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On an Analytical Self-consistent
Model for Internal Stress Prediction

in Fiber-reinforced Composites
Submitted to Hygroelastic Load

S. FRÉOUR, F. JACQUEMIN* AND R. GUILLÉN

Institut de Recherche en Génie Civil et Mécanique (UMR CNRS 6183)
IUT de Saint-Nazaire, Boulevard de l’Université
BP 406, 44 602 Saint-Nazaire, Cedex, France

The aim of this work is to demonstrate a fully explicit analytical micromechanical self consistent 
approach dedicated to mechanical states prediction in both the fiber and the matrix of composite 
structures submitted to a transient hygroelastic load. The analytical forms obtained are applied to 
the case of carbon epoxy composites. Rigorous continuum mechanics formalisms are used for 
the determination of the required time and space dependent macroscopic stresses. The reliability 
of the new approach is checked through a comparison between the local stress states calculated 
in both the resin and the fiber according to the new closed form solutions and the equivalent 
numerical model.

KEY WORDS: self consistent model, analytical approach, hygroelastic stresses.

INTRODUCTION

F
OR ABOUT TWENTY years, composite materials have become an alternative solution
for structure elements in application fields requiring a very high strength-to-weight

ratio. In aerospace engineering, for instance, composite laminates can be substituted for
advanced metallic alloys (titanium alloys) or metal matrix composites (Al–SiC). However,
designing composite components for such applications requires taking care of their
durability in hygroscopic environments. Contrary to metallic material or metal matrix
composites, carbon/epoxy laminates do actually absorb water, when placed in humid
surroundings. Since carbon fibers do not absorb water, the moisture content of the
constituents of a laminate (both the fibers and the resin) exhibits strong heterogeneities.
Furthermore, the coefficients of moisture expansion (CME) of epoxy resins and carbon
fibers are also strongly heterogeneous. Consequently, any hygroscopic load applied on a
composite structure induces internal stresses and strains. Thus, a better understanding of
the distribution of these local mechanical states is necessary to predict a possible damage
occurrence in the material during its manufacturing process or service life.

*Author to whom correspondence should be addressed. E-mail: jacquemin@lamm.univ-nantes.fr
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In a previous work [1], a numerical self-consistent (SC) micromechanical model has
been combined to continuum mechanics formalisms in order to predict the mechanical
states at each scale of carbon–epoxy composite pipes submitted to transient hygroscopic
fields. The macroscopic stresses and strains in each ply of the structure were deduced as a
function of time and space using continuum mechanics formalisms. The SC framework
was dedicated to the determination of the average pseudomacroscopic mechanical states in
the components of each ply: the epoxy matrix on one hand and the carbon fiber on the
other. Convenient closed-form solutions were previously developed in order to enable an
easier programming and a faster computation of the macroscopic fields [2]. However,
only numerical approaches were used for the determination of the pseudomacroscopic
mechanical states.

In the present work, a suitable analytical SC model ensuring the calculation of the
pseudomacroscopic stresses and strains is rigorously demonstrated. The model is
established using a realistic assumption compatible with the microstructure of composite
materials. Particular care is taken to express satisfactory closed-form solutions for every
component of Morris’ tensor that is especially involved in the hygroelastic morphologic
effects. Finally, the new forms obtained are compared to the previous numerical SC
framework, in order to verify the validity of the present proposal.

ANALYTICAL FORMS FOR MORRIS’ TENSOR FOR FIBER MORPHOLOGY

The classical SC framework corresponding to the formalism introduced by Kröner [3]
and Eshelby [4] is based on the mechanical treatment of the interactions between
ellipsoidal heterogeneous inclusions embedded in an infinite medium. The average
macroscopic elastic properties LI of the composite are related to the morphology assumed
for elementary inclusions, through Morris’ tensor EI. Spherical inclusions only were
initially considered by Morris [5]. In the case, when ellipsoidal shaped inclusions have
to be taken into account, the following general form enables the calculation of the
components of this tensor (see the works of Asaro and Barnett [6] or Kocks et al. [7]):
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In the case of an orthotropic macroscopic symmetry, the components Kjp(�) were given by
Kröner [8]:
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where 2a1, 2a2, 2a3 are the lengths of the principal axes of the ellipsoid, assumed to be
respectively parallel to the longitudinal, transverse, and normal directions of the sample
reference frame.

Some analytical forms for Morris’ tensor are available in the literature; the interested
reader can, for instance, refer to the books of Mura [9], Kocks et al. [7], or Qiu and Weng
[10]. Nevertheless, these forms were established considering either spherical, disc-shaped
or fiber-shaped inclusions embedded in an ideally isotropic macroscopic medium, that is
incompatible with the strong elastic anisotropy exhibited by fiber-reinforced composites at
a macroscopic scale [11].

In the case of carbon–epoxy composites, a transversely isotropic macroscopic behavior
being coherent with fiber shape is actually expected (and predicted by the numerical
computations). Assuming that the longitudinal (subscripted 1) axis is parallel to the fiber
axis, one obtains the following conditions for the semilengths of the microstructure
representative ellipsoid: a1 !1, a2¼ a3. Moreover, the macroscopic elastic stiffness
should satisfy:
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Putting (4) in (2) and (3) and considering the conditions a2¼ a3, a1 !1 (that can be
rewritten as �1 � �2, �3) leads to the following simplifications of K tensor:
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The determination of Morris’ tensor requires the determination of the inverse of K tensor
that is involved in the calculation of �.

Due to the conditions listed above over the dimensions a1, a2, and a3 of the considered
fiber-shaped inclusions, and according to (5), the inequation Kii�Kij (with i 6¼ j) has also
to be considered in order to find the most significant terms (the others being negligible)
of K�1.

K 1 ¼
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where

e! 0
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It is to be noted that the highest a1 power factors implied in (7) is 0, due to the inversion
of K. Any other factor involves negative powers of a1 that are negligible compared to
the terms given in Equations (7).

Now, it is obvious, that (1)–(3), (6) and (7) lead to drastic simplifications of Morris’
tensor (1), in the case of fibers. Actually, one obtains (in contracted notation i.e., EI

ij

components are given here):
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CHECKING OF NEW ANALYTICAL FORMS FOR MORRIS’ TENSOR

The new closed-form (8) demonstrated for the components of Morris’ tensor assuming
the proper fiber morphology expected in composite materials have to be compared with
the classical numerical calculations based on (1)–(3), in order to assess their validity.

The case of T300/5208 laminate containing a fiber volume fraction of 60% was
considered. The behavior of each composite is governed by its constituents, i.e., the
properties of the fibers, the surrounding matrix, and the relative amount of the fibers and
matrix in the material. Calculations were performed assuming the initial local elastic
properties listed in Table 1 (Y, �, and G stands respectively for Young’s modulus,
Poisson’s ratio, and Coulomb’s modulus).

The macroscopic stiffness L
I obtained with the fully numerical elastic SC model is

summarized in Table 2. It was determined assuming the following values for the length of

4



the semiaxis of the inclusions, in order to take into account the proper fiber microstructure
of the material: a2¼ a3¼ 1, and a1¼ 100. The implicit relation used to proceed to the
calculation of LI is very classical. The interested reader can refer to [14], where an extensive
demonstration is given and leads to:

LI¼ L�þLI :RI
� � 1

: LIþLI :RI
� �

:L�
D E

�¼ f ,m
ð9Þ

where L� is the elastic stiffness of the studied component, i.e., the fiber or the matrix (that
will respectively be denoted in the following by the superscripts f and m). The brackets h i
stand for volume averages. For instance, A�h i�¼f ,m¼ v fAf

þvmAm, with v f and vm the
respective volume fractions of the fiber and the matrix in the ply. RI represents the
so-called reaction tensor that expresses the elastic interactions due to the morphology
assumed for the elementary constituents of the composite material. It satisfies:

RI ¼ LI 1

� EI
� �

:EI 1

ð10Þ

The corresponding Morris’ tensors calculated using either the classical framework (1)–(3)
or the analytical forms (8) are given in Table 3. The results obtained in Table 3 show a
good agreement between the fully analytical calculations of Morris’ tensor and the
classical numerical integration. Thus, the closed-form solutions demonstrated in the
section on ‘‘Analytical forms for Morris tensor for fiber morphology’’ are satisfying to
describe the elastic interactions induced by the specific microstructure of composites
reinforced by carbon fibers.

Next, the simplified form obtained for Morris’ tensor is taken into account in order to
demonstrate fully analytical relations for the internal stresses and strains in both the fibers
and the matrix of carbon–epoxy composites submitted to a macroscopic hygroelastic load.

Table 3. Comparison between the numerical and analytical estimations for
Morris’ tensor components.

Approach
EI

11

(TPa 1)
EI

12

(TPa 1)
EI

22

(TPa 1)
EI

23

(TPa 1)
EI

44

(TPa 1)
EI

55

(TPa 1)

Numerical 0.03 0.01 60.8 24.7 50.2 17.9
Analytical 0.00 0.00 64.1 28.2 46.1 17.9

Table 1. Mechanical properties of T300/5208 constituents.

Y1 (GPa) Y2, Y3 (GPa) �12, �13 G23 (GPa) G12 (GPa)

T300 fibers [12] 230 15 0.2 7 15
N5208 epoxy matrix [13] 4.5 4.5 0.4 1.6 1.6

Table 2. Macroscopic elastic constants of a T300/5208 composite, according to
the fully numerical SC elastic model.

Y1 (GPa) Y2, Y3 (GPa) �12, �13 G23 (GPa) G12 (GPa)

139.6 9.8 0.28 3.5 6.4
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NUMERICAL AND ANALYTICAL PREDICTIONS OF THE

PSEUDOMACROSCOPIC MECHANICAL STATES WITH SC MODEL

Numerical SC model Extended to a Hygroelastic Load

Within Kröner [3] and Eshelby [4] self-consistent framework, the hygrothermal
dilatation generated by a moisture content increment �C � is treated as a transformation
strain exactly like the thermal dilatation occurring after a temperature increment (that last
case was extensively discussed in the literature, see for example Kocks et al. [7]). Thus, the
pseudomacroscopic stresses r� in the considered constituent are given by:

r� ¼ L� : e� � b��C�Þð ð11Þ

Here, b stands for the coefficients of moisture expansion (CME). e is the strain tensor and
�C the moisture content. Generally, it differs at the macroscopic and pseudomacroscopic
scales. Actually, carbon fibers usually do not absorb moisture. As a consequence, the mass
of water contained by the composite is either found in the matrix, locally trapped in
porosities (Mensitieri et al. [15]) or located where fiber debonding occurs.

Replacing the superscripts � by I in (11) leads to the stress strain relation that holds at a
macroscopic scale.

rI ¼ LI : eI � bI�CI
� �

ð12Þ

The so-called ‘scale-transition relation’ enabling to determine the local stresses and strains
from the macroscopic mechanical states was demonstrated by Eshelby [4] in a funda-
mental work, starting from the assumption that the elementary inclusions (here the matrix
and the fiber) have ellipsoidal shapes:

r� � rI ¼ �LI :RI : e� � eI
� �

ð13Þ

Actually, (13) is not very useful, because both the unknown pseudomacroscopic stresses
and the strains appear. Nevertheless, combining (11)–(13) enables to find the following
expression for the pseudomacroscopic strain (the demonstration is available in [1]):

e� ¼ L� þ LI :RI
� � 1

: LI þ LI :RI
� �

: "I þ L�: b��C� � LI : bI�CI
� �

ð14Þ

Moreover, it was established by Hill in 1967 [16], that the self-consistent model was
compatible with the following volume averages on both the pseudomacroscopic stresses
and the strains:

r�h i�¼f ,m¼ rI

e�h i�¼f ,m¼ eI
ð15Þ

It was demonstrated by Jacquemin et al. in [1] that the macroscopic CME should satisfy:

bI ¼
�C�

�CI
LI 1

L� þ LI :RI
� � 1
D E 1

� f ,m

: L� þ LI : RI
� � 1

: L�:��
D E

� f ,m

ð16Þ

For a given applied macroscopic hygroelastic load {rI, �CI}, one can easily determine eI

through (12), provided that the effective elastic behavior LI of the ply has been calculated
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using (9), whereas the macroscopic CME are given by (16). Then, the pseudo-macroscopic
strains are determined through (14).

Analytical Solution for the Pseudomacroscopic Mechanical States

In fact, the epoxy matrix is usually isotropic, so that three components only have to be
considered for its elastic constants: Lm

11,L
m
12, and Lm

44. One moisture expansion coefficient is
sufficient to describe the hygroscopic behavior of the matrix: �m11. In the case of the carbon
fibers, a transverse isotropy is generally observed. Thus, the corresponding elasticity
constants depend on the following components: L

f
11,L

f
12,L

f
22,L

f
23, L

f
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f
55. Moreover,

since the carbon fiber does not absorb water, its CME � f
11and�

f
22

will not be involved in
the mechanical states determination. Introducing these additional assumptions in (14), and
taking into account the form (8) obtained for Morris’ tensor, one can deduce the following
strain tensors for both the matrix and the fibers:
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The pseudomacroscopic stress tensors are deduced from the strains using (11). Thus, in the
matrix, one will have:

	m ¼
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The local mechanical states in the fiber are provided by Hill’s strains and stresses average
laws (15):
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In order to check the validity of these closed-form solutions (18) and (19), one can perform
a simple test. Considering a pure matrix, the following transformation rules have to hold:
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Introducing (24) in (18) and (19), one gets the following simplifications:
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In the following section, the new analytical forms obtained for the internal pseudo-
macroscopic mechanical states are compared to the classical fully numerical model.

COMPARISON BETWEEN ANALYTICAL AND NUMERICAL SC MODELS

Introduction

Calculations were made for a T300/5208 carbon–epoxy composite. The closed-form
formalism used in order to determine the mechanical stresses and strains in each ply of the
structure is described by Jacquemin and Vautrin [2]. This model ensures the calculation of
the macroscopic moisture content, too.

When the equilibrium state is reached, the maximum moisture content of the neat resin
may be estimated from the maximum moisture content of the composite. By assuming that
the fibers do not absorb any moisture, �CI and �Cm are related by the expression given
by Loos and Springer [17]:

�C I ¼ �C mW m ð27Þ

where Wm is the weight fraction (percent) of the resin in the composite.
The preceding equation develops as follows:

�C m

�CI
¼


I

v m
m
ð28Þ

where 
I and 
m are respectively the composite and resin densities.
In the case of T300/5208, since the ratio between composite and resin densities is 1.33,

the maximum moisture content ratio given by (28) is about 3.33. Ply CME estimated
through SC model (16), using Tables 2 and 4 as input parameters, are: �I11 ¼ 0:035 and
�I22 ¼ 1:026. These values are compatible with the classical Tsai–Hahn model [11], usually
used in order to achieve such estimation and based on rule of mixture assumptions, that
leads to �I11 ¼ 0:026 and �I22 ¼ 1:12.
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Thin laminated composite pipes, with 4mm thickness, initially dry when exposed to
an ambient fluid, made up of T300/5208 carbon–epoxy plies are considered for the
determination of both macroscopic stresses and moisture content as a function of time and
space.

Results – Checking of the Analytical Model

Figure 1 shows the time-dependent concentration profiles, resulting from the
application of a boundary concentration c0, as a function of the normalized radial
distance from the inner radius rdim. At the beginning of the diffusion process, important
concentration gradients occur near the external surfaces. The permanent concentration
(noticed perm in the caption) holds with a constant value because of the symmetrical
hygroscopic loading. The macroscopic mechanical states were calculated for two types
of composite structures: (a) a unidirectionally reinforced cylinder, and (b) a [55�/�55�]S
laminated cylinder.

Starting with the macroscopic stresses deduced from continuum mechanics, the local
stresses in both the fiber and the matrix were calculated with either the new analytical
forms or the fully numerical model. The comparison between the two approaches is
plotted in Figures 2 and 3. These figures show a very good agreement between the
numerical approach and the corresponding closed-form solutions. The slight differences
appearing are due to the small deviations on the components of Morris’ tensor calculated
using the two approaches. Actually, it is not possible to assume the quasi-infinite length of
the fiber along the longitudinal axis in the case of the numerical approach, because the
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Figure 1. Time dependent concentration profiles in T300/5208 as a function of the normalized radial distance
from the inner radius rdim.

Table 4. CME of the matrix N5208.

�11 �22, �23

N5208 epoxy matrix [13] 0.6 0.6

10



numerical computation of Morris’ tensor is highly time-consuming. Thus, the numerical
SC model constitutes only an approximation of the real microstructure of the composite.
In consequence, it seems that the new analytical forms, that are able to take into account
the proper microstructure for the fibers, are not only more convenient, but also more
reliable than the initially proposed numerical approach.

Interpretation of the Simulations

The highest level of macroscopic tensile stress is reached for the unidirectional
composite, in the transverse direction and in the central ply of the structure (Figure 2). The
transverse stresses probably exceed the macroscopic tensile strength in this direction. The
choice of [þ55�/�55�]S laminate allows the reduction of macroscopic stress in the
transverse direction. Nevertheless, a high shear stress rises along the time in the fibers of
the central ply of such a structure (Figure 2).

Moreover, Figure 3 shows that the micromechanical model always predicts a very
high compressive stress in the matrix of the inner ply whatever the laminate studied
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Figure 2. Local stresses in T300/5208 composite for the central ply, in the case of (a) the unidirectionally
reinforced composite and (b) the [þ55�/ 55�]S symmetric laminate. CMF stands for continuum mechanics
formalisms.
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(the macroscopic stress is negligible in the radial direction because thin structures are
considered). These local stresses could help to explain damage occurrence in the surface of
composite structures in fatigue.

This work demonstrates the complementarities of continuum mechanics and micro-
mechanical models for the prediction of a possible damage in composite structures
submitted to hygroelastic loads.

CONCLUSIONS AND PERSPECTIVES

In the present work, a rigorous fully analytical treatment of the classical Kröner and
Eshelby self-consistent model including morphology effects was achieved. Especially, the
determination of Morris’ tensor was performed in a satisfactory agreement with the
transverse macroscopic elastic anisotropy expected for the fiber shape that should be taken
into account in order to satisfactorily represent the specific microstructure of carbon-fiber
reinforced composites.
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Figure 3. Local stresses in T300/5208 composite for the inner ply, in the case of (a) the unidirectionally
reinforced composite and (b) the [þ55�/ 55�]S symmetric laminate. CMF stands for continuum mechanics
formalisms.
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The new closed-form solutions obtained for the components of Morris’ tensor were
introduced in the classical hygroelastic scale transition relation in order to analytically
express the internal strains and stresses in both the fiber and the resin of a ply submitted to
a hygroelastic load. The closed-form solution demonstrated in the present work was
compared to the fully numerical self-consistent model for various geometrical arrange-
ments of the fibers: unidirectional or laminated composites. A very good agreement is
obtained between the two models for any component of the local stress tensors. It was also
demonstrated that continuum mechanics and micromechanical models give complemen-
tary information about the occurrence of a possible damage during the loading of the
structure.

Thus, the present analytical model, that works faster and is more convenient to program
than the classical model, could be implemented in a calculation code combining both the
continuum mechanics formalisms (necessary to determine the macroscopic stresses and
strains in each ply) and the micromechanical model. This new software will constitute an
accurate and powerful tool for the prediction of a possible damage in the material at every
scale of a composite structure submitted to a transient hygroscopic stress. In further
works, the effects of a cyclical hygrothermal load on both the local and the macroscopic
mechanical states of carbon fiber-reinforced composites will be investigated.
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