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Abstract

The present paper reports and rationalizes the use of Continuum Damage Mechanics (CDM) to

with isotropic damage is considered. Since it is demonstrated that stress-softening is not strictly
speaking a damage phenomenon, the limitations of the CDM approach are highlighted. Moreover,
connections with two-network-based constitutive models proposed by other authors are exhibited
through the choice of both the damage criterion and the measure of deformation. Experimental
data are used to establish the evolution equation of the stress-softening variable, and the choice of
the maximum deformation endured previously by the material as the damage criterion is revealed
as questionable. Nevertheless, the present model agrees qualitatively well with experiments except
to reproduce the strain-hardening phenomenon that takes place as reloading paths rejoin the

paths on material response and thereby demonstrates the importance of considering the Mullins
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1. Introduction

Both natural rubber and synthetic elastomers are widely used in engineering applica-
tions, such as tyres, engine mounts or bump stoppers. Due to the growing importance
of numerical simulation in the design process of elastomeric parts, a well-established
modelling of the material behaviour is an essential prerequisite for the development of
new products. It is well known that rubber-like materials exhibit a strongly non-linear
behaviour characterized by large strain and a non-linear stress–strain response under
static conditions. Moreover, this behaviour is time-dependent as demonstrated by relax-
ation and creep experiments. Finally, under cyclic loading conditions, both hysteresis
and stress-softening phenomena are observed. The hysteretic behaviour may be related
to viscoelasticity ( ) or viscoplasticity (Lion, 1996), and is

Drozdov and Dorfmann,
2001).
There is no unanimous microscopic explanation for the stress-softening of elastomers

(Marckmann et al., 2002). Pioneering works focused on the experimental description
of the phenomenon, and on the development of physically motivated one-dimensional
constitutive models (seeMullins (1969) and the references therein). For the last decade,
the interest of researchers in the development of constitutive equations involving the

o� oading and that it only depends on the maximum strain endured previously by
the material. These prerequisites are quite acceptable with regard to experimental ob-
servations. As the physical explanations of the phenomenon are not well established,

initial concepts are derived. First, many authors use the thermodynamical framework
Kachanov

(1958) , and the general theory was derived later byLemaitre and Chaboche (1985)
for metallic materials. This theory is a particular application of the most general frame-
work of thermodynamics with internal variables (Maugin, 1999). It was successfully

for example Voyiadjis et al., 1998). Recently, CDM was extended to the case of elas-

to Gurtin and Francis (1981) who proposed a one-dimensional hyperelastic damage
model for solid propellants. Later, the general three-dimensional case was studied by
Simo (1987) who derived a large strain viscoelastic constitutive equation with dam-
age for rubber-like materials. This model was improved by introducing microscopic
concepts (Govindjee and Simo, 1991, 1992). More recently, several authors developed



engineering applications (De Souza Neto et al., 1994; Miehe, 1995; Miehe and Keck,
2000). The second approach used to develop constitutive equations for the Mullins

Green and Tobolsky (1946) and on the
two-phase model ofMullins and Tobin (1957) . Both concepts postulate that the poly-
mer network evolves under deformation; they consider that parts of the network are
broken and others are reformed during loading. So,Wineman and Rajagopal (1990),
and Rajagopal and Wineman (1992) proposed a general theory for materials under
strain induced micro-structural changes. Their approach is successfully applied to the

Wineman and Huntley (1994), and Huntley et al. (1996, 1997). Au-
thors considered that the stress should be corrected by a scalar reformation function
that depends on a given measure of deformation expressed as a scalar function of
the principal invariants of the left Cauchy–Green tensor. Similarly,Beatty and Krish-
naswamy (2000) derived a constitutive equation that generalized the previous works of
Johnson and Beatty (1993a, b, 1995)on particular deformation states. In this work, the
two-phase theory ofMullins and Tobin (1957) is considered, and the transformation
of hard regions into soft regions is entirely controlled by a stress-softening function
that depends on the maximum strain previously endured by the material. This function

posed byEl uñiga and Beatty (2002). Last, let us mention the recent work ofOgden
and Roxburgh (1999)
the stress-softening function (that depends on the maximum strain energy endured by

of network changes during loading. Finally, it should be noticed that the constitutive

appears that the constitutive equations obtained by the two approaches, i.e. CDM and
network evolution, are close, as shown in the next section.
The aim of the present paper is to demonstrate that Continuum Damage Mechan-

are based on this theory, it is of great importance to rationalize its use and to exhibit
its advantages and limitations in this context. Our work is restricted to hyperelastic-
ity with isotropic damage. In Section2, the thermodynamical framework is derived.

regard to physical phenomena and on the choice of the damage criterion. The equiva-
lence of CDM and two-network or two-phase approaches is demonstrated. Section3 is
devoted to the experimental part of the work. Experimental data are used to construct
the evolution equation of the stress-softening variable and to exhibit some limitations

agreement for both uniaxial tensile and simple shear loading conditions. The numerical
part of the work is presented in Section4. Both plane stress and three-dimensional
implementations are considered, and some examples are presented in order to highlight

are given in Section5.



2. Thermodynamics of rubber-like materials with damage

2.1. Preliminary remarks on the use of damage mechanics to describe the Mullins

using the CDM. Before examining in detail the isotropic CDM as applied to non-linear

theory considers that, under loading, the material surface on which internal forces apply
is decreasing because of the emergence of micro-defects and micro-voids. Taking into
account these physical considerations, three consequences are induced for the damage
evolution:

1. the damage cannot decrease during material life because micro-defects and micro-
voids cannot disappear,

micro-defects and voids appear, and under compression only micro-defects are acti-
vated because micro-voids are closed,

cause the active surface tends to a non-zero threshold value determined experimen-
tally (or to zero).

be refuted:

recovery is highly accelerated by annealing (Mullins, 1969). So, the damage may
decrease if the whole life of the material is considered,

authors observed the occurrence of stress-softening under compressive conditions
( ),

3. it is mainly recognized that rupture in rubber parts is not directly related to stress-
softening. Therefore, high values of the damage parameter should not be considered
as a criterion for rupture or occurrence of cracks.

It is due to the rearrangement of the polymer network under deformation when some
links between chains (entanglements), or between chains and reinforcement particles
(for example carbon black) are broken down (Bueche, 1960, 1961). Considering these

elastomers with some restrictions and care.

2.2. Derivation of the constitutive equation

Consider an isotropic, homogeneous and incompressible rubber-like material. This
material is considered hyperelastic and subject to isotropic damage in order to describe



function, that depends on the deformation gradientF and on a scalar damage variable
d. This variable characterizes the elastic stress-softening of the material. Taking into
account the objectivity requirement, the isotropy and the incompressibility, the strain
energy function can be written as

W = W ( I1; I2; d) ; (1)

where I1 and I2
B = F TF

I1 = tr B and I2 = 1
2 (I

2
1 − tr(B2)): (2)

The third invariant I3 = detB is equal to 1 due to the incompressibility assumption.
Considering now that the e)ective Cauchy stress �0, which acts on the damaged

material, is related to the applied Cauchy stress � by Lemaitre and Chaboche (1985)

�0 =
�

1 − d (3)

then, the strain energy function Eq. (1) can be considered as the product of the surface
reducing parameter 1 − d and the strain energy function of the virgin undamaged
material, denoted W0:

W (I1; I2; d) = (1 − d)W0(I1; I2): (4)

In order to establish the laws of state, the Clausius–Duhem inequality has to be con-
sidered. It yields (Miehe, 1995)

D
def=� : D− Ẇ ¿ 0 (5)

in which D stands for the internal dissipation and D is the rate of deformation tensor
that satisFes trD=0 due to incompressibility. After some algebraic manipulations, Eq.
(5) can be cast into the following form:

D=
(
� − 2B

@W
@B

)
: D− @W

@d
ḋ¿ 0 (6)

with trD= 0. Thus, examining the two terms of this inequality, both the stress–strain
relationship and the dissipation can be established:

� = −pI + (1 − d)2B @W0

@B
and D=W0ḋ¿ 0; (7)

where pI is an arbitrary spherical tensor which expresses that only stress di)erences are
deFned for incompressible materials. Indeed, the hydrostatic pressure p cannot be ob-
tained using the stress–strain relationships but is deduced from the governing equations
of the problem. Eq. (7)1 is the constitutive equation that relates the current damaged
stress to the damage parameter, the strain energy function of the virgin material and
the current strain state. Using that W0 only depends on the two Frst principal invariants



of B , it becomes

= − p I + (1 − d) 2
@W0

@I1
+ I1

@W0

@I2

)
B− 2

@W0

@I2
B2

]
(8)

in which the functions @W0=@I1 and @W0=@I2 are the material parameters. Eq. (7)2 shows
that the damage process is dissipative and that the thermodynamic force associated with
the damage variable d is

Y =
@W
@d

= −W0: (9)

Next, in order to completely deFne the damaged hyperelastic constitutive equation,
the evolution equation for the damage variable d has to be considered. As mentioned
in the introduction, it is mainly recognized that the stress-softening in the material
exclusively depends on the maximum deformation endured by the material during its
history (Mullins, 1969). Therefore, a measure of the deformation state and its maximum
should be deFned. This measure depends on the deformation history and is denoted 
.
The choice of 
 will be discussed later. Its maximum is

R
(t) = max
�∈]−∞; t]


(B(�)): (10)

In the following, notations proposed by Simo and Hughes (1998) are employed. Thus,
considering previous deFnitions, the damage criterion provides a sub-region of the
deformation space given by (Miehe, 1995; Simo and Hughes, 1998):

(
(B(t)); R
(t))def= 
(B(t)) − R
(t)6 0: (11)

The corresponding damage surface and its normal are, respectively

= 0 and ndef=
@
@B
: (12)

So, for a particular deformation state, four physical situations and their mathematical
counterparts are possible:

(i) the current deformation state is not maximum (
(t) �= R
(t)), then the inequality
¡ 0 is satisFed (no damage evolution),

(ii) the current deformation state is maximum (=0) and is in an unloading direction
from a damage state (n : Ḃ¡ 0),

(iii) the current deformation state is maximum ( = 0) and is in a neutral direction
from a damage state (n : Ḃ= 0),

(iv) the current deformation state is maximum ( = 0) and is in a loading direction
from a damage state (n : Ḃ¿ 0).

The three Frst cases (i)–(iii) correspond with physical situations in which the damage
should not evolve, and the fourth one (iv) represents the case in which the maximum
of the deformation in the material life changes, so that the damage parameter increases.
Consequently, an irreversible evolution equation for the damage can be proposed as



follows:

ḋ =
h( ) ˙ if = 0 and n : Ḃ ¿ 0;

0 otherwise;
(13)

where the functionh characterizes the damage evolution. In the case of the Mullins
h on the current value of the damage parameterd is classically

13) reduces to

ḋ = h( ) ˙ with and ˙ 0: (14)

As the damage is an irreversible non-decreasing variable, i.e.̇d ¿ 0, the functionh is a
positive function on ]0;+∞ ). Moreover, considering thath
is ensured by the physics of stress-softening) and that the damage in the natural state
is equal to zero, Eq. (14) can be integrated to give

d = d̃ ) =
0

h( ) d (15)

Consequently, the stress–strain relationship Eq. (8) simply becomes

= − p I + (1 − d̃ )) 2
@W0

@I1
+ I1

@W0

@I2

)
B− 2

@W0

@I2
B2

]
: (16)

It may be noted that this equation is similar to constitutive equations proposed by
others for the Mullins e)ect (Gurtin and Francis, 1981; De Souza Neto et al., 1994;
Miehe, 1995; Beatty and Krishnaswamy, 2000; ElJKas-ZJuñiga and Beatty, 2002), even
if some of these theories were not established using the CDM theory.

2.3. Discussion on the scalar measure of deformation state

The last problem to solve is the choice of the measure of deformation state. In the
general theory of thermodynamics of irreversible processes, the evolution equation of
an internal variable has to be written in terms of the thermodynamical force associated
with this variable, because it avoids considering constitutive equations that do not sat-
isfy the second law of thermodynamics. In the present case, it means that the measure

 should be chosen as a function of Y , the thermodynamical force associated with
d, that is equal to −W0. In fact, W0 can be seen as a measure of the deformation
state and this choice is consistent with data provided in experiments. The Frst authors
who proposed to apply CDM to the modelling of the Mullins e)ect adopted this ap-
proach, because they decided to apply the CDM theory without deviation (Simo, 1987;
De Souza Neto et al., 1994; Miehe, 1995). This choice exhibits one major problem: the
form of the strain energy function should be postulated before derivation of the whole
model. Moreover, due to physical considerations, it seems to be more appropriate to
formulate explicitly the damage evolution equation in terms of the deformation state.
That was proposed, in the context of CDM, by Govindjee and Simo (1991, 1992), and
later by Miehe and Keck (2000). Note that this approach can be related to the use of the



two-network theory ofGreen and Tobolsky (1946) or the two-phase theory ofMullins
and Tobin (1957) Wineman and
Rajagopal (1990), Johnson and Beatty (1993a), and Beatty and Krishnaswamy (2000)

The evolution of the network is described by a reformation function that depends on
the maximum strain state endured by the material during its life. In the aforementioned
papers, the deformation state is measured through a scalar function which depends on
I1 and I2. As proposed by Beatty and Krishnaswamy, this function can be seen as a
damage parameter (see footnote 5 inBeatty and Krishnaswamy, 2000).
First the basic application of the CDM theory is examined. Let (B ) = f (W0(B )) be

the measure of the deformation state in terms of the thermo-dynamical force associated
with d f (W0) is adopted. Thus, even if f
has not to be a norm, it can be reasonably stated that:

• f ; +∞ ),
• f (0) = 0, i.e. the measure of the undeformed state is null,
• f is an increasing function on [0; +∞ ).

Consequently, f is a positive increasing function on ]0; +∞ ). Using this measure of
14)

becomes

ḋ = h( f (W0)) f; W0 (W0;I1 ˙I1 + W0;I2 ˙I2) : (17)

Taking into account the E-inequalities proposed byTruesdell and Noll (1965, p. 158):

W0;I1 ¿ 0 and W0;I2 ¿ 0 (18)

the previous Eq. (17) can be written as

ḋ = f
1
˙I1 +

f
2
˙I2; (19)

where ( f
i ) i=1 ;2 are functions of I1 and I2, and satisfy

f
1 ¿ 0 and f

2 ¿ 0 on ]0; +∞ ) : (20)

The classical CDM approach being derived, the second method that consists in
directly expressing the scalar measure of the deformation state in terms of the left
Cauchy–Green tensor is examined. For isotropic and incompressible materials, the mea-
sure (B

(B ) = g( I1; I2) : (21)

Following exactly the same method as above, Eq. (14) gives

ḋ = h(g( I1; I2))( g;I1 ˙I1 + g;I2 ˙I2) : (22)

Comparing this equation with Eqs. (19) and (20), and recalling the properties ofh,
the properties thatg should satisfy can be easily established:

• g ; +∞ ) × [3; +∞ ),
• g I1 and I2 on [3; +∞ ) × [3; +∞ ),



• g;I1 ¿ 0 and g;I2 ¿ 0,
• the choiceg( I1 = 3 ; I2 = 3) = 0, that ensures that the measure is null for the virgin
unloaded state, is recommended.

3. Experiments and determination of material parameters

3.1. Experimental results

by the Trelleborg group and all experiments were conducted in its French Research
Department.
In order to determine material parameters, that are the virgin strain energy function

W0 and the evolution equation of the damage variabled̃ ), cyclic uniaxial tensile and
simple shear tests were performed. The uniaxial tensile experiments were conducted

experiments were performed under enforced displacement conditions. For several strain
levels from 25% up to 500% for uniaxial tensile and from 20% up to 480% for simple

4:167 s− 1. An example of experimental data is depicted in Figs.1(a) for uniaxial tensile

the maximum stress measured in uniaxial tension. In the case of uniaxial tension,

is considered. It can be assimilated to the term “discontinuous damage” previously
introduced byMiehe (1995) . It is to be noted that reloading paths do not rejoin the
primary loading curve at the maximum strain. In fact, as samples are unloaded to

coupon specimens that buckle during unloading. Consequently the next reloading stretch
Johnson

and Beatty, 1993a).

should be separated from other inelastic phenomena such as hysteresis and relaxation.
Concerning the hysteresis phenomenon, unloading paths of cycles are not considered
and it is assumed that the equilibrium paths are the loading paths. In fact, static paths
that correspond to the thermodynamic equilibrium of the material are situated within
hysteresis cycles, i.e. between loading and unloading paths, but their exact positions are
not well-established ( ). Nevertheless, the stress-softening
model can be develop for loading paths, then in further works the results obtained here

phenomenon can be eliminated by correcting the reference dimensions of samples in
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Fig. 1. Experimental results: (a) uniaxial tensile and (b) simple shear.
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Fig. 2. Corrected data: (a) uniaxial tensile and (b) pure shear.

the unloaded conFguration for the next loadings. Practically, experimental results are
corrected in three steps: (i) only loading paths are considered, (ii) reloading paths are
shifted to zero to eliminate the permanent set and (iii) they are extended to rejoin the
Frst loading path.
Finally, note that the analysis of simple shear experiments leads to some diNculties

for the determination of material parameters, because principal directions of strain do
not remain constant in time. Here, in order to simplify the analysis, simple shear ex-
perimental data are transformed into pure shear data, as proposed by Charlton et al.
(1994). Note that pure shear data could have been obtained with an appropriate ex-
perimental apparatus (Rivlin, 1948) but it is practically easier to consider simple shear
experiments. The corrected experimental data are presented in Figs. 2(a) and (b) for
uniaxial tensile and pure shear results, respectively.



3.2. Determination of material parameters

As shown in Section 2, the general framework of hyperelasticity with damage ne-
cessitates the determination of two material functions: the virgin strain energy function
W0 and the evolution equation of the stress-softening variable (Eqs. (15) and (21)).
Forms of these two functions are established in the next paragraphs.

3.2.1. Strain energy function
Several forms for the strain energy function of rubber-like materials have been pro-

based on experimental observations and phenomenological considerations. The corre-
Mooney, 1940;

Rivlin and Saunders, 1951; Gent and Thomas, 1958; Hart-Smith, 1966; Ogden, 1972;
Yeoh, 1990). The second group of models were developed by considering the physics
of the elastomer network. First, conformations of a single polymer chain are determined;
then, the behaviour of the whole network is derived using statistical developments. For
small and moderate strains, the neo-hookean (Treloar, 1944) and the phantom (James
and Guth, 1947) models can be mentioned. For large strains, the stretching limit of
chains is taken into account and non-Gaussian statistics are employed (Kuhn and Grun,
1942; James and Guth, 1943; Treloar and Riding, 1979; Arruda and Boyce, 1993;
Wu and van der Giessen, 1993). The use of these models reduces the number of rele-
vant material parameters because of their physical foundations, but their mathematical
derivations are more complicated than those of phenomenological constitutive equa-
tions. For a complete review of the constitutive models for rubber elasticity, the reader
can refer toBoyce and Arruda (2000).
It has to be mentioned that the present approach can be easily applied to every

form of the strain energy function. In the present study, the emphasis is laid on the
stress-softening phenomenon, so that a simple phenomenological strain energy function
is chosen. Then, recalling that in the case o� ncompressible materialsW0 is a func-

I1 and I2, the general expansion ofRivlin (1948) is
considered:

W0 =
i; j

C ij ( I1 − 3) i ( I2 − 3) j (23)

in which Cij are the material parameters. Several phenomenological models were de-
rived by truncating the series Eq. (23). In order to satisfactorily reproduce the large
strain response of the material, the Yeoh model is adopted (Yeoh, 1990, 1993). The
corresponding strain energy function is given by

W0 =
3

i=1

Ci0( I1 − 3) i ; (24)

where C10, C20 and C30 are the three material parameters. As this model only depends

not improve the Gaussian theory. Nevertheless, its mathematical simplicity and ability



study.
Using Eqs. ( 8) and (24), the stress–strain relationship reduces to

= − p I + 2(1 − d̃ ))
3

i=1

iC i0( I1 − 3) i− 1B : (25)

Hence, the analytical stress–strain equations corresponding to our experiments can be
easily derived (seeOgden (1984) for details). First, in the case of uniaxial tensile tests,
both the stretch and the nominal stress in the tensile direction are measured. The
corresponding equation is given by

= 2(1 − d̃ )) −
1
�2

) 3∑
i=1

iCi0

(
�2 +

2
�

− 3
)i−1

: (26)

Second, after transformation of simple shear results into pure shear data, the correspond-
ing relation between the nominal stress and the stretch in the Frst principal direction,
i.e. the one that corresponds to the maximum stretch, reduces to

�= 2(1 − d̃( R
))
(
�− 1

�3

) 3∑
i=1

iCi0

(
�2 +

1
�2

− 1
)i−1

: (27)

3.2.2. Evolution equation of the damage variable
Once the virgin strain energy function has been chosen, the form of the damage

evolution equation (Eqs. (14) and (15)) has to be established. As detailed in the
theoretical part of the paper (Section 2), the present approach focuses on the use of a
measure of deformation expressed as a function of the two Frst invariants of B (Eq.
(21)). As a Frst approach, we adopt a very simple measure of the deformation state
that only depends on I1:


=
√
I1=3 − 1 (28)

in which
√
I1=3 is the stretch of the diagonal of a material cube. This measure is rele-

vant to the properties exhibited in the theoretical section: it is deFned and di)erentiable
on [3;+∞)× [3;+∞), its partial derivative with respect to I1 is positive and its partial
derivative with respect to I2 is equal to zero, and Fnally the measure is null as I1 = 3
(whatever the value of I2). Note that the change of deformation measure is obvious,
the only problem being the availability of suNcient experimental results to identify the
corresponding function.
The damage function d̃(
) will be now determined using experimental results. The

general method followed here is described without reference to the kind of experiments,
but results for both uniaxial tensile and pure shear data are presented. First, new
notations are deFned. Consider experimental results as sketched in Fig. 3. Using reduced
experimental data, the stress–strain relationship reduces to a sequence of loading curves
at di)erent maximum strains. The corresponding curves can represent either uniaxial
tensile and pure shear data. In this Fgure, the nominal stress � is given as a function
of the Frst invariant I1. Two types of stress–strain curves can be identiFed: the primary
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curve represented by a dashed line and secondary curves represented by solid lines.
Depending on the type of curve, the stress–strain relationship di)ers:

• for the primary curve, the current stress �p is given by

�p = kp�0; (29)

where �0 is the nominal stress of the virgin material and kp depends on I1:

kp = 1 − d̃( R
) with R
=
√
I1=3 − 1: (30)

So, on the primary curve kp is decreasing as I1 increases,
• on the ith secondary curve delimited by its intersection at I i1 with the primary curve,
the current stress �is can be written as

�is = k
i
s�0; (31)

where kis is a constant parameter given by

kis = 1 − d̃( R
) with R
=
√
I i1=3 − 1: (32)

Indeed, on this curve, the current value of 
 is lower than R
 previously reached on
the primary curve for I1 = I i1.

Consequently, for two di)erent secondary curves numbered i and j (i¡ j), the corre-
sponding nominal stresses are simply related by a multiplicative factor:

� js
�is

=
k js
kis

on [1; I i1]: (33)
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Fig. 4. Examples of ratio �i+1
s =�is: (a) uniaxial tensile and (b) pure shear.

This property is now thoroughly used to construct the evolution equation of d. The
method employed here is similar to the one recently proposed by Beatty and
Krishnaswamy (2000). Before determining the evolution equation, its validity should
be examined. For each secondary curve numbered i, the ratio of the corresponding
stress to the stress measured on the next loading curve can be drawn as a function of
the deformation state (using I1 for example). An example of such a graph is depicted
in Figs. 4(a) and (b) for uniaxial tensile and pure shear data, respectively. The shapes
of all graphs are qualitatively similar. At small and moderate strain, the ratio is entirely
constant; the corresponding region of the graph is denoted A in Fig. 4 and is termed
“proportional”. At large strain, the ratio decreases as the deformation increases. It cor-
responds with region B in the Fgure and this zone can be termed “non-proportional”.
Depending on the maximum deformation measure that corresponds with the considered
secondary curve, the range of stretch in which the relation is proportional changes. In
other words, as I i1 increases, the width of part A in Fig. 4 increases. So, the present
theory is proved to be valid in the deformation range of the proportional part of the
graph. The non-proportional part of the graph corresponds with strain-hardening of the
material exhibited during the secondary loading i. This strain-hardening phenomenon
joins the secondary loading curves with the primary master curve (see Fig. 3). In-
applicability of the present model in this part of the graph is discussed in Section
3.2.3.
The applicability range of our theory being determined, it is now possible to con-

struct the evolution equation of the stress-softening variable in this range. In that way,
experimental curves kis=k

1
s vs

√
I i1=3−1 are drawn in Figs. 5(a) for uniaxial tensile and

(b) for pure shear data. Both curves have a similar exponential-like decreasing shape
that can be Ftted by a relation of the following form:

k
k1s

= a+ b
{
exp

[
−c

(√
I1=3 − 1

)]
− 1

}
; (34)
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Fig. 5. Evolution of the non-dimensional damage parameter kis=k
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s as a function of the measure of deformation√

I i1=3 − 1: (a) uniaxial tensile and (b) pure shear.

where a, b and c are material parameters. Moreover, considering that in the initial
unloaded state the material is undamaged, i.e. d = 0 and k = 1 for I1 = 3, then the
evolution equation of k reduces to

k = 1 + b′
{
exp

[
−c

(√
I1=3 − 1

)]
− 1

}
: (35)

Recalling that k = 1 − d, the evolution equation of d can be cast into the following
form:

d̃( R
) = d∞

[
1 − exp

(
− R

�

)]
; (36)

where the two new material parameters are the maximum damage d∞ and a scale
factor �. They are related to the previous parameters by

d∞ = bk1s and �= 1=c: (37)

The form of the evolution equation Eq. (36) is similar to the one proposed
phenomenologically by Miehe (1995), except that his model is expressed in terms
of the strain energy function: the measure 
 in Eq. (36) is replaced by W0. Finally,
note that experimental damage curves for uniaxial tensile and pure shear data are qual-
itatively similar but their corresponding parameters in Eq. (36) are di)erent (see Figs.
5(a) and (b)). This di)erence is also explained in the next discussion.

3.2.3. Model limitations and =tting results
3.2.3.1. Limitations As mentioned above, the continuum damage mechanics as applied
to the modelling of the Mullins e)ect is only e)ective in the proportional
part of the experimental curves (see Fig. 4). This limitation of the present theory is
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Fig. 6. Superimposition of the secondary loading curves: (a) uniaxial tensile and (b) pure shear. Note that
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highlighted in Fig. 6, in which experimental secondary loading curves were superim-
posed using the scale factors kis. It shows that the superimposition is almost perfect
until the phenomenon of strain-hardening takes place. This phenomenon occurs as sec-
ondary curves rejoin the primary curve and corresponds to the level of stress-softening
previously endured by the material. In fact, this limitation is inherent in the choice of
the damage mechanism: as the evolution equation of the damage variable is written in
terms of a maximum deformation state (using the strain energy or a measure of defor-
mation), theoretical secondary curves are proportional. Physically, this discrepancy can
be explained by considering the evolution of the network and the breaking of di)erent
links in it, as recently proposed by Marckmann et al. (2002).
The second diNculty evoked in the previous paragraph is the quantitative di)erence

between evolution equations of the stress-softening variable obtained with uniaxial ten-
sile and pure shear experimental data. In our opinion, this di)erence is a consequence
of the choice of the deformation measure. Here, for the sake of simplicity, the measure

 only depends on I1. In order to reproduce several loading conditions, the in;uence
of I2 should be also retained. Nevertheless, it requires a large number of experimental
data corresponding with di)erent loading conditions.
Finally, the range of deformation in which the model is applicable should be esti-

mated. Theoretically, the damage d should never be greater than 1. If the long-term
damage parameter d∞ in Eq. (36) is lower than 1, then d6 1 is satisFed for all
deformation states. The constraint d∞6 1 could be imposed during the identiFcation
process. Here, this constraint is not imposed and d∞ is allowed to be greater than
1. In that case, the model remains valid only if d6 1, and this condition can be
written as

I16 3
[
1 + � ln

(
d∞

d∞ − 1

)]
: (38)



Table 1
Values of material parameters

Parameters Values

C10 3:99e−2 MPa
C20 −4:05e−4 MPa
C30 1:31e−4 MPa
d∞ 1.744
� 3.85

Thus, for Fnite element applications, the previous inequality should be satisFed in all
points of the structure in order to ensure the validity of the results. This is especially
the case in parts of the mesh where important local deformation is predicted.

3.2.3.2. Fitting results Five material parameters have to be determined: three for the
virgin strain energy, i.e. C10, C20 and C30, and two for the evolution equation of the
damage, i.e. d∞ and �. Due the use of a measure of deformation instead of the strain
energy function as the damage criterion, the evolution equation could be Ftted Frstly
using data reported in Fig. 5; and then the determination of W0 reduces to the classical
problem of Ftting a hyperelastic model using the primary loading curve. Nevertheless,
taking into consideration limitations discussed above, it is more eNcient to perform a
global identiFcation using the stress–strain data for both uniaxial tensile and pure shear
tests.
For the identiFcation process, the error between the model and experimental re-

sults is calculated simultaneously on all curves. Computations are performed using two
di)erent algorithms. First, an optimization program based on a genetic algorithm es-
timates approximately the material parameters. Second, these parameters are precisely
determined with the help of a classical steepest descent algorithm using the genetic
algorithm results as initial guess solutions.
The values of material parameters obtained are presented in Table 1 and the identiF-

cation results are compared with experiments in Figs. 7(a) and (b) for uniaxial tensile
and pure shear deformation state, respectively. Theoretical results are globally in good
agreement with experiments; so, the model describes successfully the transition between
di)erent loading curves in cyclic experiments and exhibits the in;uence of the max-
imum strain on the softened behaviour. As anticipated, the present model is not able
to satisfactorily predict the behaviour of the material at the intersection of secondary
loading curves with the primary curve. Indeed, the high curvature of secondary load-
ing curves due to strain-hardening is not well reproduced. Nevertheless, such results
with only Fve material parameters are good, and the use of the present model in Fnite
element simulations will provide quality results. Finally, considering Eq. (38) and the
values of material parameters given in Table 1, the present approach is applicable until
630% of deformation in uniaxial tension and up to 400% in equibiaxial tension. In this
way, simulation of large strain problems can be considered.
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Fig. 7. IdentiFcation results, (a) uniaxial tensile and (b) pure shear: (· · · ◦ · · ·) experiments and (—) our
hyperelastic model with damage.

4. Numerical examples

In order to demonstrate the eNciency of the present approach for engineering
applications, the constitutive equation was implemented in the commercial software
Abaqus (Hibbitt and Karlsson and Sorensen Inc., S., 1999) with the help of the UMAT
facility. Both the Cauchy stress tensor and the fourth-order elasticity tensor are needed.
An accurate derivation of this elasticity tensor is of major importance to ensure and
accelerate convergence.
Both plane stress and three-dimensional formulations were implemented. The plane

stress implementation is quite simple, because the numerical diNculty due to the in-
compressibility assumption is automatically satisFed through the change of thickness
in the normal direction.
Two examples are described in the next paragraphs.

4.1. Square perforated sheet

The Frst example is a well-known plane stress hyperelasticity problem where an
initial 20 × 20 mm2 strip with a circular hole of diameter 10 mm is stretched in both
horizontal and vertical directions. The corresponding initial mesh is shown in Fig. 8(a).
This example will exhibit the strong dependence of stress-softening on the deformation
history. Three di)erent deformation paths are investigated (amplitudes of cycles are
identical) and their corresponding damage distributions are presented in Fig. 8:

(i) the sheet is stretched to 185% in direction 2 then unloaded (Fig. 8(b)), max d=
0:33,

(ii) the sheet is stretched to 185% in direction 2, unloaded, then stretched to 185%
in direction 1 and Fnally unloaded (Fig. 8(c)), max d= 0:33,



Fig. 8. Finite element simulation of a square perforated sheet: (a) undeformed mesh, (b) damage distribution
after a cycle in dir. 2, (c) damage distribution after a cycle in dir. 2 followed by a cycle in dir. 1 and
(d) damage distribution after a cycle in the diagonal direction.

(iii) the sheet is stretched to 185
√
2% in one of the diagonal directions then unloaded

(Fig. 8(d)), max d= 0:35.

The in;uence of the loading history on the damage distribution can be highlighted by
comparing results (ii) and (iii). The two samples were subjected to the same deforma-
tion state in both directions 1 and 2. Only loading paths di)er. In case (ii), the sample
is Frst stretched then relaxed in direction 2. This Frst cycle weakens the structure in
the neighbourhood of the hole, in direction 1 (see Fig. 8(b)). Then, the second cycle
applied in direction 1 modiFes a new unloaded non-homogeneous damage distribution.
So, the Fnal damage distribution is non-symmetric as shown in Fig. 8(c). In the load-
ing case (iii), both cycles (in directions 1 and 2) are applied simultaneously and the
Fnal damage distribution respects the structural symmetry as displayed in Fig. 8(d). In
order to exhibit more precisely this phenomenon, consider Fig. 9 which presents the
evolution of the damage state in elements denoted A and B in Fig. 8(a) for the two
loading history (ii) and (iii). In this Fgure, it is clearly shown that case (ii) leads to
a non-symmetric damage distribution.
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4.2. Simultaneous uniaxial tension and torsion of a diabolo sample

The second example is a three-dimensional problem that highlights the capability
of our approach to predict the behaviour of complex parts. The structure is a rubber
diabolo sample. Its length and width are, respectively, 30 and 20 mm. The sample is
stretched in its length direction (uniaxial tension) and twisted by rotating one of its
ends.
Fig. 10(a) presents an example of damage distribution in the part. The maximum of

damage takes place in the central region of the sample because of its geometry. Indeed,
this sample geometry is used to maximize strain and stress in the minimum section.
In order to investigate the in;uence of loading conditions on damage, the sample
is twisted for di)erent levels of uniaxial tension. This tensile loading is performed
by controlling the relative displacement of diabolo ends. The corresponding results are
presented in Fig. 10(b), in which damage in the central region is drawn as a function of
the torsional angle for di)erent values of the relative displacement of ends. As exhibited
above, under uniaxial tensile conditions, i.e. when the torsional angle is null, damage
is an increasing function of the tension. Moreover, for a given value of pre-tension,
damage increases as the torsional angle increases, because the deformation measure also
increases. Nevertheless, for a torsional angle equal to 2�, the smaller is the pre-tension,
the larger is the damage. This can be explained by the deformation measure adopted
to drive the evolution of damage. In fact, this measure being a function of the Frst
principal invariants of B, it takes into account the whole deformation state that may
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be larger without pre-tension. Indeed, for large torsional angles, local shear stresses
dominate and increase as pre-tension decreases, this phenomenon being rendered by
the measure of deformation.
Finally, note that these samples will be used in further works to investigate crack

initiation in elastomers under fatigue loading, more precisely to examine the in;u-
ence of the deformation state on crack occurrence. As shown with these prelimi-
nary simulations, the Mullins e)ect should be considered in fatigue problems because
stress-softening highly reduces local sti)ness and will certainly in;uence the fatigue
life of elastomers.

5. Conclusion

The present work demonstrates the ability and limitations of Continuum Damage
Mechanics to describe the Mullins e)ect in elastomers. The material considered here is
natural rubber; it is assumed non-linear elastic, isotropic and incompressible, viscous
e)ects not being taken into account. The general framework of hyperelasticity with
damage is derived. Restrictions of this theory are exhibited and it is shown that CDM
should be employed with care to model stress-softening in elastomers. Moreover, the
connection with two-network (Green and Tobolsky, 1946) or two-phase (Mullins and
Tobin, 1957) theories is demonstrated; the properties of the deformation measure used
in the evolution equation of the damage variable are established. Then, this evolu-
tion equation is constructed using both uniaxial tensile and simple shear experiments.
The inapplicability of models of this kind in strain-hardening parts of the stress–strain
curve is demonstrated. Nevertheless, the identiFcation of material parameters leads to



good qualitative results. From a numerical point of view, the model is implemented in
Abaqus for both plane stress and three-dimensional cases. Convergence of the model

paths on the response of the material, and demonstrate the importance of considering
stress-softening for the development o� ndustrial parts.
Finally, one last remark has to be made. Connections between the two phenomeno-

is the determination of the evolution equation that drives the parameter used to cor-
rect the strain-energy function, whatever the terminology employed: damage parameter,
network reformation function or transformation function between hard and soft regions
of rubber. Here, we showed that the use of the maximum deformation endured previ-

strain-hardening. Thus, the evolution equation of the stress-softening variable should
be also written in terms of the current deformation measure and not only in terms of
the maximum deformation previously endured by the material. Such approaches were
recently proposed byMiehe and Keck (2000) and El uñiga and Beatty (2002).
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