different fibers which induce important power losses and consequently decrease the signal to noise ratio.

The first measurement was performed on a standard sample: a PM fiber Panda type (Thorlabs PM1550-HP). Figure 5 shows the functions P ↑ , P and P • corresponding to ten successive measurements. Characteristic beats due to the propagation of two modes appear. From these beat periods and using the classical methods [START_REF] Gaillard | Optical characterization of photonic crystal fibers by optical low coherence reflectometry and scanning near field optical microscopy[END_REF], we determine the group birefringence B g = (4.06 ± 0.03) × 10 -4 .

From equation ( 16), we obtain α = 20 • . It means that α is actually equal to 20 • or 70 • . To remove this ambiguity, we proceeded to two additional measurements: the first one using the wave plate λ/2 oriented at 10 • from the polarizer axis and the second one at 35 • from this axis. The two spectra we observed are presented in figure 6 this angle gives the right orientation of the eigenaxis of the fibre.

Using relation [START_REF] Hlubina | Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry[END_REF], we obtained the mean phase difference φ shown in figure 7. By fitting these curves with a second-order polynomial, we obtained a birefringence B between 3.05 × 10 -4 and 3.17 × 10 -4 and a chromatic dispersion difference D between 1.46 ps (nm km) -1 and 1.57 ps (nm km) -1 . In order to have a better estimation of the uncertainty, we used the same procedure as for the numerical tests with a maximum noise of 4%: we calculated the interferogram produced by a sample with α th = 70 • , B th = 3.1 × 10 -4 and D th = 1.43 ps (nm km) -1 . This led to an uncertainty in B of 0.08×10 -4 and in D of 0.02 ps (nm km) -1 . These values are comparable to the repeatability of ten measurements. We can then estimate B = (3.11 ± 0.08) × 10 -4 . This value is in perfect agreement with the value given by the manufacturer which is B = 3.1 × 10 -4 .

Moreover, knowing angle α, we can measure the chromatic dispersion along the sample's eigenaxes, using a classical method [START_REF] Gaillard | Optical characterization of photonic crystal fibers by optical low coherence reflectometry and scanning near field optical microscopy[END_REF]. Figure 8 shows the mean value of ten measured chromatic dispersions along the sample's eigenaxes called 0 • and 90 • . The difference of these chromatic dispersions is plotted in figure 9 together with the chromatic dispersion difference obtained with equation (15) (solid line). Good agreement between both methods ensures the validity of the PLCI.

A second measurement has been performed on a photonic crystal fiber sample. However, the coupling in this type of fiber is not as easy as in standard fibers, which implies large losses of signal at each transition in free space. These losses induce high noise (around 20% of the maximum of the signal 

Conclusion

We proposed a new method for the characterization of a birefringent fiber using a polarization-maintaining lowcoherence interferometer. Basically it consists in probing the sample with three different states of light polarization and computing the square modulus of the interferogram Fourier transforms. Appropriate combinations give the orientation of the eigenaxes, the phase and group birefringence, and the difference of chromatic dispersion along the eigenaxes. Secondly, two more measurements can be performed with the light linearly polarized in the direction of each eigenaxis respectively. These measurements lead to the chromatic dispersion along the eigenaxes. The efficiency of the method was checked numerically and experimentally demonstrated afterwards on a polarization maintaining fiber and a microstructured fiber. The accuracy of our method is similar to the accuracy of the methods described in the literature. The main advantage of our method is that the same instrument gives: the phase and group birefringence, the chromatic dispersion and the orientation of the eigenaxes of the fiber, with up to five measurements. Most of the other methods give either birefringence or chromatic dispersion, and the methods which give both require a priori knowledge of the orientation of the eigenaxes or multiple measurements to determine this orientation.

The multiple couplings from fiber to air and air to fiber, required by the wave plates in free space, are the main drawbacks of the method. However, we just have to proceed to a small number of measurements to determine the characteristics of the fiber, with a relative uncertainty of a few percent, while the noise remains smaller than 5% of the maximum of the signal's amplitude. Moreover, this method could be applied, as it is, to the characterization of planar waveguides.
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 1 Figure 1. Polarization-maintaining low-coherence interferometer.
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 2 Figure 2. Diagram of the system's eigenaxis.
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 3 Figure 3. Distribution of the errors for α = 31.3 • , B = 2.2 × 10 -2 , D x = -27.9 ps (nm km) -1 , D y = -25.3 ps (nm km) -1 and a noise of 10%.

Figure 4 .

 4 Figure 4. Evolution of the errors as a function of noise.
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 5 Figure 5. Functions P ↑ , P and P • obtained for the Panda fiber (ten successive measurements).
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 891011 Figure 8. Mean chromatic dispersion along the Panda fiber's eigenaxes 0 • and 90 • obtained with the classical method.