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1 Université catholique de Louvain, iMMC

4 Av. Georges Lemaı̂tre, B-1348 Louvain-la-Neuve, Belgium
2 Ecole Centrale de Nantes, GeM
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This paper deals with J2 elasto-visco-plasticity and analyzes in details a variational formula-
tion of associated constitutive updates. The variational formulation is briefly presented and
compared with the traditional radial return algorithm. Differences are highlighted in the case
of combined hardening and rate-dependency models. In that case, the variational formulation
introduces an algorithmic parameter, which effect is analyzed on precision and convergence
behavior. A practical rule is proposed for choosing an optimal value for this parameter.

1 Introduction

With the generalization of numerical simulations involving more and more complex material

behavior, integration of constitutive models has become an important part of many academic

and industrial softwares dedicated to solving problems in structural or solid mechanics. This

paper focuses on constitutive updates for materials whose local response can be described by

classical J2 elasto-visco-plastic theory with isotropic hardening. Thermal effects are not con-
sidered. The constitutive equations are written within the framework of Generalized Standard

Media (GSM) [1,2]), according to which state laws and complementary laws for the evolution

of the internal variables respectively derive from a free energy and a dissipation function.

Time integration of the constitutive equations along a given path of applied deformation is

performed according to an incremental variational principle. Numerous authors contributed to

the development of variational principles equivalent to the incremental formulation of elasto-

visco-plasticity (e.g.: Mialon [3]; Comi et al. [4]; Martin et al. [5]; Carini [6]; Miehe [7]).
In particular, Ortiz and Stainier [8] proposed a unified incremental variational formulation in

the general context of elasto-(visco)plasticity at finite strains. On a time interval, updates of

internal variables are obtained from the minimization of a suitably chosen functional, involv-

ing the free energy and the dissipation function. The minimized functional acts in turn as a

unique potential for the stress.
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The particular mathematical structure of these incremental updates, inherited from its vari-

ational nature, has been exploited in various directions such as mesh adaption [9,10] or numer-

ical and semi-analytical homogenization [7, 11–13]. Variational constitutive updates are not

limited to simple J2 elasto-visco-plasticity and extensions have been proposed to more com-
plex plasticity models [14, 15], non-linear viscoelasticity [16] or coupled thermo-mechanical

boundary-value problems [17], to list only a few examples.

This paper details the application of variational constitutive updates to J2 elasto-visco-
plasticity with isotropic hardening under the assumption of linearized kinematics, and ana-

lyzes some of its numerical implications. Section 2 first presents constitutive equations in a

thermodynamic framework adapted to the derivation of incremental variational updates (2.2).

It is shown that the latter lead to an algorithmic approach similar in nature to the standard

radial return of Wilkins [18]. Variational updates differ from the radial return in the case of

coupled strain-hardening and rate-dependency models, for which the integration of dissipa-

tion terms over a finite time step by a generalized mid-point rule requires the introduction of

an algorithmic parameter θ and introduces an additional term in the plastic yield equation.1

This additional term vanishes with small time (or load) increments, and the method thus re-

mains consistent. For finite steps, the algorithmic parameter can be tuned to ensure that the

yield condition is verified exactly at the end of the step, and an optimal value of the param-

eter is proposed (2.3). Section 3 illustrates the previous analysis for the case of combined

power-law strain-rate dependence and linear or more general power-law strain hardening, for

monotonous and cyclic uniaxial loading cases.

2 Variational formulation of incremental viscoplastic updates

2.1 Thermodynamic framework

In this paper, we consider material behavior which can be described by J2 elasto-visco-plastic
theory with isotropic hardening. Under the linearized kinematics hypothesis, the (symmetric)

total strain tensor ε is then classically decomposed into an elastic and a plastic part:

ε = εe + εp. (1)

The chosen set of state variables consists in the total strain ε, the plastic strain εp and an
additional scalar variable p describing isotropic hardening and related to the accumulation of
plastic deformation.

Contrarily to classical formulations (as described for instance in Lemaı̂tre and Chaboche

[20] or Maugin [21]), no yield function is explicitly introduced. Instead, kinematic restrictions

related to the plastic flow are postulated a priori. Based on the expected plastic flow kinematics

in von Mises plasticity, the rate of plastic strain is split into directionN and amplitude ṗ:

ε̇p = ṗN , (2)

1 A similar situation can be found in the case of variational updates for coupled thermo-mechanical viscoplastic-

ity models, where specific precautions must be taken to preserve consistency with regard to the energy balance (i.e.
heat) equation [19].
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whereN is a kinematic variable2 satisfying the following constraints:

tr(N) = 0 and N : N =
3

2
. (3)

Constraints onN ensure incompressibility of the plastic flow and uniqueness of decomposi-

tion (2). With such norm of N , it is easy to check that: ṗ = ((2/3)ε̇p : ε̇p)1/2, so that the
scalar variable p is the classical accumulated plastic strain. The kinematic variableN will be

specified later.

Supposing that the elastic response is independent of irreversible processes, the Helmholtz

free energy (per unit volume) admits the following additive decomposition:

ψ(ε, εp, p) = ψe(ε− εp) + ψp(p). (4)

The elastic part ψe represents the energy stored within the material and recoverable through

elastic relaxation. A linear response in the elastic regime is obtained by taking ψe quadratic

in the elastic strain:

ψe(ε− εp) =
1

2
(ε− εp) : Ce : (ε− εp). (5)

where Ce is a fourth-order elasticity tensor. The plastic part ψp describes (isotropic) harden-

ing by rate-independent and irreversible internal storage mechanisms and is written as:

ψp(p) =

∫ p

0

R(q)dq, (6)

whereR(p) represents a hardening stress (the functionR is supposed to be given)3. Kinematic
hardening can be modeled by including a dependence of the plastic potential on the plastic

strain εp. However, kinematic hardening is not considered here.
The state law for the stress is obtained from the free energy as:

σ =
∂ψ

∂ε
(ε, εp, p) = − ∂ψ

∂εp
(ε, εp, p) =

∂ψe

∂εe
(ε− εp) . (7)

Hence, the stress is the force associated with both the total strain and the plastic strain. Simi-

larly, the hardening stress R is the thermodynamic force associated with the internal variable
p:

R =
∂ψ

∂p
(ε, εp, p) =

∂ψp

∂p
(p). (8)

State laws (7) and (8) must be supplemented by a kinetic relation providing the evolution of the

internal variable p (the evolution of εp being given by the flow rule (2)). The complementary

2 The kinematic variableN represents the direction of plastic flow. It should not be confused with some kine-

matic variable for the description of kinematic hardening. Kinematic hardening is not considered in the present

work.
3 A finer description of the partition of plastic work in stored and dissipated energies has been introduced in

[22] (see also references therein). However, such considerations can be set aside within the isothermal framework

considered here.
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law must ensure that the mechanical dissipation D is non-negative. Here, the dissipation
expresses as (see for instance [20]):

D = σ : ε̇p −Rṗ ≥ 0. (9)

The dissipation may conveniently be rewritten into a condensed form, accounting for the flow

rule (2):

D = Y (N) ṗ, (10)

where the function Y is defined, for a given state {ε, εp, p}, as:

Y (N) = σ : N −R. (11)

Expression (10) of the dissipation indicates that the new scalar quantity Y is the force con-
jugate to p, when it is computed for the actual flow direction. Then, the evolution law for p
can be expressed as a kinetic relation between Y and ṗ. Following the theory of Generalized
Standard Materials (GSM), it is supposed to derive from a dissipation function φ(ṗ):

Y =
∂φ

∂ṗ
(ṗ), or, equivalently, ṗ =

∂φ∗

∂Y
(Y ), (12)

where φ∗ is the convex dual of φ by Legendre transform:

φ∗(Y ) = sup
ṗ
{ṗY − φ(ṗ)}. (13)

By choosing φ(ṗ) non-negative, convex and such that φ(0) = 0, the mechanical dissipation
(10) is necessarily non-negative. By the properties of Legendre transform, the following result

holds:

φ(ṗ) + φ∗(Y ) = Y ṗ = D. (14)

Note that the dual functions φ and φ∗ may also depend on other state variables, which act
as parameters in the Legendre transformation (13). For example, in the following, we will

consider a dissipation function of Perzyna-type [23]:

φ(ṗ; p) =

⎧⎪⎨
⎪⎩
σY ṗ+

ṗ0D(p)

n+ 1

(
ṗ

ṗ0

)n+1

if ṗ ≥ 0

+∞ otherwise,

(15)

where the drag stress D(p) induces isotropic hardening.

The kinematic variable N was not specified up to now. Actually, it can be shown that

N is found by maximizing the dissipation at fixed p and ṗ. This follows from a continuous
variational principle introduced by Ortiz and Stainier [8], which is not presented here. The

kinematic variable will be specified within the discretized formulation presenter hereafter.
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2.2 Incremental variational formulation

We now consider the problem of integrating the constitutive relations over a time increment

[tk, tk+1]. The state at tk is supposed to be given: {εk, εpk, pk}, as well as the total deformation
at tk+1: εk+1. We aim to compute the stressσk+1, the plastic strain ε

p
k+1 and the accumulated

plastic strain pk+1 at tk+1. We first assume that the rate of accumulated plastic strain ṗ is
constant over the time step and given by the difference quotientΔp/Δt, withΔ() = ()k+1 −
()k. Similarly, the plastic flow rule (2) is discretized as:

Δεp = ΔpN , (16)

whereN is an (a priori unknown) constant plastic flow direction for the time step. Ortiz and

Stainier [8] proposed the following incremental variational principle:

WΔ(εk+1) = inf
Δp,N

JΔ(εk+1,Δp,N), (17)

where the minimization w.r.t. N is performed under constraints (3) and

JΔ(εk+1,Δp,N) = ψ(εk+1, ε
p
k+1, pk+1)− ψk +Δtφ

(
Δp

Δt
; pk+θ

)
, (18)

where εpk+1 is obtained from the discretized flow rule (16) and ψk is the free energy computed

for the (given) state variables at tk. The dependence of φ in p is handled by evaluating the
dissipation function at an intermediary value during the time interval:

pk+θ = (1− θ)pk + θpk+1, θ ∈ [0, 1]. (19)

Then, considering the stationarity conditions w.r.t. Δp andN in (17), the stress tensor at tk+1

is given by:

σk+1 =
dWΔ

dεk+1
(εk+1) =

∂JΔ
∂εk+1

(εk+1,Δp,N), (20)

where Δp and N are the solutions of the minimization problem (17). Thus, the function

WΔ plays the role of an incremental potential for the stress. In the following we show that

optimality conditions w.r.t. Δp andN yield the classical incremental relations of J2 plasticity.
In particular, the well-known radial return scheme with its predictor and corrector steps ( [18],

[24] or [25]) can be retrieved.

Taking into account the discretized flow rule (16), the stationarity condition of JΔ w.r.t.
Δp gives the discretized kinetic relation (12):

Yk+1(N , pk+1) =
∂φ

∂ṗ

(
Δp

Δt
; pk+θ

)
+ θΔt

∂φ

∂p

(
Δp

Δt
; pk+θ

)
, (21)

where ∂φ/∂ṗ and ∂φ/∂p have to be interpreted as functions obtained by derivation of the con-
tinuous function φ with respect to its first and second arguments, and evaluated with the finite
difference approximation of ṗ. The function Yk+1 is defined similarly as in the continuous

case (11):

Yk+1(N , pk+1) ≡ σk+1 : N −R(pk+1). (22)
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Note that σk+1 now depends onN , since:

σk+1 =
∂ψe

∂εe
(εek+1), with εek+1 = εk+1 − εpk −ΔpN . (23)

Therefore, it is conveniently rewritten as:

σk+1 = Ce : (εtrk+1 −ΔpN) = σtrk+1 −Δp(Ce : N), (24)

where the trial (or predictor) elastic strain εtrk+1 and the corresponding trial stress σ
tr
k+1 were

introduced:

εtrk+1 ≡ εk+1 − εpk, (25)

σtrk+1 ≡ Ce : εtrk+1. (26)

The minimization of JΔ w.r.t. N under constraints (3) is performed using Lagrange multipli-

ers and yields

N =
3

2

strk+1

σtreq,n+1

=
etr

εtreq
. (27)

Expression (27) of the kinematic variable N is obtained assuming isotropic elasticity, in

which case the elastic stiffness tensor admits the following decomposition:

Ce = 3κIvol + 2μIdev, (28)

where κ and μ are the elastic bulk and shear moduli, respectively. The spherical and deviatoric
operators Ivol and Idev are given by:

Ivol ≡ 1

3
1⊗ 1, Idev ≡ I − Ivol, (29)

where the symbols 1 and I stand for the second and symmetric fourth order identity tensors,
respectively. The von Mises measures of stress and strain are respectively given by:

σeq =

(
3

2
s : s

)1/2

and εeq =

(
2

3
e : e

)1/2

, (30)

where s and e denote the deviatoric parts of σ and ε:

s = Idev : σ, e = Idev : ε. (31)

Substituting (27) into (22), the stationnarity condition (21) for Δp becomes:

−3μεtreq,n+1+3μΔp+R(pk+1)+
∂φ

∂ṗ

(
Δp

Δt
; pk+θ

)
+θΔt

∂φ

∂p

(
Δp

Δt
; pk+θ

)
︸ ︷︷ ︸

O(Δt)

= 0. (32)

The problem of the non-smoothness of the dissipation function for Δp = 0 can be circum-
vented by first evaluating the slope of the functional JΔ for Δp = 0+. If it is negative, that
is:

−3μεtreq,n+1 +R(pk) +
∂φ

∂ṗ
(0+; pk) < 0 (33)
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then the optimal Δp is positive, and satisfies condition (32). Otherwise, the optimal Δp
is zero, as negative values are prohibited (they would lead to infinite dissipation), and the

increment is elastic. Therefore, the minimization problem associated with the incremental

variational principle involves the evaluation of a yield criterion in terms of an elastic predictor,

and a plastic correction step, exactly like in the classical radial return scheme. Differences

arise from the presence of the integration parameter θ and the additional term in O(Δt),
which becomes negligible for sufficiently small time increments and can be cancelled by a

proper choice of θ. Such numerical aspects are discussed in the next section.

2.3 Numerical considerations

The numerical scheme for the update of Δp derived from the incremental variational princi-
ple can be compared to the classical radial return equations. For rate-independent plasticity

(D(p) = 0 in (15)), the dissipation function presents no parametric dependence in p. Hence
condition (32) then simply becomes:

−3μεtreq,n+1 + 3μΔp+R(pk+1) +
∂φ

∂ṗ

(
Δp

Δt

)
︸ ︷︷ ︸
=σY if Δp>0

= 0, (34)

which coincides exactly with the classical radial return condition. Note that the above result

assumes that hardening mechanisms contribute only to stored plastic energy, which may not

correspond to what is experimentally observed. A more general treatment of rate-independent

hardening, accounting for the partition between storage and dissipation mechanisms, is pro-

vided in [22]. Inclusion of dissipative rate-independent hardening terms leads to numerical

effects very similar to those observed for rate-dependent (thus necessarily dissipative) hard-

ening terms, and detailed in the remaining of this paper. For the sake of clarity, we will then

limit ourselves to the latter case.

In the case of rate-dependent elasto-plasticity, the dissipation function may include a para-

metric dependence in p (e.g. (15)). The update of accumulated plastic strain Δp then obeys
the discretized kinetic relation (21). Clearly, this discretized flow rule does not coincide with

its continuous expression computed for the time tk+1:

Yk+1 =
∂φ

∂ṗ

(
Δp

Δt
; pk+1

)
, (35)

which is fully-implicit, contrarily to expression (21) (at least, for arbitrary θ).
Consider the specific case of a Perzyna-type dissipation function (15). According to equa-

tion (21), the force Yk+1 is then given by:

Yk+1 = σY +D(pk+θ)

(
Δp

ṗ0Δt

)n

+ θΔtD′(pk+θ)
ṗ0

n+ 1

(
Δp

ṗ0Δt

)n+1

(36)

= σY +

[
D(pk+θ) +

θΔp

n+ 1
D′(pk+θ)

](
Δp

ṗ0Δt

)n

. (37)

On the other hand, fully-implicit discretization (35) of the continuous flow rule yields

Yk+1 = σY +D(pk+1)

(
Δp

ṗ0Δt

)n

. (38)
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To make expression (37) coincide with the fully implicit expression (38), the integration pa-

rameter θ should be chosen such that:

D(pk+θ) +
θΔp

n+ 1
D′(pk+θ) = D(pk+1). (39)

In the case where the drag stress is linear in p: D(p) = σY + hp, the integration parameter
corresponding to a fully implicit scheme is determined analytically from the previous equality,

which is now rewritten as:

hpk+θ +
θΔp

n+ 1
h = hpk+1. (40)

It is readily found that θ must be chosen as:

θ =
n+ 1

n+ 2
≡ θ∗. (41)

The optimal integration parameter is thus found to depend only on the rate-sensitivity ex-

ponent n, and not on any other material parameter. It is also independent from the current
increment of the internal variable Δp. As the rate-sensitivity exponent ranges from 0 (rate-
independent behavior) to 1 (linear rate-sensitivity), the integration parameter ranges from

θ∗ = 1/2 to θ∗ = 2/3. For nonlinear hardening, equation (39) admits no analytical solution,
and θ depends on the current value of p and Δp. A detailed convergence study, analyzing the
influence of the choice of θ on the integration error, is presented in next section.

3 Convergence study

We study the influence of the integration parameter θ on the convergence of the radial return
scheme in the case of the Perzyna-type dissipation function (15) with power-law drag stress:

D(p) = σY + hpm. (42)

We further assume that isotropic hardening comes exclusively from the dissipation function

through the drag stress, so that ψp(p) = R(p) = 0. Material parameters are the following:
E = 100 GPa, ν = 0.3, σY = 100MPa and h = 100MPa.
We consider uniaxial tension/compression tests along direction 1 under applied strain rate

|ε̇11| = 1 s−1. For a given number of loadsteps N , the relative error on the internal variable
p is defined as |(p− pref)|/pref, where pref is the reference measure obtained with a very high
number of time increments (here, N = 10000).
Two sources of errors must be distinguished:

1. The discretization error, which may be reduced by increasing the number of time incre-

ments. As shown in the following, it as a major impact during the elastic-viscoplastic

transitions.

2. An integration error related to the estimation of the dissipation function on a time inter-

val. This error depends on the choice of θ in the generalized mid-point rule. This error
is in O(Δt) (equation (32)) and is expected to be of little importance when Δt is small.
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The first error is inherent to the incremental nature of numerical approaches, and it will be

present in all formulations, including classical ones, based on satisfaction of an explicit yield

condition at the end of the time step. The second error is proper to the variational approach.

The so-called optimal integration parameter θ∗ defined in (41) aims at canceling this second
source of error.

3.1 Linear hardening

3.1.1 Monotonic tension

We consider first the case of linear hardening (m = 1), for several rate sensitivity exponents n.
The stress-strain response for n = 0.5 is presented in Figure (1(a)), and the relative error on p
at the end of the loading (ε11 = 0.05) as a function of the number of loadstepsN for different
values of θ is presented in Figure 1(b). For any θ chosen between 0 and 1, the convergence is
linear, as expected, except for the optimal integration parameter θ∗ given by equation (41), for
which the exact solution (at machine precision) is found as soon as N becomes large enough
to capture the elastic-viscoplastic transition. Similar convergence plots are obtained for other

viscous exponents, but are not shown for conciseness.

The existence of an optimal integration parameter which depends on the viscous exponent

is better demonstrated by plotting the relative error on p at the end of the loading as a function
of θ itself. Figure 2 presents the results for n = 0.5, showing that the final relative error on
the internal variable is minimized using θ = θ∗, no matter the number of loadsteps. The same
conclusion holds for other rate-sensitivity exponents.

A better insight into the integration error may be given looking at the ratio p/pref. The
numerical procedures overestimates (resp. underestimates) p for θ < θ∗ (resp. θ > θ∗)
(Figure 3), while the exact opposite holds regarding the stress (not shown). Indeed, the left-

hand side of (40) can be rewritten as:

hpk+θ +
θΔp

n+ 1
h = h

(
pk+1 +

(
θ

θ∗
− 1

)
Δp

)
, (43)

from which it is clear that the drag stress contribution is overestimated when θ > θ∗.

3.1.2 Tension/compression

The stress response of the same material under a tension/compression test is presented in

Figure 4 for a rate-sensitivity exponent n = 0.5. We consider N loadsteps on each quarter of
cycle, and measure the error on p at the end of the load cycle. The corresponding convergence
graph (Figure 5) looks very different from the one obained in the monotonic case. Two distinct

regions are observed:

• For N ≤ 50, the error is essentially constant for θ = θ∗, while curves corresponding to
θ > θ∗ (resp. θ < θ∗) show slightly decreasing (resp. increasing) error.

• For N > 50, the error decreases sublinearly for all values of θ, and the curves are hardly
distinguishable.
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Fig. 1 (a) Normalized stress strain response of an elasto-viscoplastic material with linear drag stress
(D(p) = σY + hp) under uniaxial tension (ε̇11 = 1 s−1). The discretization error is visible only

during the elastic-viscoplastic transition. (b) Convergence plot for varying integration parameters θ.
The convergence is linear for θ �= θ∗.
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Fig. 2 Material with linear drag stress under uniaxial tension with rate-sensitivity exponent n = 0.5.
The optimal value of the integration parameter θ is given by: (n+ 1)/(n+ 2).
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Fig. 3 Material with linear drag stress and rate-sensitivity exponent n = 0.5 under uniaxial tension.
Depending on the value of the integration parameter, the accumulated plastic strain is overestimated

(θ < θ∗) or underestimated (θ > θ∗). The exact opposite observation holds regarding the axial stress
(not shown).

These trends are related to the viscoplastic unloading taking place when the sign of the applied

loading rate is reversed. During viscoplastic unloading, the accumulated plastic strain keeps

increasing, and the slope of the curve is not the elastic one. The unloading remains viscoplastic

until the stress reaches the yield surface, and becomes then purely elastic. The viscoplastic

unloading step is captured by the incremental model only for very small time steps; otherwise,

the sample unloads in a purely elastic way, thus introducing errors on the final value of p.
Consequently, as long as the time steps number N is not chosen large enough, the model

misses the viscoplastic unload, and the relative error on p stagnates.

Figure 6 shows the evolution of the ratio p/pref at the end of the cycle with the number of
load steps N . For small N (N < 50) the pattern is very similar to the one observed in Figure
3, but shifted downward, as all curve underestimate the plastic strain level here. As in the

uniaxial case, taking θ = 0 yields the higher estimate for p, so that the fully explicit estimate
is the better one when considering the error on p. It can also be shown that the best estimate
for the stress is obtained taking θ = 1. Therefore, no optimal value of θ can rigorously be
defined. Note that for smallN , the integration error is of the same order of magnitude than the
discretization error, so that both can compensate in some way. For large N (and small Δt),
the discretization error is predominant, so that the particular choice of θ has a very limited
impact on the final error.
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Fig. 5 Material with linear drag stress and rate-dependency exponent n = 0.5 under uniaxial ten-
sion/compression. Convergence plots for varying integration parameters θ. A minimal number of load
steps is necessary in order to reach (sublinear) convergence. Contrarily to the uniaxial case, there is no

optimal θ for which the final error is zero.
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Fig. 6 Material with linear drag stress and rate-dependency exponent n = 0.5 under uniaxial ten-
sion/compression. Taking θ = 0 yields the best estimate for p when N is small.

In order to study the error evolution during loading, we introduce an accumulated error

measure:

cumulated relative error =
∑
N

|Δp−Δpref|
pref

(44)

where Δpref is the reference plastic increment computed from the reference simulation, and
pref is the reference accumulated plastic strain at the end of loading. The cumulated error is
plotted in Figure 7 for θ = θ∗. As expected, error increases occur mostly during viscoplastic
transition (during loadings and unloadings), while they are negligible during the purely elastic

and purely plastic loadings. A similar behavior is expected under non-radial loading: major

contributions to the integration error are expected around points where the loading mode is

changing.

3.2 Non-linear hardening

We consider now the power-law drag stress (42) with exponent m = 0.5. The integration
parameter for a fully implicit scheme is found solving equation (39) numerically for the cur-

rent value of Δp. The solution of the nonlinear equation is denoted by θ̂, while we keep the
notation θ∗ for the parameter (41) computed in the case of linear hardening. All other material
properties are the same as in the previous examples, so as the applied strain rate.

All schemes obtained with different values of θ present a linear convergence w.r.t. p (Figure

8(a)). In particular, the convergence rate for θ = θ̂ is also linear, but the error for large Δt
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Fig. 7 Material with linear drag stress and rate-dependency exponent n = 0.5 under uniaxial ten-
sion/compression. Evolution of the accumulated error during loading. Major error increases occur at

elastic-viscoplastic transitions in both loading and unloading.

is lower than with other integration parameters (see also Figure 8(b)), except with θ = θ∗.
Surprisingly, the convergence curve is non-monotonic for θ∗, with a quadratic convergence
rate at very small N . A close look to Figure (9(a)) shows that the error on p when taking
θ = θ∗ changes sign with N , which explains the non-monotonicity of the convergence plot
in Figure 8(a). We conjecture that, for this particular value, the integration error compensates

somewhat the discretization error, leading to better predictions than with θ̂ for small N . On

the other hand, the fully-implicit solution with θ = θ̂ overestimates pref for any N .

The evolution of θ̂ during loading is presented in Figure 9(b) for different N . The optimal
value is very close to the expression obtained in the case of linear hardening, and the discrep-

ancy between θ∗ and θ̂ decreases with increasing numbers of loadsteps. The larger difference
is observed during the elastic-plastic transition for all values of N .

4 Conclusion

When applied to J2 plasticity with isotropic hardening, the incremental variational principle
proposed by Ortiz and Stainier [8] yields a scalar radial return equation for the plastic strain

update. Depending on the specific form of the dissipation function, the discretized constitu-

tive equations may be completely equivalent to a classical, fully-implicit formulation, or may

comprise an additional integration error. The integration error is function of the integration

parameter θ. For the dissipation function considered here (15), we suggest to use expres-
sion (41) for the integration parameter, which cancels the integration error in case of linear
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hardening. The same expression should be used also in the case of nonlinear hardening, as

the theoretical value of θ obtained in this case (solution of equation (39)) does not yield sig-
nificantly better predictions for a given loadstep size. For other models of rate-dependence
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Fig. 8 Material with power law drag stress (D(p) = σY +k
√
p) and rate-dependency exponent n = 0.5

under uniaxial tension (ε̇11 = 1 s−1). (a) Convergence plots for varying θ. The convergence is linear
for all values of θ, except for θ = θ∗ at large time steps. (b) The final error on p is minimized choosing
θ ≈ θ∗.
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Fig. 9 Material with power law drag stress (m = 0.5) and rate-dependency exponent n = 0.5 un-

der uniaxial tension. (a) Evolution of the ratio p/pref with N for varing θ. (b) Evolution of optimal

integration parameter θ̂ with loading for varying number of load increments.
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combined with strain hardening, described by dissipation functions different from (15), a sim-

ilar analysis could be carried out in order to measure the effect of the integration parameter.

There may not always be a closed-form expression for the optimal value of this integration

parameter, though.

Note that a large part of the analysis carried above stays valid within the framework of

finite strains. In particular, as shown in [8], finite strain kinematic aspects can be decoupled

from plastic strain update under the assumption of an isotropic elastic free energy quadratic

in logarithmic (natural) strains. The radial return structure of variational updates and all the

above discussion on the effect of the choice of θ then fully applies.
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