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Abstract:
Models of kinetic theory provide a coarse-grained description of molecular configurations wherein atomistic
processes are ignored. The Fokker-Planck equation related to the kinetic theory descriptions must be solved for
the distribution function in both physical and configuration spaces. When the model involves high dimension-
al spaces (including physical and conformation spaces and time) standard discretization techniques fail due to
excessive computation requirements. In this paper, we revisit some model reduction techniques recently pro-
posed to circumvent those difficulties, exploring other new application areas related to entangled polymer mod-
els as well as the use of such reduced models for treating complex flows in which the distribution function
involves both the physical and the conformation coordinates.

Zusammenfassung:
Modelle der kinetischen Theorie stellen eine vergröberte Beschreibung molekularer Konfigurationen zur Verfü-
gung, bei der atomistische Details vernachlässigt werden. Die zur kinetischen Theorie gehörende Fokker-Planck-
Gleichung muss für eine Verteilungsfunktion sowohl im physikalischen als auch im Konfigurationsraum gelöst
werden. Wenn das Modell dabei einen hochdimensionalen Raum erfordert (einschlisslich physikalischer Raum,
Konfigurationsraum und Zeit) versagen konventionelle Diskretisierungstechniken aufgrund ihrer sehr hohen
Anforderungen an die Rechenzeit. Mit diesem Beitrag geben wir einen Überblick über kürzlich vorgeschlagene
Modell-Reduktionstechniken, die in der Lage sind, diese Schwierigkeiten zu überwinden, und mithilfe derer neue
Anwendungsgebiete, in denen die Verteilungsfunktionen sowohl die physikalische als auch konfigurelle Dimen-
sion beschreiben muss, angegangen werden können. Dazu zählen insbesondere verschlaufte Polymersysteme
in komplexen Strömungen.

Résumé:
Les modèles de théorie cinétique définissent une description globale de la configuration moléculaire dans laque-
lle l’échelle atomistique est ignorée. L’équation de Fokker-Planck relative à la théorie cinétique doit être résolue
en donnant la fonction de distribution aussi bien sur l’espace physique que de configuration. Quand le modèle
se définit sur un espace de dimension élevée (en superposant l’espace physique, de configuration et temporel)
les techniques usuelles de discrétisation se heurtent à la difficulté du traitement numérique excessivement
gourmant en temps de calcul et en stockage. Dans ce travail, on présente une revue de quelques techniques de
réduction en explorant des nouvelles applications liées à la reptation des polymères fondus et également aux
traitements d’écoulements complexes dans lesquels la fonction de distribution s’exprime sur l’espace physique
et de configuration. 

Key words: kinetic theory, Fokker-Planck equation, model reduction, separated representation, Karhunen-Loève
decomposition
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1 INTRODUCTION
In kinetic theory models the molecular confor-
mation, and more in general the fluid microstruc-
ture, is described by a distribution function y(x,
t, X) that represents the probability of finding, at
point x in the physical space and time t, the fluid
microstructure defined by the conformation vec-
tor X. The evolution of such distribution function
is governed by the advection-diffusion Fokker-
Planck equation that establishes the conserva-
tion balance of y. The simplest form of such equa-
tion is given by:

(1)

where d/dt represents the material derivative in
the physical space. 

Since the early 1990’s the use of kinetic the-
ory models has developed considerably follow-
ing the introduction of the CONNFFESSIT method
by Öttinger and Laso [1] that is based on the sto-
chastic solution of the Fokker-Planck equation.
Since its introduction, it has been successfully
applied for solving numerous models, most of
them related to dilute polymer solutions. In
recent years, kinetic theory of entangled systems
such as concentrated polymer solutions and
polymer melts, has known major developments
that go well beyond the classical reptation tube
model developed by Edwards, de Gennes, and
Doi. Micro-macro simulations allow to introduce
in the macroscopic scale (the one related to the
momentum and mass conservation) a constitu-
tive equation based on a microscopic kinetic the-
ory description usually accomplished in the con-
text of stochastic simulations (see [2] for a deep
review on this topic). 

As claimed by different authors, the control
of the statistical noise is a major issue in sto-
chastic simulations. This difficulty does not arise
at all in the Fokker-Planck approach. The difficul-
ty, however, is that the Fokker-Planck equation
must be solved for the distribution function in
both physical and configuration spaces. 

When the model involves high dimensional
spaces (including physical and conformation
spaces and time) standard discretization tech-
niques fail due to exorbitant computation
requirements to perform accurate numerical
simulations. This difficulty justifies the reduced

number of works that consider the direct solu-
tion of the Fokker-Planck equation using stan-
dard deterministic discretization techniques,
that have been only applied to solve models
involving moderate number of dimensions [5 - 7]. 

One appealing strategy that allows to alle-
viate the computational effort is based on the
use of reduced approximation bases within an
adaptive procedure, which induces the associat-
ed reduction of the number of degrees of free-
dom and then the size of the linear systems to be
solved. This strategy was deeply analyzed in [8]
and successfully applied for solving FENE molec-
ular models in [9]. The main ideas of this tech-
nique will be briefly summarized in Section 2.1. 

An important drawback of such an approach
is the fact that the approximation functions are
defined in the whole domain, and until now, the
simplest and most usual form to represent a func-
tion is by giving its values at some points in the
domain of interest, being its value defined in any
other point by interpolation. Some times, the
treated model results highly multidimensional,
and in this case the possibility of describing func-
tions from their values at the nodes of a mesh (or
a grid) of the domain of interest results exorbitant.
Some attempts exist concerning the treatment of
multidimensional problems. The interested read-
er can refer to [10] for a review on sparse grids
methods involving sparse tensor product spaces,
but despite of its optimality, the interpolation is
defined in the whole multidimensional domain,
and consequently only problems defined in spaces
of dimension of the order of tens can be treated.
In [11] multidimensional problems are revisited
and deeply analyzed, and for this purpose new
mathematical entities are introduced to be
applied in the numerical treatment of such prob-
lems. Thus, the problematic lied to models defined
in multidimensional spaces remains still open,
and new efforts must be paid to reach significant
improvements in the next years. 

Some of the most usual kinetic theory mod-
els defined from the Fokker-Planck formalism
have two important particularities: (i) they can
be expressed in a separated form and (ii) the con-
formation domain is bounded, with the distribu-
tion function vanishing on its boundary. In this
case, the separated representation and the defi-
nition of tensor product approximation spaces
work perfectly, and allow to circumvent the dif-
ficulties related to the multidimensional charac-
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ter of kinetic theory models, as proved in [12]. In
[12] we considered the steady state solution of
some classes of multidimensional partial differ-
ential equations, and in particular those govern-
ing the molecular configuration distribution in
kinetic theory models of complex fluids associ-
ated with dilute polymer solutions (FENE and
multi-bead-spring FENE models). In [13] we pro-
posed an extension of that technique to solve
multidimensional transient kinetic theory mod-
els. An overview about single and multichain
FENE models and approaches to their numerical
solution had been presented in [14, 15]. 

We would like to emphasize that we are not
looking for a general numerical procedure for
solving multidimensional PDE. In this context,
the sparse grids or sparse tensor product bases
[10] are excellent candidates, but they are not
able to treat highly multidimensional problems
(N >> 20, N representing that dimension) as
claimed in [16]. The technique proposed in our
former work [12] and extended in [13] to transient
simulations, is, in our opinion, a suitable choice
when we are dealing with highly multidimen-
sional parabolic PDE with homogeneous bound-
ary conditions, and despite of the apparent lack
of generality, usual molecular descriptions make
use of a configuration distribution function
defined in a bounded domain that vanishes on
its boundary.

1.1 SOME EXAMPLES OF KINETIC THEORY MODELS
As the different numerical approaches will be
illustrated through the solution of some kinetic
theory models, we start by introducing those
models.

Short fiber suspensions
In the case of a short fiber suspension, the con-
figuration distribution function (also known as
the orientation distribution function) gives the
probability of finding the fibers in a given direc-
tion. Obviously, this function depends on the
physical coordinates (space and time) as well as
on the configuration coordinates, that taking
into account the rigid character of the fibers, are
defined on the surface of the unit sphere. Thus,
we can write y(x, t, p), where x defines the posi-
tion of the fiber center of mass, t the time and p
the unit vector defining the fiber orientation. The
evolution of the distribution function is given by
the Fokker-Planck equation

(2)

where d/dt represents the material derivative, Dr

is a diffusion coefficient and p· is the fiber rota-
tion velocity. The orientation distribution func-
tion must verify the normality condition: 

(3)

where S(o, 1) denotes the surface of the unit
sphere that in this case defines the conformation
space. When the fibers are assumed ellipsoidal
and when the suspension is dilute enough, the
rotation velocity can be obtained from the Jef-
fery’s equation [17] 

(4)

where W and D are the vorticity and the strain
rate tensors respectively, associated with the
fluid flow undisturbed by the presence of the
fiber, and k is a scalar parameter which depends
on the fiber aspect ratio l (ratio between the fiber
length and the fiber diameter)

(5)

Dilute polymer solutions: the FENE model
We consider here the dimensionless form of the
FENE model [18] 

(6)

where y(x, t, q) being q the dimensionless con-
nector vector, q = ||q||, and the function h is given
by 

(7)

where b is the dimensionless square of the max-
imum molecule stretch. Besides, a normality con-
dition is associated with Eq. 6
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(8)

where C defines the conformation space. Finally,
the link between statistical distribution of dumb-
bell configurations and the polymer stress Tp is
provided by the Kramer’s expression

(9)

Remark 1.1: The derivative dy/dt refers to the
material derivative in general. In problems lead-
ing to homogeneous solutions this derivative
becomes the partial derivative. This is the case
for the models considered in this paper, except
when for the complex flow involving the cou-
pling between the physical and the conforma-
tion coordinates addressed in the last section. 
Remark 1.2: Equation 6 defines the time evolution
of the molecule distribution function. To be
solved, an initial distribution must be prescribed.
The equilibrium state  is defined for a null veloc-
ity gradient. Thus, the distribution function
becomes isotropic, it depends on the norm of vec-
tor q = (||q|| = q), and it verifies

(10)

that results in

(11)

Thus, a natural choice for the initial condition
consists in y(x, t = 0, q) = y0(q).

Dilute polymer solutions: the MBS model
The multi-bead-spring (MBS) chain consists of
S + 1 beads connected by S springs. The bead
serves as an interaction point with the solvent
and the spring contains the local stiffness infor-
mation depending on local stretching (see [18] for
more details). The associated dimensionless
Fokker-Planck writes: 

(12)

where q is the configuration vector q = (q1, q2, ...,
qS) and the components of g are given by:

(13)

being the Rouse matrix 

being I the unit matrix whose dimension coin-
cides with the dimension of the physical space
where vectors qk are defined.

Entangled polymers: the Doi-Edwards model
In most polymer processing operations such as
injection molding, film blowing and extrusion,
the polymers are in the molten state. A widely
applied class of molecular-based models for con-
centrated polymer solutions and melts relies on
the reptation notion. 

The key idea of this model is the use of the
reptation mechanism introduced by de Gennes
[19] to a tube (along which the molecule can move)
in order to describe the viscoelastic behaviour of
entangled polymers. The molecule is described as
sliding or reptating through a tube whose con-
tours are defined by the locus of entanglements
with neighbouring molecules. The motion of a
molecular chain in any other direction than the
one defined by the tube axis is strongly restricted,
except at both tube ends, where it can move in any
possible direction. The tube moves itself due to
two mechanisms: (i) by means of the motion of
the central chain itself, which partially leaves its
original tube, for extending it in other directions,
and (ii) by the fluctuation induced by the motions
of the neighbour chains defining the tube lateral
border. In addition to the reptation mechanism,
the Doi-Edwards model [20] assumes affine tube
deformation induced by the macroscopic flow, but
neglects other phenomena like the stretch of the
chain and the Convective Constraint Release.
Within this reptation picture and these assump-
tions, the dynamics of a single segment is given
by: 

(14)
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data many attempts of modifying the original
model have been recently made: avoiding inde-
pendent alignment, introducing double repta-
tion, chain stretching, convective constraint
release as well as anisotropic tube cross sections
(see [21] and the references therein). In the pre-
sent section we focus on the model proposed in
[21] that will be referred as the Öttinger’s model.
This model introduces a further variable l to
account for the chain stretching, which is defined
as the ratio l = L/L0, where L and L0 denotes the
contour length and the equilibrium contour
length of the primitive chain. 

The equation governing the evolution of the
contour length, involving stretching and relax-
ation, reads: 

(18)

whereg· convect andg· dissip denote the convective and
dissipation contributions respectively. The first
contribution is defined by: 

(19)

where t– is the symmetric second-moment orien-
tation tensor:

(20)

The dissipative contribution reads: 

(21)

where Z is the number of entanglements per
chain at equilibrium, ts is the characteristic
stretching time and c(l) is an effective spring
coefficient which models the elastic nature of the
polymer molecules: 

(22)

where lmax is the maximum possible stretching
ratio of the contour length. The balance equation
for the configurational distribution function y(x,
t, u, s) takes the form: 

where u is the unit vector describing the orienta-
tion of the tube segment, s the contour length coor-
dinate (s= 0 and s= 1 represent the chain ends), Grad
v the velocity gradient, and I the unit tensor. The
distribution function y is such that y(x, t, u, s)duds
represents the joint probability that at time t and
position xa tube segment has an orientation in the
interval [u,u+ du] and contains the chain segment
labelled in the interval [s, s + ds]. Thus, the configu-
ration space results W = S(0, 1) X [0, 1], where S(0, 1)
is the surface of the unit sphere centered at the ori-
gin. The Fokker-Planck equation related to the Doi-
Edwards model is the convection-diffusion equa-
tion that represents the conservation balance of the
distribution function: 

(15)

where d/dt represents the material derivative, td
is the disengagement time, namely the charac-
teristic time for a chain to come out the tube by
reptation. We can define the diffusion coefficient
related to the s-coordinate as Ds = 1/(p2td). To
solve the Fokker-Planck equation, one needs to
prescribe appropriate boundary conditions at the
tube borders s = 0 and s = 1 (the orientation coor-
dinate being defined on the unit sphere does not
require any boundary condition). Sometimes, as
previously indicated, an isotropic orientation dis-
tribution is assumed at both ends, which reads: 

(16)

However, other boundary conditions can be also
applied as described in Sect. 6.2 of [16], where
flow-induced alignment of chain ends had been
considered, with a strong effect on dynamic vis-
cosities. Knowing the distribution function, the
stress can be computed from: 

(17)

where G is an elastic modulus and Tp is the poly-
mer stress tensor.

Advanced reptation models
Recognizing the large discrepancy between the
Doi and Edwards model and the experimental
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(23)

where 1/(p2td) is the diffusion coefficient related
to s-coordinate, Du the diffusion coefficient relat-
ed to u-coordinate, being the diffusion orienta-
tion term defined on the unit surface, I the iden-
tity tensor and S· tot the drift velocity for s which
states that there is only a re-scaling of the posi-
tion label s for the tube segment when the chain
relaxes in the tube: 

(24)

The creation/destruction term - (ldissip/l)y com-
pensates for configurations lost or gained at the
boundaries, because the equality 

(25)

The terms involving second-order derivatives are
of irreversible nature and express the erratic rep-
tation motion along the chain contour (second
derivative with respect to the s-coordinate) and
the constraint release (second-order derivative
with respect to u whose associated diffusion
coefficient is noted by Du). 
The following expression for Du is proposed in
[21]: 

(26)

Where H(x) is the Heaviside step function (H(x) =
1 for x ≥ 0, H(x) = 0 for x < 0). The quantities 1/td
and - ldissip/l determine the rates of constraint
release due to the loss of entanglements caused
by the reptation motion and the retraction of the
surrounding chains, respectively. Hence, the d1-
term can be interpreted as representing “double
reptation”, while the d2-term can be regarded as
the convective constraint release mechanism. At

the surrounding chain ends, we impose random
orientation by specifying the distribution: 

(27)
The polymer stress Tp is the obtained from

(28)

where G is an elastic modulus and t– is the sym-
metric second-moment orientation tensor
defined in Eq. 20. 
Remark 1.3: Network-based entangled polymer
models can be also defined in the kinetic theory
framework by using some specific Fokker-Planck
equations whose expressions are close to the
ones just presented. 

2 REDUCED ORDER MODELLING
The above introduced Fokker-Planck equations
will be solved by using two different reduced
model techniques, the one based on the proper
orthogonal decomposition (also known as
Karhunen-Loève decomposition), which is an
appealing choice in the case of kinetic theory
models involving a reduced number of confor-
mation coordinates, and the other one based on
a separated representation, which is specially
addressed to solve problems in highly dimen-
sional spaces. We briefly summarize both strate-
gies in the next sections.

2.1 INTRODUCTION: THE KARHUNEN-LOEVE
DECOMPOSITION
We assume that the evolution of a certain field u(x,
t) is known (being its evolution governed by a PDE).
For practical purposes, this field is expressed in a
discrete form, that is, it is defined at the Nn nodes
of a spatial mesh xi and for some times tp, i.e. u(xi,
tp) ∫ ui

p (we assume Nn nodes and P time steps).
The main idea of the Karhunen-Loève (KL) decom-
position is how to obtain the most typical or char-
acteristic structure f(x) among these up(x), for all
p. For this purpose, we look for a function f(x) that
maximizes b defined by 

(29)
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The maximization (db = 0) leads to:

(30)

which can be rewritten in the form 

(31)

Defining the vector F such that its i-component
is f(xi), Eq. (31) takes the following matrix form

(32)

where the two points correlation matrix is given
by 

(33)

which is symmetric and positive definite. If we
define the matrix Q containing the discrete field
history: 

(34)

it is direct to verify that the matrix k in Eqs. 32 and
33 results

(35)

Thus, the functions defining the most character-
istic structure of up(x) are the eigenfunctions
fk(x) ∫ Fk associated with the highest eigenval-
ues.

A posteriori reduced modelling
If some direct simulations have been carried out,
we can determine u(xi, tp) ∫ ui

p, for all i Œ [1, ..., Nn]
for all p Œ [1, ..., P] and from these simulations the
r eigenvectors related to the r-highest eigenval-
ues fk

T = [fk(x1), ..., fk(xNn) for all k Œ [1, ..., r] (with
r << Nn). Now, we can try to use these  eigen-
functions for approximating the solution of
either a problem slightly different to the one that
has served to define u(xi, tp), or the problem under
consideration at higher times t >> tp. For this pur-
pose we need to define the matrix B

(36)

Now, we consider the linear system of equations
resulting from the discretisation of a partial dif-
ferential equation (PDE) in the form 

(37)

where Fp-1 contains the contribution of the solu-
tion at the previous time step. Then, the
unknown vector containing the nodal degrees of
freedom can be expressed as 

(38)

implying 

(39)

Multiplying both terms by BT it results 

(40)

which proves that the final linear system is of
small size, i.e. the dimensions of BTKB are r x r,
with r << Nn, and the dimensions of both a and
BTF are r x 1. 

Remark 2.1: Equation 40 can be also derived
introducing the approximation (38) into the PDE
Galerkin form. 

Remark 2.2: In the case of non-linear models
K represents the linearized matrix. 
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Adaptivity via an “a priori” model reduction
In order to compute reduced model solutions
without an a priori knowledge, Ryckelynck pro-
posed in [22] to start with a low order approxi-
mation basis, using some simple functions (e.g.
the initial condition in transient problems) or
using the eigenvectors of a similar problem pre-
viously solved. Now, we compute S time steps of
the evolution problem using the reduced model
(Eq. 40) without changing the approximation
basis, and then compute the residual. If the norm
of the residual is small enough, then we can com-
pute other S time steps using the same reduced
approximation basis that involves a reduced
number of degrees of freedom. In the other case,
when the residual norm is greater than a thresh-
old value, we proceed to enrich the approxima-
tion basis by adding the residual and some Krylov
subspaces generated by the residual to the for-
mer approximation basis, and then the previous
S time steps are recomputed. The enrichment
procedure continues until convergence. When
the convergence is reached, and before proceed-
ing with the next S time steps, a Karhunen-Loève
decomposition is performed in the whole com-
puted time interval in order to extract only the
significant approximation functions. Thus,
although the enrichment increases the size of the
reduced approximation basis, the Karhunen-
Loève decomposition reduces it, and in general
the number of approximation functions remains
approximatively constant during the entire sim-
ulation. See [8] for a deep description of this pro-
cedure and [9] for a detailed description of its
application for solving the FENE model summa-
rized in Section 1.1.

2.2 Separated representation and tensor
product approximation spaces
The Fokker-Planck equation being a parabolic
PDE, we consider in this section, for the sake of
simplicity, a similar equation but involving sim-
pler notation, as it is the case of the transient
Poisson’s problem defined in a N-dimensional
space, given by: 

(41)

where u is assumed a scalar function depending
on space and time, that is u(x, t) or u(x, t) = u(x1,

x2, ..., xN, t). Equation 41 is assumed to be defined
in the domain W = Wx x Wt = ]- L, + L[N X]0, tmax] and
u is assumed vanishing on the space boundary,
i.e. u(x Œ dWx, t) = 0 as well as at the initial time,
i.e. u(x, t = 0) = 0. 

Remark 2.3: Most of kinetic theory models are
defined in a bounded domain, with the associated
distribution function vanishing on its boundary.
Despite the fact that these models are subjected to
a non zero initial condition, it is direct to prove that
the subtraction of this initial condition to the orig-
inal distribution function leads to another function,
verifying a slightly different Fokker-Planck equa-
tion, which vanishes on the domain boundary as
well as at the initial time. 

The problem solution is assumed in the form: 

(42)

where Fkj is the jth basis function which only
depends on the kth space coordinate, the time
being no more than other coordinate. The con-
struction of such solution (Eq. 42) consists of an
iteration procedure involving at each iteration n
two steps: 

1.) Projection of the solution in a discrete
basis. If we assume the functions Fkj(for all j Œ [1,
..., n] for all k Œ [1, ..., N + 1])  known (verifying the
boundary and initial conditions), the coefficients
aj, j Œ [1, ..., n], can be computed by introducing
the approximation of u (Eq. 42) into the Galerkin
variational formulation associated with Eq. 41
which results in a linear system of size n x n. 

2.) Enrichment of the approximation basis.
From the alpha coefficients just computed the
approximation basis can be enriched by adding
the new function Pk = N

k=1Fk(n+1)(xk))F(N+1)(n+1)(t). For
this purpose we solve the Galerkin variational
formulation related to Eq. 41 using the approxi-
mation of  given by: 

(43)

which results in a non-linear problem of size
Si=N+1

i=1ni
n being ni

n the number of nodes used to
approximate the function Ri. Functions Fk(n+1) are
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finally obtained by normalizing the functions R1,
R2 , ..., RN+1. 
The interested reader can refer to [12] and [13] for
a detailed description of this technique for the
solution of the MBS-FENE model summarized in
Section 1.1 in the steady and transient cases
respectively.

3 NUMERICAL EXAMPLES OF KINETIC
THEORY MODEL REDUCTION
As the application of the described reduction
techniques in the framework of dilute polymer
flows was considered in some of our former
works, as previously indicated, we will focuss
in this section on the solution of more complex
models concerning entangled polymers. The
main difficulties encountered in the problems
addressed here concern the complexity of the
configuration space, the non-linearity of some
models as well as the complex flow simula-
tions coupling physical and configuration
spaces.

3.1 REDUCED KARHUNEN-LOEVE APPROXIMA-
TION OF THE DOI-EDWRADS MODEL
In order to analyze the capabilities of the tech-
nique described in Section 2.1 we consider the
3D Doi-Edwards model (Eq. 15) in some simple

rheometric flows in which the distribution
function can be expressed in the form y(u, s, t).
The reduction technique based on the use of
the Karhunen-Loève decomposition allows to
define a reduced approximation basis that is
able to represent the entire time evolution of
the distribution function using only 8 approx-
imation functions. The evolution of the steady-
state distribution function along the curvilin-
ear coordinate s is depicted in Figure 1 in a shear
and in an elongational flow, both character-
ized by a Weissenberg number We = 1 (the dif-
fusion coefficient being Ds = 1). In both cases
only 8 degrees of freedom are needed, instead
of the 642 approximation functions related to
the 642 nodes defining the coarse finite ele-
ment mesh on the unit surface. Thus, at each
time step one needs to perform the inversion
of a matrix of size 8 x 8. These four most sig-
nificant approximation functions are depicted
in Figure 2.

3.2 SEPARATED REPRESENTATION OF REPTA-
TION MODELS OF ENTANGLED POLYMERS
In this section we analyze the use of a variable
separation methodology that allows to solve the
problem in the multidimensional space by
decoupling the different subspaces. Moreover,
the approximation functions associated with
each subspace are computed during the simula-
tion in order to keep a reduced number of degrees
of freedom. 

First, we consider again the Fokker Planck
equation of the Doi-Edwards model (Eq. 15)
whose solution in some simple rheometric flows
is assumed not depending on the physical coor-
dinates: 

(44)

where the conformation is defined at time t from:
(u, s, t) Œ W = Wu x Ws x Wt = S(0, 1) x [0, 1] x [0, tmax],

Figure 1 (left):
Evolution of the steady dis-
tribution function defined
on the unit surface along
the chain arc-length for
Ds = 1 and We = 1: Shear
flow (left) and longational
flow (right).

Figure 2:
Approximation functions:
(top-left) most significant
approximation function,
(top-right) second most sig-
nificant function, (bottom-
left) third most significant
function, and (bottom-
right) fourth most signifi-
cant approximation func-
tion.
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and the term X allows to enforce homogeneous
boundary conditions to the separated represen-
tation. Because the boundary conditions 

(45)

a natural choice consists in X = 1/4p. 
In the transient case, as the initial condition

y(u, s, t = 0) also verifies Eq. 45, one could con-
sider X = y(u, s, t = 0) that can be expressed in a
separated form by using the singular value
decomposition or the alternating least squares
technique. In the numerical examples that fol-
low, we focuss in the steady state solution and
then the choice X = 1/4p is considered. 

The same strategy can be applied for solving the
advanced reptation model including double repta-
tion as well as convective constraint release just
described, by applying an appropriate technique for
accounting for the non-linearity. In the simulations
that follow, the simplest technique, based on a fixed
point strategy, is considered. We consider both the
Doi-Edwards and the Öttinger models in simple 2D
and 3D shear flows. The computed solutions for two
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Figure 3 (above):
Comparison of the Doi-
Edwards model (left) and
the Öttinger one (right) in a
steady state 2D shear flow
characterized by We = 1 and
d1 = d1 = 1/l: (top) distribu-
tion functions, (middle)
reduced approximation
bases related to the orienta-
tion coordinate, and (bot-
tom) reduced approxima-
tion bases related to the
contour length coordinate.

Figure 4:
Comparison of the Doi-
Edwards model (left) and
the Öttinger one (right) in a
steady state 2D shear flow
characterized byWe = 100
and d1 = d1 = 1/l: (top) distri-
bution functions; (middle)
reduced approximation
bases related to the orienta-
tion coordinate and (bot-
tom) reduced approxima-
tion bases related to the
contour length coordinate.

different Weissenberg numbers (We = 10 and
We = 100) are then compared. 

The results computed in the 2D case are
depicted in Figures 3 and 4. We can notice that
the parabolic profile of the distribution function
along the contour length coordinate becomes for
the Öttinger model the more and more planar as
the Weissenberg number increases, proving that
the relaxation is localized in the neighborhood of
the chain ends. 

The 3D case is analyzed. Figure 5 depicts the
results obtained by setting d1 = 1/l, lmax @ 10 and
Z = 20 >> 1. In this figure the distribution func-
tions related to the Öttinger model are depicted
at the middle chain section s = 0.5 for different
Weissenberg numbers. Moreover, we included in
this figure the profile of the distribution function
along the contour length coordinate for different
values of the conformation vector u, proving that
these profiles, parabolic at low Weisseberg num-
bers, become highly planar by increasing it. The
computed dimensionless shear stresses for dif-
ferent choices of the parameters d1 and d2 are in
perfect agreement with the ones reported by
Fang et al. (see Figure 8 in [14]). Figures 6 and 7
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depict the different approximation functions
involved in the separated representation of the
distribution function for both We = 10 and We =
100, respectively. 

3.3 COMPLEX FLOW SIMULATION: COUPLING
PHYSICAL AND CONFORMATION SPACES
In complex flows simulation two difficulties
appear: (i) the first difficulty is related to the
necessity of solving the macroscopic flow kine-
matics that is coupled with the microscopic fluid
description, and (ii) the microscopic fluid descrip-
tion accomplished in the kinetic theory frame-
work introduces now a distribution function that
depends on the physical and the conformation
coordinates.

From now on, we will assume, as widely
employed, that the first difficulty is circumvented
considering a decoupled solution in which the flow
kinematics at a certain iteration (or a certain time
step in transient simulations) is accomplished by
using the microscopic fluid description at the pre-
vious iteration (or time step), and so on. The sec-
ond difficulty is also well known. Now, the distrib-
ution function is defined in a multidimensional
space including the physical and the conformation
coordinates. This difficulty motivated the develop-
ment of stochastic simulations. However, the sep-
arated representation previously described, and its
associated reduced tensor product approximation
basis, makes possible the solution of the deter-
ministic multidimensional Fokker-Plank equation.
This section focusses in this new potentiality. 
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0.7
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Ψ

Figure 5 (above):
Steady distribution function
related to the Öttinger
model in a 3D steady-state
shear flow. The distribution
function at s = 0.5 as well as
the distribution profiles
related to different coordi-
nates u are depicted for
We = 1  (top) and for
We = 100 (bottom).

Figure 6:
Approximation functions
involved in the separated
representation of the distri-
bution function related to
the Öttinger model in a 3D
steady shear flow character-
ized by We = 1.
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We consider the kinetic theory model of a
short fiber suspension summarized in Section 1.1,
defined by the Fokker-Planck equation 

(46)

As the equation is an advection equation in the
physical domain, the solution at a certain point
only depends on its upstream solution. Thus, two
possibilities exist, the first one based on the solu-
tion of that equation along a certain number of
trajectories, from which the solution could be
interpolated everywhere; and the other one
based on the solution in the whole physical
domain using an appropriate stabilized dis-
cretization technique (to account for its hyper-
bolic character). In that follows we investigate
the first strategy, the second one being under
development. 

We consider a 2D steady recirculating shear
flow whose kinematics is defined by: 
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(47)

and we look for the steady solution of Eq. 46
along the circular streamline defined by
(x2 + y2)0.5 = 0.5, being the diffusion coefficient
Dr = 0.1. The distribution function can be
expressed as 

(48)

where j is the angular coordinate defining the
planar fiber orientation and s the curvilinear
coordinate along the circular streamline. Figure
8 depicts the resulting distribution function. If
we compare at a certain point on the streamline
the computed distribution with the exact one
(that can be easily determined [23]), a perfect
agreement is noticed as proved in Figure 9. 

Now, the same problem is solved assuming
a 3D fiber orientation distribution which is

Figure 7 (above):
Approximation functions
involved in the separated
representation of the distri-
bution function related to
the Öttinger model in a 3D
steady shear flow character-
ized by We = 100.

Figure 8 (left below):
Fiber orientation distribu-
tion function along a circu-
lar trajectory.

Figure 9 (right below):
Comparison of the exact
and computed fiber orienta-
tion distributions at a point
located in the circular tra-
jectory.
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defined on the unit surface. Thus, the separated
representation reads: 

(49)

Figure 10 depicts the computed results and Figure
11 the 9 orientation approximation functions used
for computing the distribution evolution along the
whole circular trajectory. The computed solution is
in good agreement with the ones computed by
using the standard finite element technique. 

4 CONCLUSIONS AND PERSPECTIVES
In this paper we explored the ability of some
recent numerical strategies for solving steady or
transient multidimensional partial differential
equations as the ones encountered in the kinet-
ic theory description of complex fluids. The tech-
nique based on the use of reduced approxima-
tion bases constructed from the application of
the Karhunen-Loève decomposition can be suc-
cessfully applied to simulate kinetic theory mod-
els defined in spaces of moderate dimension, but
it fails in highly dimensional spaces. In highly
dimensional problems, the technique based on a
separated representation of the solution seems
to be an excellent candidate for treating this kind
of complex models, as proved in this paper
throughout several examples. 

Figure 10 (above):
Steady 3D fiber orientation
distribution at some loca-
tions on the circular trajec-
tory.

Figure 11:
3D orientation approxima-
tion functions Fj (p).
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The main challenge in the simulation of
complex flows is the coupling between the phys-
ical and the conformation discretization spaces.
The separated representation of the advective
stabilization terms requires further develop-
ments. On the other hand, fully coupled models,
coupling the macroscopic flow kinematics and
the microscopic fluid description, deserve addi-
tional works.
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