
HAL Id: hal-01007150
https://hal.science/hal-01007150

Submitted on 2 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On the Reduction of Kinetic Theory Models Related to
Finitely Extensible Dumbbells

Amine Ammar, David Ryckelynck, Francisco Chinesta, Roland Keunings

To cite this version:
Amine Ammar, David Ryckelynck, Francisco Chinesta, Roland Keunings. On the Reduction of Kinetic
Theory Models Related to Finitely Extensible Dumbbells. Journal of Non-Newtonian Fluid Mechanics,
2006, 134 (1-3), pp.136-147. �10.1016/j.jnnfm.2006.01.007�. �hal-01007150�

https://hal.science/hal-01007150
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


On the reduction of kinetic theory models related to finitely
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Stochastic simulation for finitely extensible non-linear elastic (FENE) dumbbells has been successfully applied (see the review paper of Keunings
[R. Keunings, Micro–macro methods for the multiscale simulation viscoelastic flow using molecular models of kinetic theory, in: D.M. Binding,
K. Walters (Eds.), Rheology Reviews, British Society of Rheology, 2004, pp. 67–98] and the references therein). The main difficulty in these
simulations is related to the high number of realizations required for describing accurately the microstructural state due to Brownian effects.
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The discretisation of the Fokker–Planck equation with a mesh support (finite elements, finite differences, finite volumes, spectral techniques,
. .) allows to go beyond the difficulty related to Brownian effects. However, kinetic theory models involve physical and conformation spaces.
hus, the molecular distribution depends on time, space as well as on the molecular orientation and extension (conformation coordinates). In this

orm the resulting Fokker–Planck equation is defined in a space of dimension 7.
In the reduction technique proposed in this paper, a reduced approximation basis is constructed. The new shape functions are defined in the whole 

omain in an appropriate manner. Thus, the number of degrees of freedom involved in the solution of the Fokker–Planck equation is significantly 
educed. The construction of those new approximation functions is done with an ‘a priori’ approach, which combines a basis reduction (using the 
arhunen–Lo`eve decomposition) with a basis enrichment based on the use of some Krylov subspaces. This numerical technique is applied for 

olving the FENE model of viscoelastic flows.

eywords: Kinetic theory; Non-Newtonian fluids; Numerical modelling; Model reduction; Karhunen–Loève decomposition; Krylov’s subspaces; FENE model;
okker–Planck equation

. Introduction

In the last two decades, great progress has been attained
n the numerical simulation of complex fluid flows such
s polymer flow for example. The new tendency to imply
icroscopic description of the molecule behavior allows to
ake a fine description of the physical state of the polymer.
lthough the development of computer performances allows

o improve the numerical description, finer descriptions require
ew numerical schemes in order to be efficient. The purpose
f this work is to present a robust and simplified model to carry

out micro-simulations of molecular behavior within the kinetic
theory framework. This framework is useful when it allows
to obtain constitutive equation for polymer. But in most cases
the explicit derivation of a constitutive equation implies the
introduction of some closure approximations. The impact of
these approximations can be significant [7].

The present paper focuses on the kinetic theory model related
to a dilute polymer model known as finitely extensible non-linear
elastic dumbbell (FENE) for which a constitutive equation can-
not be derived explicitly. The polymer solution is described as a
suspension of non-interacting dumbbells in a Newtonian solvent.
The Fokker–Planck formalism is used to describe the kinetic
theory model. It allows to describe the evolution of the configu-
ration distribution function, which represents the probability of
finding a molecule in a particular configuration. Obviously this
function depends on time, space and configuration coordinates.
The first works concerning its resolution concern the Brownian
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dynamics approach used in the CONNFESSIT approach [12].
This approach was considered in [15] for treating MBS (multi-
bead-spring) models. A similar technique was proposed in [16]
in the context of MBS kinetic models, which introduces a change
of variable and uses a Monte-Carlo technique for treating the
diffusion term. In these techniques a high number of particles are
introduced in the stochastic simulation to account for Brownian
effects. A multi-scale approach using deterministic particles
for treating the advection and a different set of particles to
account for diffusion effects, which leads in fact to a multi-scale
approach, was considered in [6]. The same idea was used in
the case of short fibre suspensions flows in [5]. In that work,
the discretisation of the advection dominated Fokker–Planck
equation governing the fibre orientation was carried out using
a particle technique, where the diffusion term was modelled
from random walks. It was pointed out that the number of fibres
required in this stochastic simulation to describe the fibre dis-
tribution increases significantly with the diffusion coefficient.
Thus, it was argued that for practical applications the use of the
particle method in the framework of a stochastic simulation is
restricted to very slight diffusion effects. Another deterministic
particle approach, very close to that proposed in [3], was
analyzed in [1] using smooth particles, but it was noticed that
the impact of smoothing on the solution can be significant.
Moreover, the fact that the Fokker–Planck equation is defined
in a multi-dimensional space induces the necessity of using an
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decomposition) with a basis enrichment based on the use of some
Krylov subspaces [13,14].

The plan of the paper is as follows. The next section intro-
duces the mechanical model related to the finitely extensible
dumbbells model. The dimensionless problem will be discre-
tised in Section 3 using the finite element method on a fixed
mesh support associated with the configuration space. Section
4 presents a general overview of the “a priori” model reduction
technique described in detail in our former works [13,14]. The
continuous description is followed by the discrete counterpart
that will be used to reduce the FENE numerical model. Finally,
Section 5 analyzes the performances of the proposed technique
for solving the 1D, 2D and 3D FENE models in start-up of elon-
gation flow.

2. Mechanical model using a FENE representation

The dumbbell model consists of two beads connected by a
spring connector. The bead serve as an interaction point with the
solvent and the spring contains the local stiffness depending on
local stretching (see [2] for more detail).

The dynamic of the chain is governed by viscous, Brownian,
and connector forces. If we denote by ṙ1 and ṙ2 the velocities of
the two beads, these three contributions can be easily identified
in the three terms in
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xtremely large number of particles, with the associate unfa-
orable incidence on the methods efficiency. The combination
f Brownian dynamics with a macroscopic treatment of motion
quations is at the basis of the micro–macro approaches deeply
eviewed in [8].

Thus, when diffusion effects vary in a large interval, con-
inuous approximations using a fixed or moving mesh seem to
e suitable. In this case accurate stabilizations are required for
ealing with small diffusion effects. Some attempts at solving
he Fokker–Planck equation using a fixed mesh discretisation
xist [9,4]. The main difficulties in this approach are related to
he multidimensional character of the problem. Thus, the linear
ystems obtained after usual implicit or semi-implicit space-
ime discretisations are extremely large for a practical inver-
ion. On the other hand, explicit discretisations, which do not
equire matrix inversions, have the constraint of too small time
teps.

The purpose of this work is to propose an efficient and ac-
urate discretisation technique able to solve the multidimen-
ional Fokker–Planck equations with a substantial reduction in
he number of degrees of freedom involved. This technique oper-
tes by extracting automatically, and in a way completely trans-
arent for the user, the most relevant information of the unknown
olution to construct the functional approximation from the in-
ormation just extracted. The new shape functions are defined in
he whole domain in an appropriate manner (the optimal func-
ions for describing the model solution). Thus, the number of de-
rees of freedom involved in the solution of the Fokker–Planck
quation is significantly reduced. The construction of those new
pproximation functions is done with an ‘a priori’ approach,
hich combines a basis reduction (using the Karhunen–Loève
ζ(ṙ2 − u0 − grad (u)r2) − kbT
∂

∂r2
(ln Ψ ) − F c = 0 (1)

ζ(ṙ1 − u0 − grad (u)r1) − kbT
∂

∂r1
(ln Ψ ) + F c = 0 (2)

here ζ is the drag coefficient, u the velocity field, u0 the average
elocity, kb the Boltzman constant, T the absolute temperature
nd Ψ is the probability distribution function. Using the def-
nition of the connector vector q = r2 − r1 we can derive the
ollowing equation:

˙ = grad (u)q − 2

ζ

(
kbT

∂

∂q
(ln Ψ ) + F c(q)

)
(3)

he connector force can take different forms leading to different
inetic models. In this work a non-linear extensible dumbbell
FENE) is considered. The connector force is then given by

c(q) = H

1 − q̃2/q2
0

q (4)

here q̃ = ‖q‖, H is a connector constant and q0 is the maximum
pring length. A particularity of this model is that it has no
quivalent constitutive macroscopic equation [7]. The associated
volution equation for the distribution function can be written
s

∂Ψ

∂t
= − ∂

∂q

{(
grad (u)q − 2

ζ
F c(q)

)
Ψ

}
+ 2kbT

ζ

∂2Ψ

∂q2 (5)

he problem defined by Eq. (5) has a characteristic relaxation
ime θ = ζ/4H and a dimensionless finite extensibility param-
ter b = Hq2

0/kbT . Thus vector q can be made dimensionless
ith

√
kbT/H , grad(u) with 1/θ (so it can be viewed as a Weis-

enberg number We), time with θ and the polymer stress tensor



with nckbT where nc is the number of chains per unit volume.
Consequently, the dimensionless form of (5) is

∂Ψ

∂t
= − ∂

∂q

{(
grad (u)q − 1

2
f (q)q

)
Ψ

}
+ 1

2

∂2Ψ

∂q2 (6)

where f (q) becomes the dimensionless connector force, that in
the FENE model results:

f (q) = 1

1 − q̃2/b
(7)

Moreover, a normalisation condition is associated with the prob-
ability distribution:∫

Ψ (q) dq = 1 (8)

Finally, the relation between statistical distribution of dumb-
bell configurations and the polymer stress τp is provided by the
Kramers’ expression:

τp = 〈f (q)q ⊗ q〉 − 1 =
∫

Ψ (q)f (q)q ⊗ q dq − 1 (9)

with 1 the unit tensor.
We must notice with respect to Eq. (6) that this equation de-

fines the time evolution of the distribution function, whose inte-
gration requires to specify the initial distribution that we denote
by Ψ0. A reasonable choice lies in taking as initial distribution
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have been deeply addressed in the context of non-Newtonian
flows in [11,10].

3. Finite element discretisation

In this section we establish the discrete form related to the par-
tial differential equation governing the evolution of the probabil-
ity distribution (6) in the finite element framework. Taking into
account the solution homogeneity, no discretisation in physical
variables is required, and therefore, we proceed by discretizing
with respect to the conformation coordinates. Indices ν affecting
a vector variable refer to their components. The components of
a second order tensor will be referred using two indices. In this
way, Eq. (6) can be written as

∂Ψ

∂t
+ E0(q)Ψ +

∑
ν

(
E1ν(q)

∂Ψ

∂xν

+ E2
∂2Ψ

∂x2
ν

)
= 0 (12)

with

E0(q) =
∑

ν

(
uν,ν − 1

2
f (q) − 1

2
xνf,ν

)
,

E1ν(q) =
∑
ν′

(
uν,ν′xν′

)− 1

2
f (q)xν, E2 = −1/2 (13)
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he equilibrium steady state related to a null velocity gradient.
hat distribution can be obtained by solving

∂

∂q

{(
1

2
f (q)q

)
Ψ0

}
+ 1

2

∂2Ψ0

∂q2 = 0 (10)

y symmetry considerations Ψ0 = Ψ0(q̃), and taking into ac-
ount that Ψ (q̃ → ∞) = 0, the solution of the previous equation
esults

0(q̃) = f (q̃)−b/2∫∞
0 f (q̃)−b/2 dq̃

(11)

lthough in Eq. (6) ∂Ψ
∂t

represents the material derivative (de-
ned in the physical space) in non-homogeneous flows, in this
aper, we consider only simple flows with homogeneous solu-
ions. Thus, the material derivative reduces to the partial deriva-
ive.

In the case of complex flows with non-homogeneous solu-
ions, out of the scope of the present work, we should consider
he physical (related to the fluid element position) and configura-
ion (related to the molecule orientation and extension) variables.

hen an updated Lagrangian technique is used to discretize the
roblem in the physical variables, the advection term of the ma-
erial derivative can be integrated along the flow trajectories us-
ng the method of characteristics. Thus, no stabilization will be
equired for treating advection terms in physical variables. How-
ver, if one uses the finite element method for discretizing the
roblem in the physical space, the mesh becomes too distorted
hen the nodes move along the nodal trajectories, which implies

he necessity of frequent remeshing. To alleviate this drawback,
nd avoid also the field projections required after each remesh-
ng, one could proceed in a meshless framework. This question
here f,ν = ∂f (q)
∂xν

and the velocity gradient is given by uν,ν′ =
∂uν

∂xν′
.

The configuration domain is bounded. This domain is chosen
uch that the distribution function can be assumed vanishing on
ts boundary. In the case of the FENE model, this domain can
e defined by

= [−b, b]N

eing N is the dimension of the space where the molecular con-
ormation is defined. Of course, with such definition of the do-
ainΩ, the dimensionless connector force is not defined in some

egions, in particular for points x such that ‖x‖ >
√

b accord-
ng to Eq. (7). At those points, we simply consider the connector
orce given by a constant value large enough to avoid a molecular
xtension higher than its maximum physical value.

Firstly, the problem is formulated in the finite element frame-
ork using a weight function Ψ∗.

Ω

Ψ∗ ∂Ψ

∂t
dq +

∫
Ω

Ψ∗E0(q)Ψ dq

+
∑

ν

(∫
�

Ψ∗E1ν(q)
∂Ψ

∂xν

dq +
∫

Ω

Ψ∗E2
∂2Ψ

∂x2
ν

dq

)
= 0

(14)

he computational domain Ω is partitioned into a collection of
on-overlapping finite elements. The number of nodes defin-
ng the C0(Ω) interpolation in each element are 2 in 1D, 4
n 2D (usual Q1-rectangular element) and 8 in 3D (usual Q1-
exahedron element). Thus, the number of nodes in each element



is equal to 2N, N being the space dimension. Thus, we can write

Ψ e(q) =
2N∑
i=1

Ni(q)Ψ e
i (15)

and

Ψ e∗(q) =
2N∑
i=1

Ni(q)Ψ e
i
∗ (16)

where Ψ e
i and Ψ e

i
∗ are the values at node i of Ψ and Ψ∗ respec-

tively, and Ni(q) is the associated shape function which takes a
unit value at the node i, and vanishes at the other nodal positions.

Assuming that the distribution vanishes on the domain bound-
ary ∂Ω, Eq. (14) can be written after integration by part, as∫

Ω

Ψ∗ ∂Ψ

∂t
dq +

∫
Ω

Ψ∗E0(q)Ψ dq

+
∑

ν

(∫
Ω

Ψ∗E1ν(q)
∂Ψ

∂xν

dq −
∫

Ω

∂Ψ∗

∂xν

E2
∂Ψ

∂xν

dq

)
= 0

(17)

Due to the advection–diffusion character of Eq. (17) an appro-
priate stabilization is needed to avoid numerical instabilities
induced by the convection term. A non-consistent upwinding
f
f
T∫

w

Ψ

w

N

w
d

β

w

P

I
e

Ψ

Remark 3.1. From now on, for the sake of simplicity, vector
will be identified by an underline, which is doubled in the case
of a matrix. However, q continues to refer the connector vector,
for which the previous rule is not applied.

Eq. (23) can be rewritten by introducing the matrix G, with
G = G

0
+ G

1
+ G

2
, as

M Ψ̇ + G Ψ = 0 (24)

This equation can be solved, under the normalisation condition,
by applying an appropriate time discretisation preserving the
stability and assuring the convergence.

A fully implicit (backwards Euler) scheme proceeds as fol-
lows: From Ψn just computed (Ψ0 being known), compute Ψn+1
by solving:

Ψn+1 = (M + 
tG)−1M Ψn

The update requires the solution of a linear system whose size
is directly related to the number of degrees of freedom used in
the space discretisation. For this reason, the higher is the space
dimension, the larger is the computing cost. In the next section
we propose a strategy which allows for significant computing
savings. We will prove that the size of the resulting problem
depends only on the solution regularity.

4. A priori model reduction
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ormulation is considered here, which modifies the weighting
unction related to the advection term Ψ̄∗ as described later.
hus, the stabilized variational formulation results:

Ω

Ψ∗ ∂Ψ

∂t
dq +

∫
Ω

Ψ∗E0(q)Ψ dq

+
∑

ν

(∫
Ω

Ψ̄∗
ν E1ν(q)

∂Ψ

∂xν

dq −
∫

Ω

∂Ψ∗

∂xν

E2
∂Ψ

∂xν

dq

)
= 0

(18)

here in each element

¯ e∗
(q) =

2N∑
i=1

N̄i(q)Ψ e∗
i (19)

ith

¯
i(q) = Ni(q) + βh

2‖E1(q)‖
∂Ni(q)

∂xν

E1ν(q) (20)

here h is the characteristic element length (in the advection
irection) and β is the upwinding parameter given by

= coth(Pe) − 1

Pe
(21)

here the Peclet number Pe is given by

e = ‖E1(q)‖h
2|E2| (22)

ntegration of Eq. (18) leads to the system of ordinary differential
quations

∗TM Ψ̇ + Ψ∗TG
0
Ψ + Ψ∗TG

1
Ψ + Ψ∗TG

2
Ψ = 0 (23)
.1. Introducing the main ideas

Let us consider the evolution of a field Ψref(q, t) defined at
ny time t ∈ [0, T ] and for any configuration q in the domain Ω.
he purpose of the Karhunen–Loève (KL) expansion of Ψ is to
nd a set of basis functions (Υk(q))k=1,...,r defined over Ω and a
et of reduced state variables (υk(t))k=1,...,r defined over [0, T ]
uch that

1) Preliminary stage. Υk is defined by the stationarity of λ(Υ ):

λ(Υ ) =
∫ T

0 (
∫
Ω

Ψref(q, t)Υ (q) dq)2 dt∫
Ω

Υ 2(q) dq
(25)

δλ(Υk) = 0 (26)

λ(Υk) �= 0 (27)∫
Ω

Υ 2
k (q) dq = 1 (28)

2) Projection stage. (υk(t))k=1,...,r minimize η(υ1, . . . , υr):

η(υ1, . . . , υr) =
∫ T

0

∫
Ω

(
Ψref(q, t) −

k=r∑
k=1

Υk(q)υk(t)

)2

× dq dt (29)

The adaptive method that we propose allows to avoid the
reliminary construction of basis functions. Thus, during the
volution of Ψ (q, t), the approximation basis (φ(m)

k )k=1,...,r(m) is
mproved. The superscript (m) indicates that the approximation



basis has been updated m times until now. We can prove that the
basis functions φ

(m)
k are approximations of the eigenfunction Υk

[14]. The evolution of Ψ (q, t) can be approximated by

Ψ
(m)
φ (q, t) =

k=r(m)∑
k=1

φ
(m)
k (q) a

(m)
k (t) (30)

The adaptive procedure that we describe later includes the en-
richment of the approximation basis and the selection of the
most significant basis functions in order to represent the state
evolution.

Let us consider the weak form of the equations defining the
evolution of Ψ :

Ψ (q, 0) = Ψ0(q) (31)

R

(
Ψ∗, Ψ,

∂Ψ

∂t
, t

)
= 0, ∀Ψ∗ (32)

where R is the residual of the governing equations. We denote
by Ψref the exact solution of these governing equations.

The norm of the residual R(Ψ∗, Ψ (m)
φ ,

∂Ψ
(m)
φ

∂t
, t) provides an

error estimator to check the quality of Ψ
(m)
φ . An approximation

is appropriate if the residual is lower than a given value εR (small
enough) for all time t ∈ [0, T ].

Different adaptive strategies can be developed, all of them
i

(

(

(

T
p
s
[
t

t
b
a
t
c

p

q

(

Let µj be the eigenvalue related to the eigenvector V
(m)
j such

that:

µ1 ≥ µ2 ≥ · · · ≥ µr(m) (34)

with

V
(m)
i · V

(m)
j =

k=r(m)∑
k=1

V
(m)
ki V

(m)
kj = δij (35)

The selection of the most significant basis functions is per-
formed by taking the r̃(m+1) eigenvectors related to the
eigenvalues greater than εKLµ1, i.e.:

µi ≥ εKLµ1, i ∈ [1, . . . , r̃(m+1)] (36)

where εKL is a small enough parameter (εKL = 10−8 in our
simulations). The selected eigenvectors define the basis re-
duction matrix V (m)

V (m) = [V (m)
1 , . . . , V

(m)
r̃(m+1) ] (37)

This matrix provides new basis functions
(φ(m+1)

k )k=1,...,r̃(m+1) such that

φ
(m+1)
k (q) = γk

p=r(m)∑
p=1

φ(m)
p (q)V (m)

pk , k = 1, . . . , r̃(m+1)

(38)

(

5

ncluding:

1) A set of basis functions always defined in the whole time
interval.

2) An extension of the approximation basis from the residual
of the governing equations.

3) A selection of the most significant approximation functions
from a Karhunen–Loève expansion of the reduced state vari-
ables evolution.

The strategy that we propose is an incremental approach.
hus, if we assume that the evolution approximation was done
roperly over the time interval [0, t�[ thanks to the reduced
tate variables a

(m)
k associated to the basis functions φ

(m)
k , ∀k ∈

1, . . . , r(m)], the first step of the algorithm is to find the next time
� (t� ≥ t�) such that the residual computed at t� does not satisfy
he quality criterion. When t� is known, an adaptation of the
asis functions is performed for satisfying the quality criterion
t t�, and then the incremental computation can continue until
he new basis adaptation. Obviously, to start the computation we
an choose φ

(o)
1 collinear to Ψ0.

After this general overview, we now focus on the adaptation
rocedure.

The adaptation is carried out in two steps for satisfying the
uality criterion:

1) The first step is the KL expansion of the reduced state vari-
ables over the time interval [0, t�]. Let C(m) be the averaged
autocorrelations matrix

C
(m)
kp =

∫ t�

0
a

(m)
k (t)a(m)

p (t) dt, k, p ∈ {1, . . . , r(m)} (33)
where γk is computed in order to normalize the basis func-
tions∫

Ω

φ
(m+1)
k (q)φ(m+1)

k (q) dq = 1 (39)

2) The second step consists of the extension of the subspace
spanned by the functions (φ(m+1)

k )k=1,...,r̃(m+1) by adding the

function φ
(m+1)
r(m+1) (r(m+1) = r̃(m+1) + 1) collinear to the resid-

ual at time t�, i.e.∫
Ω

Ψ∗(q) φ
(m+1)
r(m+1) (q) dq

= γr(m+1)R

(
Ψ∗, Ψ (m)

φ ,
∂Ψ

(m)
φ

∂t
, t

)
, ∀Ψ∗, t = t�

(40)

where γr(m+1) is taken to verify∫
�

φ
(m+1)
r(m+1) (q)φ(m+1)

r(m+1) (q) dq = 1 (41)

Because of the basis adaptation, the reduced state variables
must be updated over [0, t�[ [14]:

a
(m+1)
k (t) = 1

γk

p=r(m)∑
p=1

a(m)
p (t)V (m)

pk , ∀t < t�∀k < r(m+1)

(42)

and

a
(m+1)
r(m+1) (t) = 0, ∀t < t� (43)



For t ≥ t�, the evolution process is restarted using the just
updated reduced approximation basis:

Ψ∗(q) =
k=r(m+1)∑

k=1

φ
(m+1)
k (q)a∗

k (44)

Ψ
(m+1)
φ (q, t) =

k=r(m+1)∑
k=1

φ
(m+1)
k (q)a(m+1)

k (t) (45)

R

(
Ψ∗

φ , Ψ
(m+1)
φ ,

∂Ψ
(m+1)
φ

∂t
, t

)
= 0, ∀Ψ∗

φ , ∀t ∈ [t�, t�]

(46)

F
d
e

4.2. Reduction of kinetic theory models

In this section we apply the ideas just described to the discrete
problem defined by Eq. (24).

We consider that the probability distribution has been accu-
rately described in [0, t�]. We assume that at time t� the reduced
approximation basis is given by B(m). The i, j-component of B

represents the value at node i of the j-eigenvector (j ∈ [1, r(m)]).
Moreover, at certain times tp, p ∈ [1, . . . , P], the solution is as-
sumed properly computed and defined by the reduced vectors
a(m)
p . Knowing a(m)

p , the finite element description of Ψ at time

tp results: Ψp = B(m)a(m)
p . We can assume that the first approx-

imation basis B(0) contains a single vector that corresponds to
the initial probability distribution Ψ0.
ig. 1. 1D start-up elongation We = 5, b = 10: (a) distribution function evolution; (
efining the reduced approximation basis; (d) evolution of the reduced order approxim
volution of the polymer stress.

6

b) difference between the exact and computed steady solutions; (c) functions
ation coefficients; (e) evolution of the number of approximation functions; (f)



Now, we can compute the evolution of Ψ in [t�, t�] by solving

Ψn+1 = (M + 
tG)−1M Ψn (47)

that can be written in the reduced approximation basis as

(B(m))TB(m)a
(m)
n+1 = (B(m))T(M + 
tG)−1M B(m) a(m)

n (48)

This results in

a
(m)
n+1 = ((B(m))TB(m))−1(B(m))T(M + 
tG)−1M B(m) a(m)

n

(49)

At time t� we compute the residual according to

R� = B(m)a
(m)
t�+
t − (M + 
tG)−1M B(m)a

(m)
t� (50)

F
d
e

If ‖R�‖ < εR, we can put t� = t� and continue the reso-
lution of the evolution problem using the reduced approx-
imation basis B(m) for t ≥ t�. When ‖R�‖ > εR we need

to look for a smaller time t� (t� + t�−t�
2 → t�) such that

‖R�‖ < εR after a new resolution of the evolution prob-
lem in [t�, t�]. If the residual criterion is unsatisfied when
t� − t� < 
t, then we put tP+1 = t� and proceed to an en-
richment of the approximation basis, that is performed as
follows.

The new reduced approximation basis B(m+1) is defined by
adding some Krylov’s subspaces to the significant information
extracted from a(m)

p , ∀p ∈ [1, . . . , P + 1]. We now explain the

construction of B(m+1).
ig. 2. 1D start-up elongation We = 10, b = 50: (a) distribution function evolution;
efining the reduced approximation basis; (d) evolution of the reduced order approxim
volution of the polymer stress.

7

(b) difference between the exact and computed steady solutions; (c) functions
ation coefficients; (e) evolution of the number of approximation functions; (f)



We define the matrix Q containing the reduced vectors a(m)
p ,

∀p. We solve the eigenproblem defined by

Q QTφ = µφ (51)

whose solution results in r(m) couples (φ
k
, µk), where we assume

that µ1 ≥ µ2, . . . , ≥ µr(m) . We select the r̃(m+1) eigenvectors φ
k

related to the eigenvalues verifying µk > 10−8µ1, defining the
matrix φ of dimension r(m) × r̃(m+1). We can write

B̃
(m+1) = B(m)φ(m) (52)

Obviously, the change in the reduced approximation basis im-
plies a change in the expression of the reduced vectors a(m)

p , ∀p.
For this purpose we can write

B̃
(m+1)

ã(m+1)
p = B(m)a(m)

p (53)

from which we have

(B̃(m+1))TB̃
(m+1)

ã(m+1)
p = (B̃(m+1))TB(m)a(m)

p (54)

or

ã(m+1)
p = ((B̃(m+1))TB̃

(m+1))−1(B̃(m+1))TB(m)a(m)
p , ∀p (55)

Now, we can add to B̃
(m+1) some (3 in our simulations) Krylov’s

subspaces defined at time t� = t�:

B(m+1) (m+1) 2

w

H

F
f

The introduction of the Krylov’s subspaces implies a new
change in the expression of the reduced vectors ã(m+1)

p . For
this purpose we add to those vectors 3 new components
that are assumed null because the new approximation func-
tions just introduced operate only for t > tP+1. Thus we can
write

(a(m+1)
p )T = ((ã(m+1)

p )T, 0, 0, 0), ∀p (57)

The following algorithm summarizes the procedure described
above.

t = t� = 0, t� = t� + τ (τ � 
t)
While t� < T

While t� − t� > 
t

Compute the evolution of the reduced variables in
[t�, t�]

If ‖R(t = t�)‖ < 0.001 then:
δ = t� − t�
t� = t�
t� = t� + 2δ

If ‖R(t = t�)‖ > 0.001 then:
δ = t� − t�
t� = t�
t� = t� + δ

2
Karhunen–Loève expansion in [0, t�]
= (B̃ , R�, H R�, H R�) (56)

here R� is defined by Eq. (50) and the matrix H is given by

= M−1(M + 
tG)
ig. 3. 2D start-up elongation We = 5, b = 10: (a) distribution function t = 0.0; (b)
unction t = 2.0.
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distribution function t = 0.1; (c) distribution function t = 0.2; (d) distribution

Enrichment from the Krylov’s subspaces related to the
residual at t�

t� = t� + τ

End.



5. Numerical examples

The first numerical example concerns a one-dimensional
start-up elongation problem defined by the velocity field u = 5 ·
x which corresponds to the elongation rate grad(u) = We = 5.
The domain is partitioned using 315 linear 1D finite elements of
size h1 = 0.01. The time step is fixed to 
t = 10−5 and the pa-
rameter b is set to 10. The initial solution is given by the equilib-
rium state defined in Section 2. Basis enrichment operates when
εR exceed 0.001. Each enrichment is performed using the three
first Krylov subspaces. The Karhunen–Loève decomposition al-
lows to select the most significant basis functions according to
the criterion µ/µmax > 10−8 (µ being the problem eigenval-
ues). The total time is T = 2 for which the steady state is almost
reached. Fig. 1(a) shows the evolution of the solution at times
t = 0, 0.1, 0.2, 0.5, 1, 1.5 and 2. The finite element description
uses 316 shape functions. In our case only 6 significant functions
are found to represent the evolution of the solution during the

F
m

whole time interval (see Fig. 1(c)). The evolution of the coeffi-
cients affecting the different approximation functions is depicted
in Fig. 1(d). The basis enrichment occurs mainly at the beginning
of the simulation due to the fast solution changes taking place.
In the same way the number of approximation functions needed
to represent the solution evolution increases at the beginning of
the simulation (Fig. 1(e)) and becomes constant when the solu-
tion evolution becomes smoother (the number of approximation
functions is represented at the times at which the approximation
basis enrichment takes place). The polymer stress is depicted
in Fig. 1(f). The exact steady solution can be obtained in this
case to evaluate the accuracy of the computed solution involv-
ing only six approximation functions. The difference between
the computed steady solution and the exact one is plotted in Fig.
1(b).

Now, we consider the benchmark problem done in [7]. The
problem lies in a one-dimensional start-up elongation (u = 10 ·
x) being We = 10. The domain has been partitioned into 705
ig. 4. 2D start-up elongation We = 5, b = 10: (a) first most significant function; (b)
ost significant function; (e) evolution of the reduced order approximation coefficien
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second most significant function; (c) third most significant function; (d) fourth
ts; (f) evolution of the number of approximation functions.



Fig. 5. 3D start-up elongation We = 5, b = 10: (a) distribution function t = 0.0; (b) distribution function t = 0.1; (c) distribution function t = 0.2; (d) distribution
function t = 2.0.

Fig. 6. 3D start-up elongation We = 5, b = 10: (a) first most significant function; (b) second most significant function; (c) evolution of the reduced order approximation
coefficients; (d) evolution of the number of approximation functions.

10



linear 1D finite elements of size h1 = 0.01, being the time step

t = 10−6 and the parameter b is set to 50. Fig. 2(a) shows
the evolution of the solution at times t = 0, 0.05, 0.1, 0.15, 0.2,
0.3, 0.4, 0.5 and 1. This simulation has been done using only 11
functions (rather than 706 needed without a model reduction).
The five most representative functions are plotted in Fig. 2(c).
The evolution of the associated coefficients of the distribution
function expressed in the reduced basis is depicted in Fig. 2(d).
According to Fig. 2(e) it seems that the basis enrichment is active
when the solution approximates the highest gradients (molecular
extensions close to

√
b). The number of approximation functions

becomes constant for t > 0.4. The polymer stress is depicted in
Fig. 2(f) in perfect agreement with the results reported in [7].
Finally Fig. 2(b) depicts the error between exact and computed
steady solutions.

It can be noticed that the above problems are symmetric,
and as a consequence only half of the conformation domain
has been considered in the computations. The extension of the
problem analysis to the whole domain implies double of the
number of degrees of freedom if one proceeds in the context of
a standard finite element discretisation. On the contrary, when
one proceeds with a model reduction technique the number of
significant functions remains unchanged, and thus the size of the
problem does not depends on the size of the domain where the
model is defined, but only on the solution regularity. Moreover,
we will prove in the following 2D and 3D examples that the
n
s
t
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Fig. 7. 3D steady state elongation We = 5, b = 10: (a) exact steady distribution
function; (b) distribution computed by searching the steady solution.

Moreover, we can notice that the model reduction strategy
described in the present paper allows the direct computation of
the steady solution of the kinetic model, i.e. the steady solution of
the Fokker–Planck equation, when it exists, in contrast to usual
stochastic techniques. For this purpose, the technique uses an
initial prediction that is used in the initial reduced approximation
basis, which is enriched at each iteration using the Krylov’s
subspaces. Fig. 7 compares the exact 3D steady distribution in
the elongation flow just considered [2] with the one computed
by using the reduced model technique when the steady solution
is directly searched without considering the evolution problem.
As it is noticed both solutions are in perfect agreement.

6. Conclusions

We have proposed in this paper a new model reduction
technique allowing accurate and fast simulations of kinetic
theory models. The new approximation functions used to define
the reduced model are defined in the whole domain in an
appropriate manner (the most characteristic functions related
to the model solution). Thus, the number of degrees of freedom
involved in the solution of the Fokker–Planck equation is signif-
icantly reduced. The construction of those new approximation
functions is done with an ’a priori’ approach, which combines
a basis reduction (using the Karhunen–Loève decomposition)

11
umber of significant approximation functions depends on the
olution regularity but it does not depend on the dimension of
he configuration space.

We consider the 2D start-up elongation flow characterized by
he velocity gradient grad(u) = diag(1, −1)We. The finite ele-

ent size is defined by the element length in the x-direction,
1 = 0.02, and in the y-direction h2 = 0.05, the time step be-

ng 
t = 10−5 and the parameter b = 10. The evolution of the
olution at times t = 0, 0.1, 0.2 and 2 is shown in Fig. 3(a)–(d).
he reduced order simulation involves only 10 approximation

unctions, whose four most significant ones are represented in
ig. 4(a)–(d). The evolution of the associated coefficients are
epicted in Fig. 4(e). As previously, the basis enrichment oper-
tes mainly at the beginning of the simulation according to the
ig. 4(f).

Finally, a 3D start-up elongation flow is considered. The prob-
em symmetry is considered again. Planes x1 = 0, x2 = 0 and
3 = 0 are used for graphical representation of the solution evo-
ution and the different basis functions. The flow is now charac-
erized by grad(u) = diag(1, −0.5, −0.5)We. The element size
s defined by h1 = 0.03 and h2 = h3 = 0.1, being 
t = 10−5

nd b = 10. The solution computed at times t = 0, 0.1, 0.2 and 2
s shown in Fig. 5(a)–(d). This simulation involves 11 basis func-
ions, whose two most significant ones are represented in Fig.
(a) and (b). It must be noticed that the number of approxima-
ion functions involved is almost the same as in the 2D case. The
volution of the associated reduced basis coefficients is depicted
n Fig. 6(c) and the evolution of the number of approximation
unctions in Fig. 6(d). In this case the exact steady solution can
e obtained, which allows one to conclude about the excellent
ccuracy of the proposed reduced order technique.



with a basis enrichment based on the use of some Krylov
subspaces. We have illustrated the potentiality of that technique
by solving the FENE viscoelastic model in 1D, 2D and 3D. We
noticed that the simulations involved the same number (around
10) of approximation functions. Thus, we can conclude that the
number of significant approximation functions used to define
the reduced model depends on the solution regularity but does
not depend significantly on the dimension of the space.

The extension of these ideas to multi-bead-spring (MBS)
models is not direct because such models are defined in a multi-
dimensional conformation space, and even if a reduced number
of approximations functions are enough for describing accu-
rately the whole evolution, these function cannot be defined us-
ing a grid support (whose nodes evolves exponentially with the
space dimension). One possibility consists of the use of appro-
priate tensor products which constitutes one of our main works
in progress.
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